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Abstract:Inthispaper,PLPcoefficientsandPLPCCfeaturesareinvestigatedasarepresentationofanacousticsceneusingDNN.Wehavee
xper- imentedonDCASE2018Task1datasetandDCASE2017dataset. Experiments are carried out for subtasks A and B. We have 
exper- imented with individual feature sets as well as decision level DNN scorefusionsofdifferentcombinationsoffeaturesets. 
Fromtheex- periments, it was observed that the proposed PLP and PLPCC give betterperformanceforsubtasksAandB. 
ForsubtasksAandB,in- dividualPLPyieldanimprovementof8.9%and13.6%respectively. FurtherPLPCCresultedinanimprovement 
of8.6% and12.5%. We haveachievedsignificantimprovementsinaccuracyforsubtasksA (11.4%)andB(14.4%)afterfusionof 
DNNdecisionlevelscoresob- tainedfromPLP,PLPCCandlogmel-bandenergiescomparedtothe 2018 baseline system.We have also 
experimented on 2017 dataset on4foldcross-validation,withindividualPLPyieldinganimprove- ment of 5.8% and PLPCC 
achieving an improvement of 4.7%.The fusionofDNNdecisionlevelscoresobtainedfromPLP,PLPCCand log mel-band energies 
gave an improvement of 6.0% compared to the 2017 baseline system. 
Index Terms: Log-Melbandenergies,PerceptualLinearPrediction (PLP),AcousticSceneClassification(ASC),DeepNeuralNetwork 
(DNN). 
 

I. INTRODUCTION 
The Acoustic Scene Classification (ASC) research in signal pro- cessing, machine learning and interdisciplinary fields has become 
more popular due to significance of information gathered from en- vironmentalsoundsinvariousapplicationslikesurveillance,smart- 
phones, robotics, data archving, audio hearing aids, etc [2,3].In- tially, a large number of spectral, cepstral, energy and voicing- 
relatedaudiofeaturesandSVMareusedtoclassifytheseshortseg- ments and a majority voting scheme is employed in [4].Spectral, 
temporal and spatial features with SVM classifier is used for ASC in [5].Histogram of gradients of time-frequency 
representationsfor audio scene detection is investigated in [6].A Bag-of-Features approach is used for acoustic event detection in 
[7].Spectrogram pattern matching based environmental sound classification is used in [8].Deep convolutional neural networks and 
data augmentation for environmental sound classification is carried out in [9].Sound scene identification based on MFCC, binaural 
features and a sup- portvectormachineclassifierisusedforASCin[10]. Framebased 
classificationusingHiddenMarkovmodelwasproposedin[11].A hybridaproachusingbinauralI-vectorsanddeepconvolutionalneu- 
ralnetworksisusedforASCin[12].ASCusingaCNN-superVector systemtrainedwithauditoryandspectrogramimagefeaturesisused in 
[13].Generative adversarial network based acoustic scene train- ing set augmentation and selection using SVM hyper-plane is pro- 
posedin[14].Anaudiotrackrepresentedbylongtermstatistical distributionofsomeshorttermspectralfeatures(melfrequencycep- stral 
coefficients (MFCC)) is used for ASC in [15].Acoustic scene classification using matrix factorization with unsupervised feature 
learningiscarriedoutin[16]. Acompactanddiscriminativefeature based on auditory summary statistics for ASC is proposed in [17]. 
Bag of Visual Words (BoVW) representations are used for ASC in [18].Waveletsarerevisitedfortheclassificationofacousticscenes in 
[19,20].Wavelet transform based mel-scaled features are used forASCin[21].Ensembleofspectrogramsbasedonadaptivetem- poral 
divisions for ASC is used in [22].Fully CNNs and I-Vectors were proposed in [23].X-Vector embedding and CNN model for ASC 
were proposed in [24].From the current research in the field of deep learing for all machine learing applications, and its succees in 
DCASE 2016, DCASE 2017 [25] and DCASE 2018 [1]. 
Acoustic scenes datasets captured from the sorrounding environ- ments cover the audio frequency range from 20Hz to 20kHz.Fea- 
tures that can capture local information in both time and frequency domain would provide good representation of acoustic 
scenes.The results from previous research on DCASE 2013, 2016, 2017, and 2018 and analyses show the need for a suitable feature-
classifier combination. Also,theconsequentacousticscenesconstituteavari- etyofenvironmentalsoundsthatcanformcomplexsounds. 
There- fore, only one particular type of feature may not be sufficient to effectively and discriminatively represent them.In this paper, 
we propose the use of PLP and its variants for ASC using DNN as a classifier and also DNN score level fusion for decision. 
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Thepaperisorganizedasfollows: Section2describesdetailsof featureextraction,Section3describestheproposedmethod.Section4 
discussestheresultsandanalysisoftheproposedsystem.Section5 providesthesummaryandconclusions. 

 
II. FEATURE EXTRACTION 

In the present work, we are investigating PLP and PLPCC features for ASC. The description of these features are given bellow. 
 
A. Perceptual Linear Prediction 
The perceptual linear prediction model was developed by Herman- sky[26]. PLPwasproposedtomatchcharacteristicsofhumanaudi- 
torysystem. Fig. 1. showstheessientialcomponentsofPLPfeature extraction.PLP has three important perceptual aspects: first- the 
critical-band resolution analysis, second- the equal-loudness analy- sis, and third- intensity-loudness conversion (cubic-
root).Intially, the windowed signal power spectrum is calculated as, 

P(ω)=Re[S(ω)]2+Im[S(ω)]2 (1) 
The first component is a conversion from audio frequency to Bark scalefrequency,Barkfrequencyagoodrepresentationofthehuman 
hearingresolutioninfrequency.Thebarkfrequencyequivalenttoan 

Table 1. Acoustic scene classification results for DCASE 2018 task1 subtask A (P1: PLP with DNN, P2: PLPCC with DNN, P3: 
Log-Mel withDNN,P4: DNNscorelevelfusionofPLPandPLPCC,P5: DNNscorelevelfusionofPLPCCandLog-Mel,P6: 

DNNscorelevelfusion of PLP and Log-Mel, P7: DNN score level fusion of PLP, PLPCC and Log-Mel). 
AcousticScene(%) Baseline-2018[1] P1 P2 P3 P4 P5 P6 P7 

Airport 72.9 71.3 66.0 55.5 69.1 67.5 70.6 69.8 
Bus 62.9 72.7 71.9 72.3 73.6 72.7 74.8 74.4 

Metro 51.2 70.1 69.0 62.8 71.6 73.6 70.5 72.4 
Metrostation 55.4 65.6 65.3 63.3 66.8 65.3 65.3 64.5 

Park 79.1 84.7 83.5 81.0 84.3 83.9 84.7 84.7 
Publicsquare 40.4 54.6 50.9 51.9 55.1 47.7 52.8 50.5 
Shoppingmall 49.6 49.1 59.9 83.5 52.3 78.9 74.9 77.8 

Streetpedistrain 50.0 57.9 59.5 52.6 58.3 56.3 55.5 55.9 
Streettraffic 80.5 89.0 89.0 89.4 89.0 89.0 88.6 88.6 

Tram 55.0 71.3 68.2 70.5 69.3 72.0 72.0 72.0 
Average 59.7(±0.7) 68.6 68.3 68.3 68.9 70.7 71.0 71.1 

 
Table2.Acousticsceneclassificationresultsfortask1subtaskBfortheproposedsystem(P7). 

AcousticScene(%) Baseline-2018[1] P7 
 A B C Average(B,C) A B C Average(B,C) 

Airport 73.4 68.9 76.1 72.5 61.9 27.8 44.4 36.1 
Bus 56.7 70.6 86.1 78.3 71.1 83.3 83.3 83.3 

Metro 46.6 23.9 17.2 20.6 66.3 38.9 72.2 55.5 
MetroStation 52.9 33.9 31.7 32.8 61.4 38.9 38.9 38.9 

Park 80.8 67.2 51.1 59.1 84.7 94.4 100.0 97.2 
Publicsquare 37.9 22.8 26.7 24.7 48.6 38.9 50.0 44.4 
Shoppingmall 46.4 58.3 63.9 61.1 74.6 88.9 77.8 83.3 

Streetpedestrien 55.5 16.7 25.0 20.8 62.3 33.3 44.4 38.8 
Streettraffic 82.5 69.4 63.3 66.3 86.2 77.8 83.3 80.5 

Tram 56.5 18.9 20.6 19.7 74.7 38.9 44.4 41.6 
Average 58.9(±0.8) 45.1(±3.6) 46.2(±4.2) 45.6(±3.6) 69.2 56.1 63.9 60.0 
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Fig. 1.Block diagram of the PLP cepstral coefficients feature ex- traction. 

audiofrequencyis, 

Ω(ω)=6lnω/1200π+ [(ω/1200π)2+ 1]0.5}. (2) 
Secondcomponent,theauditorypowerspectrumisconvolutedwith the power spectrum of the critical-band masking curve to simu-
latethehumanhearingcritical-bandintegration.Finally, smoothed powerspectrumisdownsampledatintervalsof≈1-Barkintervals. 
Thethreecomponentsfrequencywarping,smoothingandsampling are integrated into a one filter-bank called Bark filter bank.An equal-
loudness pre-emphasis weighs filter-bank results to simulate thehearingsensitivity. Theequalizedvaluesarechangedaccording 
tothepowerlawofStevensbyraisingeachtothepowerof0.33. 
The yielding auditory warped power spectrum is then processed by linear prediction (LP). Applying LP to the auditory warped 
power spectrum means, compute the predictor coefficients of a signal that has warped spectrum as a power spectrum and the 
predictor coeffi- cients are termed as PLP coefficients.Finally, cepstral coefficients are achieved from the predictor coefficients by a 
recursion that is equivalent to the logarithm of the model spectrum followed by an inverse Discrete Fourier transform (IDFT) . 
These coefficients are termed as PLP cepstral coefficients (PLPCC) [27]. 
Thefeaturesetisextractedfor40filterbankswithaframesize of 40 ms with 20 ms overlap.Even for stacked context of features, static 
PLP (40 dimensions), ∆ PLP (40 dimensions) and ∆∆ PLP (40dimensions)featurevectorsare extractedmakingit120dimen- 
sionsperframe. ThesameapproachisfollowedforPLPCCfeature extraction. 
 

III. PROPOSED SYSTEM 
TheproposedASCsystemincorporatesthegeneralASCframework asshowninFig. 2. Fromdevelopementdata, allaudiosignalspass 
through pre-processing and feature extraction processes.Since the DCASE data is in binaural stereo format, the first pre-processing 
stepistoconvertthedatasamplestomonophonicaudiobyaverag- ing the two channels.Pre-emphasis factor of 0.97 was used to em- 
phasizethehigh-frequencycontent. Thefeatures(PLP,PLPCCand Log-Mel band energies) are extracted from the preprocessed data. 
Modelswerebuiltfromfeaturesoftrainingdataandthenemployed forclassificationofthetestsamplesusingDNNmodel. 

Fig.2.Blockdiagramofproposedsystemforindividulfeatures. 
 
 
A. DescriptionoftheProposedSystem 
Intheproposedapproach,wehaveconsideredDNNmodelasitwill have fewer computations and also less training parameters than the 
baselinemodelCNN[1].FromthissectiononwardsLog-Melband energiesisnotedasLog-Mel.Wehaveexperimentedwithindividual feature 
sets and combinations of DNN scores have been obtained with each feature set.The following are the seven set of proposed 
exeperiments: 
P1: PLP with DNN, P2: PLPCC with DNN, P3: Log-Mel with DNN, P4:DNN score level fusion of PLP and PLPCC, P5:DNN 
score level fusion of PLPCC and Log-Mel, P6:DNN score level fusion of PLP and Log-Mel, P7:DNN score level fusion of PLP, 
PLPCC and Log-Mel 
 
B. DetailsofDNNClassifier 
TheDNNusedinthisstudyisafullyconnectedfeedforwardneural network.The network has an input layer, three hidden layers, and 
anoutputlayer. 
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PLP 

Theinputlayerhas120(dimensionoffeaturevec- tor)neuronswithlinearactivationfunctionwhileeachhiddenlayer has 200 neurons with 
rectified linear unit (ReLU) activation func- tion. Theoutputlayerhasneurons(numberofclasses)withsoftmax 
activationandcategoricalcross-entropylossfunction.ADAM[28] optimizerisusedhereforbetterweightoptimizationanditslearning 
rateissetto0.005. L2regularizerisusedtoavoidoverfittingwitha value of 0.000099 and DNN trained with 30 epochs. 
 
C. Decision Strategy 
For individual feature sets, we used Max rule for classification. Computation of DNN score fusion of any two different features is 
doneasfollows:LetusconsiderthefusionofPLPandLog-Mel 
bandenergies.IfXi                  iLog−MelbandenergiesaretheDNN scores generated by two models for the ithacoustic 
scene, then a combined score is given by 

 
where,summationof α,βandγisone. 
In theseproposedsystems,forP1 toP6,α=0.5andfor P7, 
α= 0.5,β=0.2 andγ= 0.3 isfixedtoobtainsignificantim- provements. 
 

IV. RESULTS AND DISCUSSIONS 
This section gives the datasets used, baseline methods, results and discussionsonASCtasksforDCASE2018Task1subtaskA(basic 
ASC)andsubtaskB(ASCwithmismatchedrecordingdevices)and DCASE 2017 (ASC). The results of DCASE 2018 task1 subtask A 
are presented in Table 1 and results of subtask B are presented in Tables2and3respectively.TheresultsofDCASE2017ASCTask are 
presented in Tables 4 and 5. 
 
A. Datasets and Baseline Methods 
We have used the development dataset of TUT Acoustic Scenes 2018 [1] and TUT Acoustic Scenes 2017 [25].According to the 
DCASE2017challenges’ASCtasksetup,developmentdataispar- titioned into k folds, where k=4 for both the datasets.Fold-wise 
meanclassificationaccuracyisusedastheperformancemetricdur- ing development.For performance comparison, we have used the 
baselinesystemsoftheDCASEchallengesof2018and2017,which are Log-Mel band energies with CNN [1] and Log-Mel band ener- 
gies with MLP [25]. 
 
B. AnalysisofResultsonDCASE2018SubtaskA 
The results for the subtask A are given in Table 1 for the DCASE 2018 baseline system and proposed systems (P1-P7).This subtask 
is concerned with the basic problem of ASC, in which all available dataisrecordedwiththesamedevice,whichinthiscaseisdeviceA 
(Zoom F8 audio recorder). 
From the table, it can be observed that individual PLP features performbetterthanPLPCCandLog-Melfeatures. Fortwofeatures 
combination proposed systems (P4-P6), performance has increased consistently, out of which P6 has given better performance than 
P4 and P5 with a relative performance of 11.3% as compared to base- line system. 

andX 
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Further, it is observed that the DNN score fusion of PLP, PLPCC and Log-Mel band energies features (P7) has given significant 
improvement in accuracy and indicates complementary informationbasedon11.4%ofrelativeimprovement. Usingprosed features (P7) 
the Shopping mall, Park and Street traffic classes are wellclassifiedwhencomparedtootherclassesforsubtaskA.From 
thetable,itcanalsobeobservedthattheproposedsystemhasgiven animprovementintheaverageaccuracy.Therelativeimprovements 
of8.9%,8.6%,8.6%,9.2%,11.0%,11.3%,and11.4%areobtained for P1-P7 respectively as compared to the DCASE 2018 baseline 
system. 
 
C. AnalysisofResultsonDCASE2018SubtaskB 
TheresultsforthesubtaskBarepresentedinTables2and3.This subtask is concerned with the situation in which an application will 
betestedwith afew differenttypes ofdevices (deviceA, deviceB- Samsung Galaxy S7 and device C-IPhone SE), preferably not the 
samedeviceastheonesusedtorecordthedevelopmentdata.Theresults of the Subtask B are given in Table 2 for the DCASE 2018 
baselineandtheproposedsystemwhichusestheDNNscorefusion of PLP, PLPCC and Log-Mel band energies features (P7). 
Fromthistable,itcanbenotedthatindividualPLPfeaturesper- formbetterthanPLPCCandLog-Melfeatures.Fortwofeatures combination 
proposed systems (P4-P6), performance has increased consistently,outofwhichP6gavebetterperformancethanP4and 
P5witharelativeperformanceof14.2%comparedtoDCASE2018 baseline system.It can be observed that the DNN score fusion of PLP, 
PLPCC and Log-Mel band energies feature in the proposed system (P7) has given significant improvement compared to the 
DCASE 2018 baseline system.Overall, 14.4% relative improve- mentisachievedwiththeproposedsystem. Usingproposedfeatures 
(P7)theBus,Park,StreettrafficandShoppingmallclassesarewell 
 

Table3.Average(B,C)accuraciesforSubtaskB. 
Accuracy Baseline-2018[1] P1 P2 P3 P4 P5 P6 P7 
Average 45.6%(±3.6) 59.2% 58.1% 54.5% 59.3% 59.6% 59.8% 60.0% 

 
Table4.AverageaccuraciesforDCASE2017dataseton4foldcrosssvalidation. 

Accuracy Baseline-2017[25] P1 P2 P3 P4 P5 P6 P7 
Average 74.8 80.6% 79.5% 75.9% 80.1% 80.4% 80.6% 80.8% 

 
 
classifiedwhencomparedtootherclassesforsubtaskB.Further,we havealsoexperimentedwiththeotherproposedsystems(P1,P2,P3, P4, 
P5, P6, and P7).The average (B, C) performance was obtained with various proposed feature sets shown in Table 3.From the ta- ble, 
it can be observed that all the proposed systems have given an improvementintheaverage(B,C)accuracy.Therelativeimprove- 
mentsof13.6%,12.5%,8.9%,13.7%,14.0%,14.2%,and14.4%are 
obtained for P1-P7 respectively as compared to the DCASE 2018 baseline system. 
 
D. AnalysisofResultsonTUTAcousticScenes2017Ddataset 
TheresultsonTUTAcousticScenes2017datasetforASCtaskare presented in Tables 4 and 5. 
From the Table 4, individual PLP features perform better than PLPCC and Log-Mel features.For two features combination pro- 
posedsystems(P4-P6),performancehasincreasedconsistently,out of which P6 has given better performance than P4 and P5 with a 
relative performance of 5.8% compared to DCASE 2017 baseline system. Itcanbeobservedthatalltheproposedsystemshavegiven 
animprovementintheaverageaccuracy.Therelativeimprovements of5.8%,4.7%,1.1%,5.3%,5.6%,5.8%,and6.0%areobtainedfor P1-P7 
respectively as compared to the DCASE 2017 baseline sys- tem. 
TheresultsonTUTAcousticScenes2017datasetaregiven in Table 5 for the DCASE 2017 baseline and our proposed sys-tem, which is 
the DNN score fusion of PLP, PLPCC and Log-Mel bandenergiesfeatures(P7)andalsothecomparisonwithstate-of-art in [29]. 
 

Table5.ASCresults,averagedoverevaluationfoldsandcompari- son with DCASE 2017 Baseline system and state of the art [14]. 
AcousticSce

ne 
Baseline-

2017[25](%) 
Fusionwithoutaugmenta

tion[14] 
ProposedSystem

(P7)(%) 
Beach 75.3 70.9 51.3 
Bus 71.8 82.1 87.2 
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Cafe/Restau
rant 

57.7 71.8 64.1 

Car 97.1 89.0 100.0 
CityCenter 90.7 85.6 94.9 
ForestPath 79.5 97.3 47.4 

GroceryStor
e 

58.7 83.3 89.7 

Home 68.6 76.0 89.7 
Library 57.1 82.0 80.8 

MetroStation 91.7 90.7 98.7 
Office 99.7 95.1 97.4 
Park 70.2 69.9 55.1 

ResidentialA
rea 

64.1 71.8 94.9 

Train 58.0 71.8 69.2 
Tram 81.7 84.6 91.0 

Overallaccur
acy 

74.8 81.5 80.8 

 
Itcanbeseenfromthetablethat,theproposedfeatures(P7),are well classified for Car, City center and Office classes compared to 
DCASE 2017 baseline [25] and [29]. 
 

V. SUMMARY AND CONCLUSIONS 
Inthispaper,aninvestigationofPLPandPLPCCfeatureswithDNN architecture has been applied to model the ASC. We experimented 
with TUT Acoustic Scenes 2018 Datasets of task1 including Sub- task A and B and TUT Acoustic Scenes 2017 dataset.The study 
demonstrated that the capability of individual feature sets and fu- sion of PLP, PLPCC and Log-Mel band energies at DNN score 
de- cisionlevel. IndividualPLPfeaturesyieldanimprovementof8.9% and 13.6% and PLPCC features result in an improvement of 
8.6% and 12.5% for subtask A and subtask B of DCASE 2018 challenge. 
SignificantimprovementsinaccuracyisachievedforDNNdecision levelscoresobtainedfromPLP,PLPCCandLog-Melbandenergies. 
Improvementsof11.4%and14.4%wereachievedinsubtasksAand BrespectivelycomparedtotheDCASE2018ASCbaselinesystem. From 
DCASE TUT Acoustic Scenes 2017 dataset, individual PLP featuresyieldanimprovementof5.8%andPLPCCfeaturesresultin an 
improvement of 4.7% respectively.An improvement of 6.0% is achievedwiththefusionstudycomparedtotheDCASE2017base- 
linesystem.ThisshowsthatPLP,PLPCCandLog-Melbandener- giescarrycomplementaryacousticinformation. Futureworkwould be 
dedicated to the investigation of different combinations of fea- tures for ASC. 
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