Blind and Non-Blind Deblurring using Residual Whiteness Measures

M. Rangaswamy¹, Manasa. R², Suban. S³, Somasekhar. P⁴, Vinaykumar. P⁵
¹,²,³,⁴,⁵Department of ECE, JNTUA

Abstract: In the present days blurring is a problem in the images and also in digital devices such as smart phone, digital camera, etc. Aim of the image deblurring is that it will make the pictures shape. In the existing method do not find the perfect solutions, some disturbance are separately white that occurs in the image deblurring techniques. But in our proposed method when compared to the non-blind deblurring and blind deblurring gives us the better results without noise both in single and multi-frame scenarios and also evaluate the whiteness in the image in terms of speed and restoration quality when compared with the other deblurring techniques. This paper gives better results.

Keywords: Image deploring, blind and Non-blind deploring, Whiteness in the image, multi frame scenarios.

I. INTRODUCTION

In 1960’s peoples are concentrated more in producing pictures in the earth and the solar system. They need information from astronomical information so essentially need for the systematic image restoration techniques were what to the engineering community after solving in many algorithms solving extensively increase the need for astronomy and many other images they found a way called digital image deblurring. Generally images are classified into two types. They are constrained domain and unconstrained domain images. If there is no disturbance of light such images are referred as constrained images and if there is disturbance of light and posing problems in the are referred as by using camera but every image has more are less blur is occur due to a lot of interference in the camera are in the environment. Image deblurring is a general frame work is used to convert the measurements of the observed images into information about a physical object or system were the observed image is to make as a convolution of a applications in image deblurring are medical imaging, photography, surveillance. Mainly image deblurring is classified into two types they are blind and non-blind. If the blur Kernel is known then it is referred as non-blind deblurring and when blur Kernel and image are unknown than it is referred as blind deblurring. NBID has narrow applications when compared to BID due to ill-conditioned nature of blur operator. Most of the NBID methods overcome this problem with the help of image regularizer, or prior, the mean of which has to be tuned[1,2]. In ID several optimization techniques have been introduced to handle regularizers. Iterative shrinkage/thresholding (IST) algorithm is popular in handling regularizer. In these methods addition to regularizer parameter, choice of stopping criterion is also required, there is a delicate interplay between these two choices.

Most BID methods restrict the use if blur filters, either in a hard way[3,4] through the use of parametric models, or in a soft way[5,6] through the use of regularizers. Recent BID method achieved good performance on synthetic and real problems without prior knowledge about blur. The above method works on estimating main features and regularization weight of an image. The main drawback of BID is that it requires manual stopping and choosing the final value of the regularization parameter. The difference between the observed image and blurred estimate is equals that of the noise which is referred as discrepancy principle(DP), two other popular criterion are generalized cross validation(GCV) and the L-curve[7]. Though the above two methods are developed and applied to linear methods, can also be used with non-linear methods. SURE(Stein’s unbiased risk estimate) provides an estimate of mean square error(MSE). For example SURE based approaches assume full knowledge on degradation model, which are not suitable for BID. By using some other methods we can adjust the regularization parameter, however most of them are developed for Bayesian formulations. The proposed criterion can be used to adjust the regularization parameter ad stopping iterative ID methods it is suitable for both NBID and BID problems.

II. LITERATURE SURVEY

Image deblurring is an ill posed problem where the observed image is convolution of sharp image and noise.

\[y = h \ast x + n \]

(1)

After many researches deblurring is divided into two types there are blind and non-blind deblurring to remove the blur in the images we use different types of algorithms. In previous methods IST (Iterative Shrinkage Thersholding) is used but it is delay in
process so we introduce new method a FISTA (Fast Iterative Shrinkage Thersholding algorithm) which has simple calculations then IST. results obtained from wavelet based image deblurring exhibits capacity FISTA faster than IST by several orders of magnitude in order to handle this type of algorithms we utilize the regularizer. But in blind deblurring we lack of data and non blind deblurring we know the blur; we use the regularizer in non blind to estimate the blur in an image.

In our proposed criteria selecting regularization parameter and stopping criterion are based on measures on image estimate and blur estimate by analyzing estimated residual image.

\[r = y - \hat{h} \ast \hat{x} \]

The characteristics of residual are then compared with noise (n) in equation (1). There is a quite generic assumption valid for most real situations. Our approaches differs from other methods based on residual statistics such as those in [8],[9] in those methods they don’t use spectral properties of residual, but uses variance and other moments. BID suffers from an understanding lack of data. Very few assumptions are made on blurring filter and original image. To estimate both deblurred image and blurring filter is made in progressive way first and taking into account the main features of an image. This method yields improvements in real photographs with focus and motion blurs[10]. The algorithm works on natural images to different kinds of blurring, and deblurs the image. The algorithm uses the new image priors and increases the signal to noise ratio (SNR) compare to the state of the art approaches [11].

II. PROPOSED METHOD

In the proposed criteria convolution is applied to the input image to remove blur after to estimate the residual image (i.e; no blur is present in the image and finally got the output in the proposed method to do both regularization method to the unknown images or known images and stopping of iterations based on fitness of the image is to be measured and compared to the degradation model to get residual image \(r = y - \hat{h} \ast \hat{x} \) and degraded images \(y = h \ast x + n \) so here noise ‘n’ is assumed as white.

A. Image Deblurring

In the image deblurring the degraded image is represented as \(y = h \ast x + n \) where ‘x’ is original image ‘y’ is degraded image ‘n’ is noise and ‘h’ is the PSF and \(\ast \) is the deconvolution operator there are two type of deblurring

1) Non Blind Deblurring Technique
2) Blind Deblurring Technique

The blur filter and image are known in the NBID and in BID we don’t know the blur filters and images we have to find ‘x’ from ‘y’ and ‘h’ in NBID but in BID we have to find ‘x’ and ‘h’ from ‘y’

\[C(x,h) = \frac{1}{2} ||y - h \ast x||_2^2 + \lambda \phi(x) \]

\(n \) is the white Gaussian \(\phi(x) \) is the regularization function and information about the ‘x’ and ‘\(\lambda \)’ is the regularization parameter.

B. Non-Blind Deblurring

In the NBID to estimate the blur filter and also assume the ‘h’ is the PSF is to know and also minimize the cost function with respect to ‘x’ choice is given to the regularization parameter ‘\(\lambda \)’. there are many methods for ID to minimize the cost function repeating the process and calculate to estimate the image at the iteration ‘t+1’ is a function of the previous estimate \(x_t \) i.e \(x_{t+1} = f(x_t,y,h,\lambda) \). To estimate the regularization parameter ‘\(\lambda \)’. To repeat the process also need to stop the method so to consider the final result \(r = y - \hat{h} \ast \hat{x} \).

C. Blind Deblurring

In the proposed method to select the regularization parameter and final iteration so the whiteness starts to increase for certain peak after it starts decrease so to stop the method for certain peak before the whiteness is decrease and measure the whiteness for starting point to certain peaks.

D. Measure of Whiteness

First step of our method is to find out make the regular of the residual image to make the mean is to be zero and the variance is to
be unit so to donate the normalized residual is as:

\[r \leftarrow \frac{x - f}{\sqrt{\text{var}(r)}} \]

(4)

Where \(r^\wedge \) and var(r) respectively so the auto correlation of the normalized residual are is estimated as to

\[R_r(m,n) = \frac{1}{2L+1} \sum_{l=1}^{2L} (r(l,j) - \bar{r}) (r(l,j) - \bar{r}) \]

(5)

Here where the summation is and residual image and \(k \) is irrelevant constant if \(m=n=0 \) then \(\delta(m,n)=1 \) otherwise \(\delta(m,n)=0 \)

So, measure the whiteness is based on the distance between the \(R_r \) and the delta function to consider a \((2L+1) \times (2L+1)\) so the proposed whiteness is measures simple the energy \(R_r \) outside the origin.

\[M_r = \sum_{(m,n) \neq (0,0)} (R_r(m,n) - \delta(m,n))^2 \]

(6)

where the minus sign is to make \(M_r \) is large for residuals the auto covariance of lags is smaller than that of small lacks.

The waited version of measure is consider as

\[M_{rw}(r) = \frac{1}{2L+1} \sum_{(m,n) \neq (0,0)} w(m,n) (R_r(m,n) - \delta(m,n))^2 \]

(7)

\(w(m,n) \) is a weight of matrix the power spectral density \(r \) is denoted as \(S_{rr}(w,v) \) at 2-d spatial frequencies \((w,v)\)

\[S_{rr} = f(R_r) \]

(8)

\(F \) represents the magnitude of the discrete fourier transform. the resulting measure is

\[M_H(w) = -\sum_{w,v} s_{tr}(w,v) \log s_{tr}(w,v) \]

(8)

Where \(s_{tr}(w,v) = \frac{s_{tr}^{'2}(w,v)}{\sum_{w,v} s_{tr}^{'2}(w,v)} \)

To measure the whiteness of the local versions based on local auto covariance estimates

\[B_{rr}^B(m,n) = \sum_{l,j \neq (m,n)} r(l,j) r(l,j) \]

(9)

Where ‘\(b \)’ is the indexes an image block and \(B^B \) is the set of pixels in that block. to use the overlapping 9x9 blocks partially and separated horizontally and vertically by 5 pixels and fully contained in the image domain. So the residual is mean is to be zero and variance is unit so this block partition the 3 local measure of whiteness \(M_R, M_{RW} \) and \(M_H \) are obtained by calculating the corresponding local measures

\[M_R, M_{RW} \] and \(M_H \)

Respectively at each block and average over all the blocks present in the image
III. SIMULATION RESULTS

A. Residual Method

From the above fig(4) after capturing the image first to do the regularization means arrange the pixel in the normalized form after to do the iterations means the same process is repeated starts from iteration 1 to and so on up to got the blur removed image called residual image.

B. Adaptive ISNR Metric

Fig: 4.1 Input Images

Fig: 4.2 Image obtained from Residual method

Fig: 4.1 Input Images

Fig: 4.2 Image obtained from Residual method
From the fig(4) plot the Adaptive ISNR for output images is the blurred image and ‘RG’ is the whiteness measurement for the residual image. If the ISNR value is decreases the noise is removed.

C. Output Images

The image below can be obtained after the working of residual, method and ISNR technique

IV. CONCLUSIONS

Our proposal is based on measures of the whiteness of the residual image. The proposed criteria were motivated by blind deconvolution problems. The proposed approach was shown to be also adequate for estimating parameter and the number of iteration of non-blind deblurring algorithm. Finally, tests on several real photos, degraded with various motion blurs, showed that proposed methods yields good results. Proposed methods will handle both constrained and unconstrained domain images. It makes weak assumptions about blurring filter and focus on main edges of the image. It works on single-frame scenarios both monochrome and color images then synthetic and real-life degradations.

REFERENCES

BIBLIOGRAPHIES

Mr. M Rangaswamy has pursued B Tech in Madana palli Institute of Technology & Sciences and M Tech from in Madana palli Institute of Technology & Sciences. He is working as Associate Professor in BITS Kurnool.

Ms. R Manasa is pursuing B Tech in Brindavan Institute of Technology & Sciences in the department of ECE.

Mr. S Suban Basha is pursuing B Tech in Brindavan Institute of Technology & Sciences in the department of ECE.

Mr. P Soma Sekhara reddy is pursuing B Tech in Brindavan Institute of Technology & Sciences in the department of ECE.

Mr. P Vinay Kumar reddy is pursuing B Tech in Brindavan Institute of Technology & Sciences in the department of ECE.