Abstract: The chromatic number of tensor product \((G \otimes H)\) of \(G\) and \(H\) has vertex set \(V(G)\) and \(V(H)\). In this paper, we introduced chromatic prime number on circular embedded graph of tensor product.

Keywords: Circular embedded Graph, Chromatic number and Chromatic prime number. \(P^+\) and \(P^-\) are positive and negative edge prime numbers.

I. INTRODUCTION

In this paper, we provide few results on chromatic prime number on circular embedded of tensor product graphs for connected, butterfly and pentagon graphs. A graph consists of a set of vertices \(V(G)\) and a set of edges \(E(G)\). For every vertices \(u_i, u_2, V(G)\), the edge connecting \(u_i\) and \(u_2\) is denoted by \(e_i\). Here, we introduced the chromatic prime number for the circular embedded graph of tensor product. We first prove that \(\chi_\varnothing(G \otimes H) \leq \min\{\chi_\varnothing(G), \chi_\varnothing(H)\}\). An assignment of colors to the vertices of a graph, so that no two adjacent vertices get the same color is called a coloring of the graph. The chromatic number of a graph \(G\) is the minimum number of colors needed to color the graph \(G\).

II. PRELIMINARIES

In this section, we introduced the chromatic prime number on tensor product graph with respect to the positive and negative prime number.

Definition 1: The Tensor product, \(G \otimes H\), of graph \(G\) and \(H\) is the graph with vertex set \(v(G) \times v(H)\) and \((a,x)(b,y) \in E(G \otimes H)\) whenever \(ab \in E(G)\) and \(xy \in E(H)\).

Definition 2: The chromatic number, \(\chi(G)\), of \(G\) is the smallest number \(n\) for which \(G\) has an \(n\)-coloring.

Definition 2: The chromatic prime number, \(\chi_\varnothing(G)\), of \(G\) is the smallest number \(n_\varnothing\) for which \(G\) has an \(n_\varnothing\)-coloring.

III. MAIN RESULTS AND DISCUSSION

A. Theorem 1

Let \(G\) and \(H\) be the 2-prime colorable connected graph and Butterfly graph respectively, then their product satisfies the circular embedding through the tensor product, that is, \(\chi_\varnothing(G \otimes H) \leq \min\{\chi_\varnothing(G), \chi_\varnothing(H)\}\)

B. Proof

Let \(G\) be a 2-prime colorable connected graph and butterfly graph with vertices \(u_1,u_2,u_3\), and \(v_1,v_2,\ldots,v_7\) respectively.

Let the value of the vertices of graph \(G\), \(u_1,u_1 = 2\) and \(u_2 = 3\). \((u_1+u_2)\) and \((u_2+u_3)\) are positive prime numbers.

\[\chi(G) = 2 = \chi_\varnothing(G) \quad (1)\]

Let the value of the vertices of graph \(H\), \(v_1,v_2, v_3 = 2\), \(v_2,v_3,v_7 = 3\) and \(v_3 = 5\). \((v_1 + v_2),(v_1 + v_3),(v_3 + v_5),(v_4 + v_5)\) and \((v_3 - v_2),(v_1 - v_4),(v_3 - v_7)\) are positive and negative prime numbers respectively.

\[\chi(H) = 3 = \chi_\varnothing(H) \quad (2)\]

Let the tensor product of \(G\) and \(H\), \(\chi_\varnothing(G \otimes H)\) which has satisfies the circular embedding. Let us denote, \(u_1v_i, u_2v_i,u_iv_i;\) where \(i = 1,2,\ldots,7\).

The tensor product \(\chi_\varnothing(G \otimes H)\), which has prime numbers of vertices on addition and subtraction. We get positive and negative prime numbers.

\[\chi(H\otimes G) = 2 = \chi_\varnothing(H\otimes G) \quad (3)\]

From (1),(2) and (3), we get

\[\chi(G \otimes H) \leq \min\{\chi(G), \chi(H)\}\]

\[\chi_\varnothing(G \otimes H) \leq \min\{\chi_\varnothing(G), \chi_\varnothing(H)\}\]
C. Example

1) Theorem 2: Let G and H be the 3-prime colourable complete graph and star graph respectively, then their product satisfies the circular embedding through the tensor product, ie, $\chi_p(G \otimes H) \leq \min\{\chi_p(G), \chi_p(H)\}$

2) Proof: Let G be a 3-prime colourable complete graph with vertices u_1, u_2 and u_3. Let H be a star graph with vertices v_1, v_2, v_3, v_4, and v_5.

Let the value of the vertices of graph G, $u_1 = 2$, $u_2 = 3$, and $u_3 = 5$. $(u_1 + u_2)$, $(u_1 + u_3)$ and $(u_3 - u_2)$ are positive and negative prime numbers respectively.

$\chi(G) = 3 = \chi_p(G)$ (1)

Let the value of the vertices of graph H, $v_1 = 2$, $v_2 = 3$, $v_3 = 5$. $(v_1 + v_3), (v_1 + v_4), (v_2 + v_3), (v_2 + v_4), (v_3 + v_4)$ and $(v_5 - v_3)$ are positive and negative prime numbers respectively.

$\chi(H) = 3 = \chi_p(H)$ (2)

The tensor product $\chi_p(G \otimes H)$, which satisfies the circular embedding; $u_1 v_1, u_2 v_1, u_3 v_i$, where $i = 1, 2, ..., 5$. The tensor product $\chi_p(G \otimes H)$, which has prime numbers of vertices on addition and subtraction, we get positive and negative prime numbers.

$\chi(G \otimes H) = 3$ therefore $\chi_p(G \otimes H) = 3$ (3)

From (1), (2) and (3), we get

$\chi(G \otimes H) \leq \min\{\chi(G), \chi(H)\}$

$\chi_p(G \otimes H) \leq \min\{\chi_p(G), \chi_p(H)\}$
D. Example

1) **Theorem 3:** Let G and H be the pentagon graph and 3-prime colourable complete graph respectively, then their product satisfies the circular embedding by the tensor product,

2) **Proof:** similarly to the above theorem.

3) **Theorem 4:** Let G and H be Hexagon graph and merge graph respectively, this product satisfies the circular embedding by the tensor product, then does not exit.

Proof: Let G and H be a 2-prime colorable hexagon graph and 3-prime colorable merge graph with vertices \(u_1, u_2, u_3, u_4, u_5, u_6\) and \(v_1, v_2, \ldots, v_6\) respectively. Let the value of the vertices of graph G, \(u_1, u_3, u_5 = 2\) and \(u_2, u_4, u_6 = 3\). \((u_1+u_2), (u_2+u_3), (u_3+u_4), (u_4+u_5), (u_5+u_6)\) and \((u_6+u_1)\) are positive prime numbers and their

\[
\chi(G) = 2 \quad \text{and} \quad \chi_p(G) = 2. \quad (1)
\]

Let the value of the vertices of graph H, \(v_1, v_3, v_5 = 2; v_2, v_4 = 3\) and \(v_6 = 5\). \((v_1 + v_4), (v_3 + v_4), (v_4 + v_6), (v_5 + v_6)\) and \((v_4 - v_2)\), \((v_4 - v_6)\) are positive and negative prime numbers respectively.

\[
\chi(H) = 3 \quad \text{and their} \quad \chi_p(H) = 3 \quad (2)
\]

Let us assign the values, the tensor product of the vertices \(u_iv_j\), where \(i,j = 1,2,\ldots,6\)

The tensor product \(\chi_p(G \otimes H)\), which has prime number of vertices on addition and subtraction, we get positive and negative prime numbers.

\[
\chi_p(G \otimes H) = 3 \quad \text{and} \quad \chi_p(G \otimes H) = 3 \quad (3)
\]

But \(\chi_p(G \otimes H) = 3\) is not possible by the definition of chromatic prime number. From (1), (2) and (3) we get

\[
\chi(G \otimes H) \leq \min \{\chi(G), \chi(H)\}
\]

\[
\chi_p(G \otimes H) \leq \min \{\chi_p(G), \chi_p(H)\}
\]
IV. CONCLUSION

In this paper, we observed that the circular embedding by the tensor product graph does not possess prime chromatic number for all size and order.

REFERENCES
