Analysis of Low Voltage Bulk-Driven High Swing Cascode Current Mirrors for Low Voltage Applications

P. Devendra Kumar¹, D. Vijay Kumar²
¹(M.Tech in VLSI & EMBEDDED SYSTEM DESIGN, Student), ²Assistant Professor, Electronics and Communication Engineering Department
Velagapudi Ramakrishna Siddhartha Engineering College, Jawaharlal Nehru Technological University - Kakinada, Kanuru, Vijayawada, Andhra Pradesh

Abstract: Now a days Low voltage along with low power topologies of analog and mixed signal designs have gained enormous importance due to increased demand of portable devices. The bulk-driven technology is emerging as an important design technique to achieve intensifies performance in low voltage analog circuits. Low voltage self-biased high swing cascode current mirror employing bulk-driven nmos transistor is proposed and proposed circuit has to be simulated in cadence tool, and different current mirrors like wilson current mirror and triple cascode current mirror are implemented under bulk-driven technology and simulated in cadence tool, and the results are compared with the gate-driven technology.

Keywords: Bulk-Driven, High swing, cascode, current mirror, low voltage

I. INTRODUCTION

From the last few decades the market for portable electronic systems such as a wireless Communication devices, and consumer electronics, etc. is continuously expanding day by day, So there is a improvement need for the development of low-voltage (LV) and low-power (LP) circuit techniques and system building blocks. Not only low-voltage but also low-power operation are of tremendous importance for advisable applications. The Low-voltage operation is demanded because it is desirable to use as less batteries as possible for size and weight considerations. It is necessary to ensure a reasonable battery lifetime so we use low power consumption technique. An important factor regarding analog circuits is that; the threshold voltages of future standard CMOS technologies are not expected to decrease much below what is available nowadays. The MOS transistor is a four terminal device; it is mostly used as a three terminal device because the bulk terminal is connected to the source terminal or to the drain terminal, to Vdd or to Vss. So, a large number of possible MOS circuits are overlooked; hence a good solution to overcome the threshold voltage is usage of the Bulk-driven technology. The principle of the Bulk-driven technology is that; the gate-source voltage is set to sufficient value to create an inversion layer for the MOSFET.

By applying an input signal to the bulk terminal of the MOSFET. By this way, the threshold voltage can be either reduced or removed from the signal path. The operation of the Bulk-driven MOS transistor is like a JFET i.e. a depletion type device, it can work under zero, negative, or even slightly positive biased conditions. That means the threshold voltage requirements are removed from signal path.

This paper proposes a low voltage self-biased high swing cascode current mirror (SHCCM) using bulk-driven technique having wider operating current range and higher bandwidth, and bulk-driven wilson current mirror and bulk-driven triple cascode current mirror and comparison of all results with gate driven current mirror results proving the bulk-driven technology works under low voltages and high range applications with high output impedance.
II. BASIC CURRENT MIRROR

Current mirror is a two port device, it is designed to generate a scaled replica of an input current at a high-impedance output node terminal. It keeps the output current constant regardless of loading. The major factors influencing the performance of a good current mirror are, its operating range, bandwidth, output resistance, and the minimum voltage drop required across the input and output terminals of the current mirror circuit. This voltage drop is required to keep the transistors of the current mirror in saturation mode.

In the above figure, the source is connected to the ground so the two transistors M1 and M2 gate-source voltages are the same, because of diode connection the transistor M1 is in saturation region and to make the M2 in saturation region we have to take $V_{GS} > V_{TH}$ and $V_{DS} > V_{GS} - V_{TH}$. If both transistors are in saturation region the same input current is assing through the drain terminal of the M2 transistor. Current equation in saturation region is:

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{GS} - V_{TH})^2$$

With channel length modulation effect:

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{GS} - V_{TH})^2 (1+\lambda V_{DS})$$

III. CASCODE CURRENT MIRROR

A cascode current mirror circuit is capable of producing an output current that is a direct function of an input current received by that device. The cascoded current mirror includes at least two portions connected together in a cascode manner. This feedback connection can, for example, be a buffering connection. Voltage signals are generated by this device that can be used to drive and control additional output stages. Each such additional output stage is capable of producing an additional output current. Regulated cascode technique greatly increases the D.C. gain of cascode amplifier without sacrificing speed or output swing. Regulated cascode current mirror produces more constant results than other cascode current mirror structures, here the negative feedback concept is used. The cascode can improve the output impedance of the circuit.
Self biased cascode current mirror is used to achieve better matching current characteristics at input and output nodes of the circuit and it is also used to achieve high output impedance. In this circuit the output resistance of the circuit is increased by a factor of $g_m r_0$ where g_m is the transconductance and r_0 is the output resistance of the circuit.

IV. BULK-DRIVEN CURRENT MIRROR

A. Simple Bulk-Driven Current Mirror

Bulk-driven techniques are applied to the mosfet only that can be fabricated in its own separate well. The operation of the bulk-driven mosfet is much like a jfet. The conceptual schematic of the gate driven current mirror shown in fig 4(a). It consists of Q1, Q2 mosfets and input current (I_{in}) and I_{in} flows through Q1 transistor. I_{out} try to follow the input current or reference current (I_{ref}). Here the input signal is applied the bulk terminal instead of the gate terminal to lower the threshold voltage requirement. And at the gate terminal sufficient V_G applied to operate the mosfet in saturation region.

![Fig 4(a) simple bulk-driven current mirror](image1)

![Fig 4(b) self-biased bulk-driven cascode current mirror](image2)

B. Bulk-Driven Self-Biased Cascode Current Mirror

The proposed bulk-driven self-biased cascode current mirror shown in figure 4(b). In this circuit a constant voltage $V_{DC}> V_{TH}$ is applied at the gate terminal of the each mosfet, which enables the to be formed. And here the input signal is applied at the bulk terminal instead of the gate terminal so it forms an bulk-drain connection instead of the gate-drain connection. Since the requirement of the threshold voltage is removed from the signal path of the circuit and voltage drop is lowered at the input and output terminals of the device, hence it makes the proposed circuit operate at lower supply voltages. In this circuit the gate voltage is fixed ir ensures the dependency of the mosfet current on bulk-drain voltage, based on the below equation 3(a).

$$I_{D(sat)} = \frac{\beta}{2} (V_{GS} - V_{To} - Y \sqrt{2\phi F - V_{BS}} + \sqrt{2\phi F})^2$$ \hspace{1cm} (3a)

Where $\beta = \frac{\mu_C W}{L}$ and w/l is the aspect ratio of the transistor and ϕF is the absolute fermi potential, V_{To} is the zero bias threshold voltage and Y is the body effect coefficient. The current across the mosfet can be determined by the equation (3) for variation in potential V_{BS} and here the values of V_{BS} is less than the threshold voltages to ensure negligible bulk current in the circuit. The current mirror operation in the proposed circuit is implemented by constant bulk source potentisal M1 and M3 and same being copied at M2 and M4 transisters.

In bulk-driven circuits, due to channel formation, MOSFETs behave like JFET and become operative as soon as the power supply is switched ON. Due to the non-linear behavior of MOSFET at very low voltages the mathematical equations become very difficult and do not give an exact statistical analysis results of the circuit. These effects can be compensated by choosing the aspect ratios of MOSFETs at the time of simulation using trial and error method. This mismatch of the aspect ratio of the transistor compared to mathematical equation leads to I_{out} shift compared to I_{in}, this can be over come by using the offset current in the output terminal it is in few milli ohms. The proposed nmos current mirror is based on p-well technology.
V. WILSON CURRENT MIRROR

The Wilson current mirror that function well at all current levels from low range week inversion region to strong inversion region. And these current mirrors can be operate at the low level power supply voltages and results a high output voltage swing with cascode type incremental of the output impedance.

Fig 5(a) wilson current mirror

A. Simple Wilson Current Mirror

The Wilson current mirror gains a high incremental output resistance. Any increase in the output current due to an increase in the output voltage through output transistor’s Early effect that is sensed by the simple current mirror circuit whose input is in series with the output of the transistor. This simple mirror feeds back the output current to the input node of the circuit, and reducing the gate voltage of the output transistor, thereby reducing its channel current and compensating the original current increase.

does not normally need to move by very much to compensate such variations of output current, if the output transistor enters its saturation region, the incremental output conductance increases to the point that it is comparable to the transistor’s incremental transconductance gain. In this case, the input voltage will change by more than the output voltage in an attempt to compensate for changes in the mirror’s output current. We shall take the output voltage at which the output transistor’s incremental output conductance is on a par with its transconductance to be the Wilson mirror’s output compliance voltage. If the output voltage drops below this level, the output current decrees precipitously to zero while the input voltage rises rapidly towards the positive power supply.

Fig.5(b) wilson current mirror with nmos

Fig 5 (c) bulk driven Wilson current mirror
B. **Bulk-Driven Wilson Current Mirror**

The bulk driven wilsen current mirror shown in fig 5(c). Here the input signal is applied at the bulk terminal instead of the gate terminal to reduce the threshold voltage requirement.

Here M1 and M2 and M3, M4 are the four mosfitters. In the above diagram the input signal is I\text{in} and it is connected to the bulk terminal of the mosfet M2 and M4. The fixed gate voltage VG is connected to the gate of each transistor for channel formation. Here we have applied the drain source voltage of the transistor M4 to make the transistor in the saturation region. The current equation in the saturation region of the bulk driven transistor is given as

\[I_{D(sat)} = \frac{\beta}{2} \left(V_{GS} - V_{To} - \sqrt{2 \phi f - V_{BD} + \sqrt{2 \phi f}} \right)^2 \]

(4)

VI. **TRIPLE CASCODE CURRENT MIRROR**

A. **Triple Cascode Gate-Driven Current Mirror**

The output impedance can be further improved by adding one more stage to the double cascode configuration, the increase of cascode connection increases the total output impedance of the circuit and the gain also increases. In the fig 6(a) shown below the reference current is connected to the drain of the mosfet M3 and the M1 is another transistor which is cascaded to the transisters M2 and M4 and M4 is cascaded to the transistor M5 and M6.

Here the source of the transisters M1 and M4 are connected to the ground so their gate-source voltages are same and Vdc for the mosfet M6 is chosen such as to make the transisters in saturation region. The transistor M3 is diode connected so it is in saturation region. By making all transistors in the saturation region the same reference current is passing through the output terminal.

B. **Triple Cascode Bulk-Driven Current Mirror**

The fig 6(b) shown below is the triple cascode current mirror with bulk-driven technology. Here the input signal is applied at the bulk terminal of the transistor instead of the gate terminal to reduce the threshold voltage requirement hence the circuit can be simulated under minimum input voltages and the cascading connection also increases the output impedance of the circuit and the output swing also increases hence the band width also increases.

In the figure shown above 6(b) the input is connected to the bulk of the M6 and M3 transisters and sufficient voltage Vg > Vth is taken at the each transistor for channel formation and here low input voltage is required. The output impedance and the band width of the circuit is increases. As the cascode connection increases the relative output resistance of the circuit increases which leads the output current constant regardless of the load conditions.
VII. PROJECT OUTPUT WAVE FORMS

Fig. 7.1 Input vs output current variations of simple current mirror

Fig. 7.2 Minimum input voltage required for the cascode current mirror

Fig. 7.3 I_in VS I_out of the self-biased bulk-driven cascode current mirror

Fig. 7.4 Minimum input voltage required for the bulk-driven self-biased cascode current mirror
Fig. 7.5 Perametric analasis of proposed current mirror Iout VS different length of transister

Fig. 7.6 Perametricanalasis of proosedcktIout VS differength width with same length

Fig. 7.7 Iout VS Vgs for different values of Vds of the proposed bulk-driven cascode current mirror
Fig. 7.8 minimum input voltage required for bulk-driven Wilson current mirror.

Fig. 7.9 I_{in} VS I_{out} of the bulk-driven triple cascode current mirror.

Fig. 7.10 magnitude and phase response of the triple cascode current mirror.
VIII. CONCLUSION

The approach of bulk-driven self-biased high swing cascode current mirror and bulk-driven Wilson, bulk-driven triple cascode current mirror has been presented and compared with that of the gate-driven current mirrors. With this technique, the supply voltage can be reduced to make this technique compatible with the lower power supply requirement so the modern VLSI technology. The input voltage required in the proposed bulk-driven SHCCM and bulk driven Wilson current mirror and bulk-driven triple cascode current mirror is lower as compared to the conventional gate-driven current mirrors. The working of proposed SHCCM and bulk-driven Wilson current mirror and bulk-driven triple cascode current mirror has been shown at supply voltages as low as compared to conventional gate-driven SHCCM operates at less than 1V for the same technology. Moreover, the bandwidth and output resistance of the circuit were found to be higher than that of the conventional circuit.
IX. COMPARISON TABLE OF ALL CURRENT MIRROR RESULTS

<table>
<thead>
<tr>
<th>Current Mirror (C.M) Type</th>
<th>Min. i/p Voltage (V)</th>
<th>o/p Voltage (V)</th>
<th>o/p Resistance (KΩ)</th>
<th>Simulation Technology Used (nm)</th>
<th>No. of Transistors</th>
<th>Upper cut-off frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple C.M</td>
<td>0.6</td>
<td>0.6</td>
<td>140</td>
<td>180</td>
<td>2</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Cascode C.M</td>
<td>1.37</td>
<td>1.39</td>
<td>267</td>
<td>180</td>
<td>4</td>
<td>7 MHz</td>
</tr>
<tr>
<td>Self-biased Cascode C.M</td>
<td>0.77</td>
<td>0.65</td>
<td>139</td>
<td>180</td>
<td>5</td>
<td>7 MHz</td>
</tr>
<tr>
<td>Bulk-driven C.M</td>
<td>0.5</td>
<td>0.67</td>
<td>164</td>
<td>180</td>
<td>2</td>
<td>6 MHz</td>
</tr>
<tr>
<td>Bulk-driven self-biased cascode C.M</td>
<td>0.3</td>
<td>0.38</td>
<td>135</td>
<td>180</td>
<td>5</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Wilson C.M</td>
<td>0.8</td>
<td>0.9</td>
<td>225</td>
<td>180</td>
<td>4</td>
<td>5 GHz</td>
</tr>
<tr>
<td>Bulk-driven Wilson C.M</td>
<td>0.47</td>
<td>0.85</td>
<td>203</td>
<td>180</td>
<td>4</td>
<td>7 GHz</td>
</tr>
<tr>
<td>Triple cascode C.M</td>
<td>2.45</td>
<td>2.3</td>
<td>255</td>
<td>180</td>
<td>6</td>
<td>6 GHz</td>
</tr>
<tr>
<td>Bulk-driven triple cascode C.M</td>
<td>1</td>
<td>1.1</td>
<td>243</td>
<td>180</td>
<td>6</td>
<td>30 GHz</td>
</tr>
</tbody>
</table>

REFERENCES