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Abstract—The main purpose of a heat exchanger system is to transfer heat from a hot fluid to a cooler fluid, so temperature 

control of outlet fluid is of prime importance. In this paper, firstly simplified mathematical model for heat exchanger process 

has been developed and used for the dynamic analysis and control design. Artificial neural networks (ANN) are effective in 

modeling of non linear multi variables so modeling of heat exchanger process is accomplished using optimized architecture 

of artificial neural network after that different controllers such as PID controller, feedback plus feed-forward controller and 

a ratio controller are developed to control the outlet temperature of a shell and tube heat exchanger. The main aim of the 

proposed controllers is to regulate the temperature of the outgoing fluid to a desired level in the minimum possible time 

irrespective of load and process disturbances and nonlinearity. The developed ratio controller has improve the overshoot 

from 1.34 to 0 % and settling time from 148 to 91.8 second over the feed-forward plus feedback controller.

Keywords – Artificial neural network, Feed-forward plus feedback controller, Levenberg-Marquardt algorithm, PID 

controller, Shell and tube heat exchanger

I. INTRODUCTION

To exchange heat among the two fluids with of the different 

temperatures and with higher 

efficiency, the heat exchangers are commonly used in the 

industries such as gas processing, petrochemical industries 

etc. In this work shell and tube heat exchanger is used for 

heating or cooling of process fluids. It consists of parallel 

tubes enclosed in a shell. Basically they are used for high 

pressure applications (with pressures greater than 30 bar and 

temperatures greater than 260°C). But the main problem of 

heat exchanger process is the temperature deviation from the 

desired set point.

Modeling of heat exchanger process for the 

estimation of hot and cold fluid outlet temperature as a 

function of flow rates and inlet temperature is accomplished 

using optimized architecture of artificial neural network. An 

algorithm that trains 
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neural network 10 to 100 times faster than the usual back 

propagation algorithm is the Levenberg-Marquardt algorithm. 

While back propagation is a steepest descent algorithm, the 

Levenberg-Marquardt algorithm is a variation of Newton's 

method. The Levenberg-Marquardt algorithm provides a nice 

compromise between the speed of Gauss Newton and the 

guaranteed convergence of steepest descent. In this training 

algorithm supervised learning has been employed where the 

target values for the

output are presented to the network, in order for the network 

to update its weights. The various parameters to be taken into 

account for developing a model are inlet and outlet 

temperatures of shell and tube side fluids and their flow rates. 

Artificial neural networks (ANN) are effective in modeling of 

non linear multi variables relationship and also referred as the 

black box models. 

First of all, a classical PID controller is implemented in 

a feedback control loop so as to obtain the control objectives. 

To further optimize the control performance, feed-forward 

controller and ratio controller is used in conjunction with the 

PID controller. Auto-tuning of PID controllers is also 

implemented and simulated in this paper. A comparative study 

of all the control performance is evaluated in this paper.

II. MODELING OF HEAT EXCHANGER 

Artificial neural network model is developed using optimized 

architecture for modeling of heat exchanger for estimation of 

hot and cold fluid outlet temperature as a function of flow 

rates and inlet temperature. The data required for these 

networks has been generated using water 20% glycerin case. 

Following different modes are used to generate data 

experimentally.

TABLE I

MODES OF DATA GENERATION

Mode Tube side 

inlet 

temperature

Tube side 

flow rate

Shell side 

inlet 

temperature

Shell side 

flow rate

1 Varied Constant Constant Constant

2 Constant Varied Constant Constant

3 Constant Constant Varied Constant

4 Constant Constant Constant Varied

In this model of actual temperature versus predicted 

temperature, the actual heat exchanger data using ‘nftool’ of

MATLAB was used to train the neural network model. The 

system automatically takes 60% of data for training, 20% for 

validation and 20% for testing, so that the same data will not 

be used for testing. It requires many runs to converge or to get 

expected training. Once the system was trained then it takes 

with remaining samples of data for testing. To identify a first 

order plus dead model (FOPDT) parameters two times are 

measured: 1t , the time when the output reaches 28.3% of the 

final change in the steady-state value F IY Y , and 2t , when 
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the output reaches 63.2 % of F IY Y . From figure 1, 1t = 

27.792 and 2t =36.168. By applying the identification process 

on the above figure obtained the first order plus dead time 

model (FOPDT) as

 
23.6

1 2 .5 6 1

se
G sp

s




 (1 )

F ig 1 : A c tu a l an d  p red ic te d  v a lu es  o f h o t  flu id  a n d  c o ld  flu id

F ig 2 : R e g ress io n  p lo ts  fo r  a c tu a l a n d  p red ic ted  res u lts  b y  fe e d -fo rw a rd  n eu ra l 

n e tw o rk  m o d e l fo r  tra in in g , v a lid a t ion , te s tin g  sa m p le s  an d  a ll d a ta  s e t

In  f ig u re  2 th e  d a s h e d  lin e  i s  th e  p e rfe c t  f it  l in e  w h e re  o u tp u ts  

a n d  ta rg e ts  a re  e q u a l to  e a c h  o th e r . T h e  c ir c le s  a re  th e  d a ta  

p o in ts  a n d  c o lo u re d  l in e  re p re se n ts  th e  b e s t  f i t  b e tw e e n  

o u tp u ts  a n d  ta rg e ts .  H e re  i t  is  im p or ta n t to  n o te  th a t  c ir c le s  

g a th e r  a c r o ss  th e  d a sh e d  l in e ,  s o  o u r  o u tp u ts  a re  n o t fa r  f ro m  

ta rg e ts .  F ro m  th e  g ra p h , it  c a n  b e  re a liz e d  th a t th e  b e s t  h id d e n  

u n it  w ith  9 9 %  a c c u ra c y is  w ith  ju s t  o n e  n e u ro n  w ith  o n e  tr ia l 

fo r  th is  m o d e l.

F ig  3 : S h o w s  tra in in g , v a lid a tio n  a n d  te s tin g  m e an  s q u a re  e rro rs  fo r  

L e v e n b e rg -M a rq u a rd t a lg o r i th m  w ith  o n e  n e u ro n .

F ig u re  3  d e p ic ts  th e  tra in in g , v a lid a tio n  a n d  te s t  m e a n  s q u a re  

e r ro rs  fo r  L e v e n b e rg -M a rq u a rd t a lg o r ith m  w i th  o n e  h id d e n  

n e u r o n s . T h e  tra in in g  s to p s  w h e n  M S E  d o  n o t c h a n g e  

s ig n if ic a n tly .

T A B L E  II

O P E R A T IN G  C O N D IT IO N

P a ra m ete r U n its S h e ll s id e T u b e  s id e

F lu id - W a te r 2 0 %  g lyc e rin

T e m p e ra tu re  

(ra n g e )
c 3 9 -5 1 1 7 -2 8

F lo w  ra te s L P H 5 7 .6 -2 2 5 0 5 7 .6 -2 2 5 0

S p e c ific  h e a t J /k g K 4 1 8 4 3 4 0 6

V isc os i ty N s /m 0 .7 2 ×1 0�� 1 .4 4 7 ×1 0��
T h e rm a l 

c o n d u c tiv ity

W /��K 0 .6 6 1 .4 5 5

2 0 25 3 0 35 4 0 45
2 0

2 5

3 0

3 5

4 0

4 5

A c t ua l va lu e s

H ot  ou t le t  vs  c o ld  ou t le t  (ac tu a l)

H ot  ou t le t  vs  c o ld  ou t le t  (p re d ic te d)
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TABLE III

PERFORMANCE EVALUATION OF TRAINING, VALIDATION AND 

TESTING

Number 

of

Hidden 

Neurons

Operation Samples MSE R

1 Training 27 2.1026e-7 9.99999e-1

1 Validation 9 3.0011e-7 9.99999e-1

1 Testing 9 2.0335e-7 9.99999e-1

2 Training 27 1.5719e-8 9.99999e-1

2 Validation 9 7.8179e-8 9.99999e-1

2 Testing 9 5.6004e-8 9.99999e-1

III. PROBLEM STATEMENT

In this section we have developed a block diagram of these 

control loops and modeled the heat exchanger system, 

actuator, valve, sensor using the experimental data available.

The transfer function model of the individual systems are 

generated which in turn combined to acquire the transfer 

function of the whole system.

From the above experimental data the transfer function model 

of the system is derived.

Transfer function of process    
23.6

1 2 .5 6 1

se
G sp

s






G a in  o f  v a lv e  0 .1 3 3

T ra n sfe r  fu n c tio n  o f  v a lv e  
0 .1 3 3

3 1s 

G a in  o f  I /P  c o n ve r te r  is  0 .7 5

T ra n sfe r  fu n c tio n  o f  th e rm o c o u p le  i s   
0 .16

10 1s 

A . P ID  C o n tro lle r

T h e  c h a ra c te r is t ic  e q u a tio n  (1 + G (s)* H (s)  = 0 )  in  th is  c a se  is  

o b ta in e d  a s  b e lo w .

3 29 0 0 4 2 0 4 3 1 .7 8 0s s s   

T h e  P ID  c o n tro lle r  is  tra d it io n a l l y  su ita b le  f o r  se c o n d  a n d  

lo w e r  o rd e r  s ys te m s . It  c a n  a ls o  b e  u s ed  fo r  h ig h e r  o rd e r  

p lan ts  w ith  d o m in a n t se c o n d  o r d e r  b e h a v io r . A  P ID  c o n tro lle r 

is  tu n e d  a c c or d in g  to  a  ta b le  b a se d  o n  th e  p r o c e s s  r e s p o n se  

te s t . A c c o rd in g  to Z e ig le r-N ic h o ls  f re q u e n c y  re s p o n se tu n in g  

c r ite r ia

0 .6K Kp c 0 .5Ti  0 .1 2 5Td 

F o r  th e  P ID  c o n tro lle r  in  th e  h e a t e x ch a n g e r , th e  va lu e s  o f  

tu n in g  p a ra m e te rs  o b ta in e d  a re

0 .27 81K p  1 0 .2i  2 .55d  a n d  0 .4 6 3 6P 

0 .0 4 5I  1 .1 8D 

F ig u re  4  c le a r ly  sh o w s  th a t th e  d e la y  w ill  a ff e c t  th e  s te p  

r e sp o n s e  o f  p r oc e ss  t il l  th e  t im e  2 3 .6  se c . a n d  a f te r  th a t  i t 

fo llo w  th e  s te p  r e s p o n se . 

F ig 4 : P ID  c o n tro lle r re s p o n se

N o w  d iff e re n t v a lu e s  o f  �� i .e .  0 .2 7 8 1  a n d  0 .4 6 3 6  a re  u se d  

a n d  v a r ia tio n  in  s te p re s p o n se  is  s h o w n  in  F ig u re  4 .

Step response w ith PID controller
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Fig 5: Feedback PID controller with different gains

B. Feedback and Feed-forward Controller

A feed forward control estimates the error and changes the 

manipulating variable before the disturbance can affect the 

output. To further minimize the overshoot a feed-forward 

controller is introduced in the forward path of the process 

along with the feedback controller. The combined effect of 

feedback and feed-forward controller reduces the overshoot 

value.

In feed forward controller we have tried to regulate the flow 

disturbance of the input fluid. ( )pG s is the transfer function 

of the process where as ( )dG s is the transfer function of 

flow disturbance.

23.6
( )

12.56 1

e
G sp

s






35
( )

25 1

se
G sd s






Gain of valve is 0.133

Transfer function of valve  
0.133

3 1s 

Transfer function of thermocouple  
0.16

10 1s 

Gain of I/P converter is 0.75

Figure 5: Feed-forward plus feedback controller response

From figure 5, it is clear that feed-forward plus feedback 

controller provides much faster response as compared to PID 

controller. Also feed-forward plus feedback controller rejects 

the disturbance earlier as compared to PID controller. 

Overshoot and settling time are less as compared to PID 

controller.

A. Comparison of different Parameters in controllers 

TABLE III

COMPARISON OF DIFFERENT PARAMETERS IN CONTROLLERS

Parameter PID 

Controller

FB + FF 

Controller

Rise time 35.95 87.9

Settling time 198.5 148

Overshoot 16.77 1.34

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: Tsp

0 100 200 300 400

From: d

Closed-loop response to setpoint and disturbance step change

Time (sec)

Feedback only

Feedforw ard + feedback

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response of Feedback PID controller with different gain

Time (sec)

Amplitude

Kp = 0.2318

Kp = 0.4636



www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 71

Peak 1.16 1.01

Peak time 97.10 200

C. CONCLUSION

To efficiently control the temperature, designed three kinds of 

controllers and the modeling of heat exchanger is done using 

artificial neural network, it can be concluded that the ANN 

heat exchanger model using Levenberg marquardt algorithm 

for 20% glycerin has been successful and has very good 

accuracy level (99% - 99.5%). A classical PID controller is 

designed to achieve the control objective. But due to the 

unsatisfactory performance of the PID controller a feed-

forward controller is designed and placed in the forward path 

of the system. It is observed that feed-forward plus feedback 

controller gives a much better response than any other 

conventional PID controller.
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