

5 V May 2017

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1752

 Techniques for Performing User-Defined
Integrity Constraint

 Jyoti1, Sneha2
1,2 Department of Computer Science & Engineering M. Tech. Scholar, Gateway Institute of Engineering & Technology (GIET),

Sonepat

Abstract Integrity constraints help us to maintain integrity i.e., correctness of the table in any database. Whenever a user creates
a new database then wrong entry can be inserted in the table. To prevent these wrong entries we initiate data constraints while
creating the new table. The integrity or data constraints are categorized into two methods – Input-Output Constraints and
Business Rule Constraints. The input-output constraints are applicable on general table & common to all types of organizations.
On the other hand business rule are specific to any specific business or organization. Business rules, which are enforced on data
being stored in a table, are called constraints. Integrity control deals with the prevention of semantic errors made by users due to
their carelessness or lack of knowledge; the integrity control subsystem uses integrity rules to verify the database and operations
on the database. The business can also used user-defined constraints which are defined by the Oracle Trigger. Trigger helps a
business to defined constraints which are not possible using built-in constraints. In this paper we defined various triggers to
prevent business or an organization from entry or performing wrong operation in the table of any specific database.
Keywords: Data Constraint, Trigger, Business rule Constraint, Input Output Constarints

I. INTRODUCTION
Data Constraints are one of the unique features of data base management system using which we can prevent wrong entry from the
table of any database. Oracle helps us to attach data constraints with the columns of any table while creating the table. Now if user
enters data according to constraint then data is accepted & entered in the table otherwise an error message will display. The native
language for Oracle databases is Structured Query Language (SQL).
SQL provides various concepts for implementing data constraints. All the constraints are divided into following six categories- Not
Null, Unique, Primary Key, Foreign Key, Default Check.

A. All the above data constraints are divided into following two types:
1) Input-Output constraints.
2) Business Rule Constraints
The input-output constraints are applicable on general table & common to all types of organizations. Different types of Input output
constraints are – Unique, Not Null, Primary Key & Foreign Key. On the other hand business rule are specific to any specific
business or organization. Different types of Input output constraints are – Check & Default.
Business rules, which are enforced on data being stored in a table, are called constraints. Integrity control deals with the prevention
of semantic errors made by users due to their carelessness or lack of knowledge; the integrity control subsystem uses integrity rules
to verify the database and operations on the database. The business can also used user-defined constraints which are defined by the
Oracle Trigger. Trigger helps a business to defined constraints which are not possible using built-in constraints. In this paper we
defined various triggers to prevent business or an organization from entry or performing wrong operation in the table of any specific
database.

II. CONSTRAINTS OR TRIGGERS
An active database system (DBMS) should support constraints as well as event-driven application logic. However, declarative
constraints should be used in lieu of triggers whenever possible. First, several triggers are required to enforce one declarative
constraint; even then, the system has no way of guaranteeing the validity of the constraint in all cases. Consider the database load
utilities in which the database checks the declarative constraints against the loaded data before it can be accessed. There is no way to
determine which triggers should be checked since triggers are also used for transitional constraints and for event-driven application
logic. This behavior also applies when constraints and triggers are added to a database with pre-existing data.

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1753

The database engine can use knowledge of declarative specifications to optimally evaluate constraints. For example, concurrency
control hot spots can be avoided during referential integrity enforcement by reducing the isolation level to cursor stability.
Guaranteeing the presumed semantic intent of triggers, in general, requires an isolation level of repeatable read. Furthermore,
semantic query optimization is not possible if the declarative semantics are hidden in triggers. Tool vendors may also take
advantage of declarative constraints for pre-checking entries at the client (e.g. a mobile laptop) before sending data to the server.
The declarative constructs provided by most systems and defined in SQL92 only support a small, albeit useful, set of static
constraints that define the acceptable states of the value of the database, e.g. salary > commission + hourlyWage * hoursWorked.
They do not support transitional constraints that restrict the way in which the database value can transition from one state to the next
e.g. salary increases must be less than 10%. They also do not support event-driven invocation of application and business logic.
Hence, triggers are required to enhance the declarative constraint constructs and to capture application specific business rules.
Triggers provide a procedural means for defining implicit activity during database modifications. They are used to support event-
driven invocation of application logic, which can be tightly integrated with a modification and executed in the database engine by
specifying a trigger on the base table of the modification.
Triggers should not be used as a replacement for declarative constraints. However, they extend the constraint logic with transitional
constraints; data conditioning capabilities, exception handling, and user defined repairing actions.
In summary, there are advantages to using both declarative constraints and procedural triggers, and both types of constructs are
available in many commercial systems. It is not feasible to expect applications providers to either migrate their existing applications
to use only triggers or partition the tables in their database according to the type of constraints and triggers that are required. It is
therefore imperative to define and understand the interaction of constraints and triggers.

III. DECLARATIVE CONSTRAINTS
Declarative constraints in SQL include two forms of static constraints: check constraints and referential constraints. Although
declaratively specified, each constraint implies a set of events for which the constraint is checked and>n action to be taken if the
constraint is not satisfied (or, more accurately, evaluates to false). When a static constraint is defined, the system verifies it against
the existing data, and once defined, guarantees that the constraint is always satisfied. After load utilities are used, the system verifies
all declarative static constraints before the loaded data can be accessed. A check constraint, typically used to validate input data, is a
condition that is true for every row in a given table. In general, a check constraint can be any SQL condition, including multi-table
assertions. Since such assertions are extremely expensive to support, this feature is practically restricted to the special case key
constraints and one variable aggregate-free check constraints, i.e., value constraints, in most existing products. These constraints
allow the definition of uniqueness constraints, value restrictions and intra row value checks on a single table.
In object-oriented extensions of SQL, check constraints can contain functions applied to the values as long as the functions are
deterministic and do not have side-effects. Value constraints need only be evaluated when the constraint is defined, after special
load utilities are run, or when any table on which the constraint is defined is modified by an UPDATE or INSERT statement. In
addition, multi-table assertions may also need to be checked when any table referenced in the condition is modified. If the constraint
evaluates to false for any updated or inserted rows then the statement that caused the modification2 is rejected and any changes
made by the statement are undone.
A referential integrity (RI) constraint establishes a relationship between a set of columns designated as a foreign key and a unique
key such that the non-null values of the foreign key must also appear as values in the unique key. The foreign key’s table is the
constraint’s child table and the unique key’s table is the constraint’s parent table. Note that the parent table and child table can be
the same, referred to as a self-referencing RI constraint. Like check constraints, RI constraints must also be checked when the
constraint is defined and after special load utilities are run. However, since there are two tables involved in the constraint, there are
four modifications that cause constraint evaluation: (a) insertions into the child table, (b) updates a foreign key column, (c) deletions
from the parent table, and (d) updates of a unique key column. Whenever modifications to the child table violate the constraint, the
statement that caused the modification is rejected and any changes made by the statement are undone. However, the action to be
taken when the parent is modified by a DELETE or UPDATE statement is one of a set of pre-defined actions that is specified with a
delete rule or update rule, respectively, when the constraint is defined. This pre-defined set includes: NO ACTION and RESTRICT,
which reject the violating statement3; SET NULL, which sets the nullable columns of the foreign key of any child rows that match
the modified parent rows to null; SET DEFAULT, which sets the foreign key columns for any child rows that match the modified
parent to their default values; and CASCADE, which deletes any matching child rows.

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1754

IV. SQL TRIGGERS
In contrast to declarative constraints, triggers are procedural. The event governing the execution of a trigger is explicitly specified in
its definition. This triggering event is an UPDATE, DELETE or INSERT statement applied to a base table. An optional column list
can be specified in the case of updates to further restrict the set of update events that activate the trigger. The trigger also has an
activation time that specifies if the trigger is executed before or after its event and a granularity that defines how many times the
trigger is executed for the event. Before-triggers execute before their event and are extremely useful for conditioning of the input
data before modifications are applied to the database and the relevant constraints evaluated. After-triggers execute after their event
and are typically used to embed application logic, which typically runs after the modification completes.
The granularity of a trigger can be specified as either FOR EACH ROW or FOR EACH STATEMENT, referred to as row-level and
statement-level triggers respectively. When the event of a row-level trigger occurs, the trigger is executed once for each row
affected by the event. If no rows are affected, then the trigger is never evaluated. However, a statement-level trigger is executed
exactly once whenever its event occurs, even if the event does not modify any rows. Like to constraints, both row-level and
statement-level after triggers must (appear to) execute only after the triggering event finishes executing; before-triggers must appear
to execute entirely before the triggering event’s modifications are applied. Note that the granularity does not dictate when the trigger
executes. Obviously, there are many cases when row-level triggers can be safely and optimally processed in-flight. However, if they
or any constraints that must be evaluated require access to either the base table of the triggering event or any table that is modified
by the trigger or the constraints, then row-level triggers can only be processed in a set-oriented fashion. E.g., if a row-level update
trigger on table T accesses the average of a column in T, then the average must not be computed in the middle of the triggering
update; it must either be computed entirely before or after the application of any modifications to T. Each trigger has access to the
before-transition values and after-transition values of the event through the declaration of transition variables and transition tables.
The declaration “referencing NEW as N” defines N as a single row correlation variable that contains the value of a row in the
database immediately after the modification is applied. Similarly, “referencing OLD as 0” declares 0 as a single row correlation
variable containing the value of the same row in the database before the modification is applied. If both OLD and NEW transition
variables are declared as above, then the new and old values of a given row can be compared. For example, if the trigger’s table is
EMP, and EMP has column salary, then we can check if the modification was a raise by comparing 0. salary with N. salary.
Transition tables are similarly declared using keywords NEW-TABLE and OLD-TABLE. If NT is declared as a new transition
table, it is a virtual table containing the values of all modified rows immediately after the modification is applied. Similarly, if OT is
declared as an old transition table, it is a virtual table containing the values of all modified rows before the modification is applied.
Not all types of transition variables and transition table references are valid for each type of trigger. In particular, triggers defined on
insert events can only see new values and triggers defined on delete events can only see old values while triggers defined on update
events can see both old and new values Furthermore, transition variables are only accessible at the granularity of one row, and
hence, can only be referenced by row-level triggers. Both statement-level and row-level before triggers participate in a fix point
computation of the transition tables; during the computation of this fix point, inherently, the entire content of the transition tables is
not yet computed. Hence, before-triggers cannot reference transition tables. However, both row level and statement-level after-
triggers can reference transition tables. Such references allow row-level after-triggers to compare a single transition row value with
aggregations on the transition tables, e.g., how the new salary in a given row compares with total impact of the salary increase.
Each trigger has an action that is optionally guarded by a condition; the action is only executed when the triggering event occurs
and, if specified, the condition is satisfied. The condition is a single, unrestricted search condition and the action is a procedure
containing a sequence of SQL statements. Both the action and the condition can query the transition variables and tables as well as
the current value of the database, and these queries can invoke user-defined functions. Since before-triggers appear to execute
entirely before the event occurs, any queries of the database in their conditions or actions must appear to read the database state
prior to any modifications made by the event. Similarly, the conditions and actions of all after-triggers must appear to read the
database state after all of the event’s modifications are applied. If the after-trigger needs to query the state of the database prior to
the event, then it can reconstruct it using the transition tables. For example, if T is modified by the triggering event, NT is the new
transition table and OT is the old transition table, then the state of T prior to the event can be approximated by (T/NT) U OT.

V. TRIGGER EXAMPLES & RESULTS
Triggers are basically database objects that are attached to a table, and are only fired when an INSERT, UPDATE or DELETE
occurs. This means that it specifies a particular action to take place whenever a given event takes place on a particular object.

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1755

A trigger can be created by using following syntax:
Create or Replace Trigger <Trigger-name>
{Before/After} {Insert/Delete/Update} on <Table-nm>
For Each Row [When <Condition>]
Declare
<Declaration of Variables & Constants>;
Begin
<SQL & PL/SQL Statements>;
End;
A. Example1: The following trigger creates a back up emp table empbackup table after each delete or update operation on emp

table
 Create or Replace Trigger Backup

After delete or update on Emp
For each row
Begin
Insert into Empbackup values
(:old.empno, :old.ename, :old.job, :old.sal);
End;

Figure 1 & 2 below shows the result of above trigger

Figure 1: Deleting a record from emp table

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1756

Figure 2: Listing of empbackup table

B. Example2: Define a trigger to abort each update statement on emp table if salary is decreased.

 Create or Replace trigger Aborting
Before update on emp
For each row
Begin
If :new.sal < :old.sal Then

 Raise_application_error(-20001, ‘salary can’t be reduced’);
End If;
End;

Figure 3 below shows the error message after decreasing salary for the employee.

Figure 3: Trigger error message for decreasing salary

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1757

C. Example3: In our last example we create a trigger Restrict that will abort any update, delete or insert operations on emp table
when it is Sunday or for Monday to Saturday it is before 8:0 AM or after 5:00 PM. The example results are shown in figure 4 &
5 below. There are no restrictions on viewing the record.

Figure 4: Restrictions on modifying the table Emp

Figure 5: Effect of trigger 4.35

www.ijraset.com Volume 5 Issue V, May 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved 1758

VI. CONCLUSIONS
Declarative constraints and triggers are two essential features that have been introduced to support user requirements in relational
DBMSs. Given the differing expressive powers of declarative constraints and triggers, support for both is required for today’s
applications. The semantics of the interaction of triggers and declarative constraints must be carefully defined to avoid inconsistent
execution and to provide users a comprehensive model for understanding such interaction. From the above we can conclude that
Oracle Data Constraints are wide conceptualized. Only data, which satisfies the conditions (rules) set, should be stored for future
analysis. If the data gathered fails to satisfy the conditions (rules) set, it must be rejected. This ensures that the data stored in a table
will be valid and have integrity. Thus, we can say that data constraints are provides integrity and data level security.

REFERENCES
[1] R. Agrawal, R. Cochrane, and B. Lindsay. On maintaining priorities in a production rule system. In Proc. of the 17th hat. Conf. on Very Large Data Bases,

pages 479-487, Barcelona (Catalonia, Spain), September 1991.
[2] Programming. Addison-Wesley, Reading, Massachusetts, 1985.
[3] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proc. of the 16th ht. Conf. on Very Large Data Bases, pages 566-577, Brisbane,

Australia, August 1990.
[4] R. Cochrane. Issues in Integrating Active Rules Into Database Systems. Ph.D. &sserta%on, University of Maryland, Department of’computer Science, College

Park, MD, 1992.
[5] R. Cochrane and N. Mattos. ISO-ANSI SQL3 Change Proposal, ISO/IEC JTCl/SC21/WG3 DBL LHR-89, X3H2-95-458, An Execution Model for After

Triggers, November 1995.
[6] Database Programming and Design. The 1996 Business Rules Summit, February 1996.
[7] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages 233–246, 2002
[8] A. Cal`ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under integrity constraints. In Proc. of CAiSE 2002, volume 2348 of LNCS, pages

262–279. Springer, 2002.
[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query answering in description logics. Artificial Intelligence, 2012
[10] Ivan Bayross (2009). The programming language of Oracle. New Delhi: BPB publications
[11] Oracle Corporation. Oracle Workflow Technical Configuration in Oracle Applications Release 11, 2000. Available at http://www.oracle.com/support/library/

supportnews/html/workflow.html
[12] Integrating Triggers and Declarative Constraints in SQL Database Systems Roberta Cochrane Hamid Pirahesh Nelson Mattos Proceedings of the 22nd VLDB

Conference Mumbai(Bombay), India, 1996
[13] A Study on Oracle Data Constraints Kalyani M. Raval, Shivkumar H. Trivedi
Volume 1, Issue 1, June 2013 International Journal of Advance Research in Computer Science and Management Studies
[14] Data Integrity [On-Line] Available at: http://docs.oracle.com/cd/E11882_01/server.112/e25789/datain e.htm
[15] Oracle [1]: 2005, Oracle Company Profile Page http://company.monsterindia.com/oraclein/
[16] Webopedia: 2005, Data integrity http://www.pcwebopaedia.com/TERM/d/data_integrity.html

