

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74862

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

An Investigation of PLP Variants for Acoustic Scene Classification

Chandrasekhar Paseddula

Electronics and Comunication Engineering G.Narayanamma Institute of Technology and Science, Hyderabad, Telangana, India

Abstract:Inthispaper,PLPcoefficientsandPLPCCfeaturesareinvestigatedasarepresentationofanacousticsceneusingDNN.Wehavee xper- imentedonDCASE2018Task1datasetandDCASE2017dataset. Experiments are carried out for subtasks A and B. We have exper- imented with individual feature sets as well as decision level DNN scorefusionsofdifferentcombinationsoffeaturesets. Fromtheex- periments, it was observed that the proposed PLP and PLPCC give betterperformanceforsubtasksAandB. ForsubtasksAandB,in- dividualPLPyieldanimprovementof8.9%and13.6%respectively. FurtherPLPCCresultedinanimprovement of8.6% and12.5%. We haveachievedsignificantimprovementsinaccuracyforsubtasksA (11.4%)andB(14.4%)afterfusionof DNNdecisionlevelscoresob- tainedfromPLP,PLPCCandlogmel-bandenergiescomparedtothe 2018 baseline system. We have also experimented on 2017 dataset on4foldcross-validation,withindividualPLPyieldinganimprove- ment of 5.8% and PLPCC achieving an improvement of 4.7%. The fusionofDNNdecisionlevelscoresobtainedfromPLP,PLPCCand log mel-band energies gave an improvement of 6.0% compared to the 2017 baseline system.

Index Terms: Log-Melbandenergies, Perceptual Linear Prediction (PLP), Acoustic Scene Classification (ASC), Deep Neural Network (DNN).

I. INTRODUCTION

The Acoustic Scene Classification (ASC) research in signal pro-cessing, machine learning and interdisciplinary fields has become more popular due to significance of information gathered from en- vironmentalsoundsinvariousapplicationslikesurveillance, smartphones, robotics, data archying, audio hearing aids, etc [2,3]. In-tially, a large number of spectral, cepstral, energy and voicingrelated audio features and SVM are used to classify these shorts eg- ments and a majority voting scheme is employed in [4]. Spectral, temporal and spatial features with SVM classifier is used for ASC in [5]. Histogram of gradients of time-frequency representations for audio scene detection is investigated in [6]. A Bag-of-Features approach is used for acoustic event detection in [7]. Spectrogram pattern matching based environmental sound classification is used in [8]. Deep convolutional neural networks and data augmentation for environmental sound classification is carried out in [9]. Sound scene identification based on MFCC, binaural features portvectormachineclassifierisusedforASCin[10]. classificationusingHiddenMarkovmodelwasproposedin[11].A hybridaproachusingbinauralI-vectorsanddeepconvolutionalneuralnetworksisusedforASCin[12].ASCusingaCNN-superVector systemtrainedwithauditoryandspectrogramimagefeaturesisused [13].Generative adversarial network based acoustic scene train- ing set augmentation and selection using SVM hyper-plane is proposedin[14]. Anaudiotrackrepresented by long term statistical distribution of some short terms pectral features (melfrequency cepcoefficients (MFCC)) is used for ASC in [15]. Acoustic scene classification using matrix factorization with unsupervised feature learningiscarriedoutin[16]. Acompactanddiscriminative feature based on auditory summary statistics for ASC is proposed in [17]. Bag of Visual Words (BoVW) representations are used for ASC in [18]. Waveletsarerevisited for the classification of acoustic scenes in [19,20]. Wavelet transform based mel-scaled features are used for ASCin[21]. Ensemble of spectrograms based on adaptive temporal divisions for ASC is used in [22]. Fully CNNs and I-Vectors were proposed in [23]. X-Vector embedding and CNN model for ASC were proposed in [24]. From the current research in the field of deep learing for all machine learing applications, and its succees in DCASE 2016, DCASE 2017 [25] and DCASE 2018 [1].

Acoustic scenes datasets captured from the sorrounding environ- ments cover the audio frequency range from 20Hz to 20kHz.Features that can capture local information in both time and frequency domain would provide good representation of acoustic scenes. The results from previous research on DCASE 2013, 2016, 2017, and 2018 and analyses show the need for a suitable feature-classifier combination. Also, the consequent acoustic scenes constitute avariety of environmental sounds that can form complex sounds. Therefore, only one particular type of feature may not be sufficient to effectively and discriminatively represent them. In this paper, we propose the use of PLP and its variants for ASC using DNN as a classifier and also DNN score level fusion for decision.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Thepaperisorganizedasfollows: Section2describesdetailsof featureextraction, Section3 describes the proposed method. Section4 discusses the results and analysis of the proposed system. Section 5 provides the summary and conclusions.

II. FEATURE EXTRACTION

In the present work, we are investigating PLP and PLPCC features for ASC. The description of these features are given bellow.

A. Perceptual Linear Prediction

The perceptual linear prediction model was developed by Herman- sky[26]. PLPwasproposedtomatchcharacteristicsofhumanauditorysystem. Fig. 1. showstheessientialcomponentsofPLPfeature extraction.PLP has three important perceptual aspects: first- the critical-band resolution analysis, second- the equal-loudness analy- sis, and third- intensity-loudness conversion (cubicroot). Intially, the windowed signal power spectrum is calculated as,

$$P(\omega) = Re[S(\omega)]^2 + Im[S(\omega)]^2 \tag{1}$$

The first component is a conversion from audio frequency to Bark scalefrequency, Barkfrequency agood representation of the human hearingresolutioninfrequency. The barkfrequency equivalent to an

Table 1. Acoustic scene classification results for DCASE 2018 task1 subtask A (P1: PLP with DNN, P2: PLPCC with DNN, P3: Log-Mel withDNN,P4: DNNscorelevelfusionofPLPandPLPCC,P5: DNNscorelevelfusionofPLPCCandLog-Mel,P6: DNNscorelevelfusion of PLP and Log-Mel, P7: DNN score level fusion of PLP, PLPCC and Log-Mel).

AcousticScene(%)	Baseline-2018[1]	P1	P2	P3	P4	P5	P6	P7
Airport	72.9	71.3	66.0	55.5	69.1	67.5	70.6	69.8
Bus	62.9	72.7	71.9	72.3	73.6	72.7	74.8	74.4
Metro	51.2	70.1	69.0	62.8	71.6	73.6	70.5	72.4
Metrostation	55.4	65.6	65.3	63.3	66.8	65.3	65.3	64.5
Park	79.1	84.7	83.5	81.0	84.3	83.9	84.7	84.7
Publicsquare	40.4	54.6	50.9	51.9	55.1	47.7	52.8	50.5
Shoppingmall	49.6	49.1	59.9	83.5	52.3	78.9	74.9	77.8
Streetpedistrain	50.0	57.9	59.5	52.6	58.3	56.3	55.5	55.9
Streettraffic	80.5	89.0	89.0	89.4	89.0	89.0	88.6	88.6
Tram	55.0	71.3	68.2	70.5	69.3	72.0	72.0	72.0
Average	59.7(±0.7)	68.6	68.3	68.3	68.9	70.7	71.0	71.1

Table 2. A coustic scene classification results for task 1 subtask B for the proposed system (P7).

AcousticScene(%)	Baseline-2018[1]			P7				
	A	В	С	Average(B,C)	A	В	С	Average(B,C)
Airport	73.4	68.9	76.1	72.5	61.9	27.8	44.4	36.1
Bus	56.7	70.6	86.1	78.3	71.1	83.3	83.3	83.3
Metro	46.6	23.9	17.2	20.6	66.3	38.9	72.2	55.5
MetroStation	52.9	33.9	31.7	32.8	61.4	38.9	38.9	38.9
Park	80.8	67.2	51.1	59.1	84.7	94.4	100.0	97.2
Publicsquare	37.9	22.8	26.7	24.7	48.6	38.9	50.0	44.4
Shoppingmall	46.4	58.3	63.9	61.1	74.6	88.9	77.8	83.3
Streetpedestrien	55.5	16.7	25.0	20.8	62.3	33.3	44.4	38.8
Streettraffic	82.5	69.4	63.3	66.3	86.2	77.8	83.3	80.5
Tram	56.5	18.9	20.6	19.7	74.7	38.9	44.4	41.6
Average	58.9(±0.8)	45.1(±3.6)	46.2(±4.2)	45.6(±3.6)	69.2	56.1	63.9	60.0

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

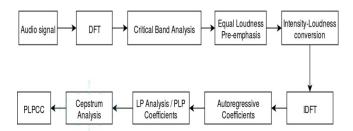


Fig. 1.Block diagram of the PLP cepstral coefficients feature ex- traction.

audiofrequencyis,

$$\Omega(\omega) = 6\ln(\omega/1200\pi) + [(\omega/1200\pi)^2 + 1]^{0.5}.$$
 (2)

Second component, the auditory power spectrum is convoluted with the power spectrum of the critical-band masking curve to simulatethehumanhearingcritical-bandintegration. Finally, smoothed powerspectrumisdownsampledatintervalsof≈1-Barkintervals. Thethreecomponentsfrequencywarping, smoothing and sampling are integrated into a one filter-bank called Bark filter bank. An equalloudness pre-emphasis weighs filter-bank results to simulate thehearingsensitivity. Theequalizedvaluesarechangedaccording tothepowerlawofStevensbyraisingeachtothepowerof0.33.

The yielding auditory warped power spectrum is then processed by linear prediction (LP). Applying LP to the auditory warped power spectrum means, compute the predictor coefficients of a signal that has warped spectrum as a power spectrum and the predictor coeffi- cients are termed as PLP coefficients. Finally, cepstral coefficients are achieved from the predictor coefficients by a recursion that is equivalent to the logarithm of the model spectrum followed by an inverse Discrete Fourier transform (IDFT) . These coefficients are termed as PLP cepstral coefficients (PLPCC) [27].

Thefeaturesetisextractedfor40filterbankswithaframesize of 40 ms with 20 ms overlap. Even for stacked context of features, static PLP (40 dimensions), Δ PLP (40 dimensions) and ΔΔ PLP (40dimensions) featurevectors are extracted making it 120dimensionsperframe. The same approachis followed for PLPCC feature extraction.

III. PROPOSED SYSTEM

TheproposedASCsystemincorporatesthegeneralASCframework asshowninFig. 2. Fromdevelopementdata, allaudiosignalspass through pre-processing and feature extraction processes. Since the DCASE data is in binaural stereo format, the first pre-processing stepistoconvertthedatasamplestomonophonicaudiobyaverag- ing the two channels.Pre-emphasis factor of 0.97 was used to emphasizethehigh-frequencycontent. Thefeatures(PLP,PLPCCand Log-Mel band energies) are extracted from the preprocessed data. Modelswerebuiltfromfeaturesoftrainingdataandthenemployed forclassificationofthetestsamplesusingDNNmodel.

Fig.2.Blockdiagramofproposedsystemforindividulfeatures.

A. Description of the Proposed System

Intheproposedapproach, wehave considered DNN model as it will have fewer computations and also less training parameters than the baselinemodelCNN[1].FromthissectiononwardsLog-Melband energiesisnotedasLog-Mel.Wehaveexperimentedwithindividual feature sets and combinations of DNN scores have been obtained with each feature set. The following are the seven set of proposed exeperiments:

P1: PLP with DNN, P2: PLPCC with DNN, P3: Log-Mel with DNN, P4:DNN score level fusion of PLP and PLPCC, P5:DNN score level fusion of PLPCC and Log-Mel, P6:DNN score level fusion of PLP and Log-Mel, P7:DNN score level fusion of PLP, PLPCC and Log-Mel

B. DetailsofDNNClassifier

TheDNNusedinthisstudyisafullyconnectedfeedforwardneural network. The network has an input layer, three hidden layers, and anoutputlayer.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Theinputlayerhas120(dimensionoffeaturevector)neuronswithlinearactivationfunctionwhileeachhiddenlayer has 200 neurons with rectified linear unit (ReLU) activation function. Theoutputlayerhasneurons(numberofclasses)withsoftmax activationandcategoricalcross-entropylossfunction. ADAM[28] optimizerisusedhereforbetterweightoptimizationanditslearning rateissetto0.005. L2regularizerisusedtoavoidoverfittingwitha value of 0.000099 and DNN trained with 30 epochs.

C. Decision Strategy

For individual feature sets, we used Max rule for classification. Computation of DNN score fusion of any two different features is doneasfollows:LetusconsiderthefusionofPLPandLog-Mel

bandenergies. If X^i $_{PLP}$ and X iLog-Melbandenergies are the DNN scores generated by two models for the ithacoustic scene, then a combined score is given by

$$X_d^{icombinel} = \alpha X_R^{iRL} + (1-\alpha)X$$
 iLog-Melbandenergies . (3)

Similar procedure is carried out to compute DNN score fusion for different combinations of two feature sets. Computation of DNN score fusion of three different features is given by

$$X_d^{icombine} = \alpha X_R^{iPL} + \beta X_C^{iPLPC} + \gamma X_C^{ilog-Melbandenergies}$$
(4)

where, summation of α , β and γ is one.

In these proposed systems, tor P1 to P6, α = 0.5 and tor P/, α = 0.5, θ = 0.2 and γ = 0.3 is fixed to obtain significant improvements.

where, summation of α,β and γ is one.

In these proposed systems, for P1 to P6, α =0.5 and for P7,

 α = 0.5, β =0.2 and γ = 0.3 isfixed to obtain significant im-provements.

IV. RESULTS AND DISCUSSIONS

This section gives the datasets used, baseline methods, results and discussionsonASCtasksforDCASE2018Task1subtaskA(basic ASC)andsubtaskB(ASCwithmismatchedrecordingdevices)and DCASE 2017 (ASC). The results of DCASE 2018 task1 subtask A are presented in Table 1 and results of subtask B are presented in Tables2and3respectively. The results of DCASE2017ASCTask are presented in Tables 4 and 5.

A. Datasets and Baseline Methods

We have used the development dataset of TUT Acoustic Scenes 2018 [1] and TUT Acoustic Scenes 2017 [25]. According to the DCASE2017 challenges' ASC tasksetup, development dataispartitioned into k folds, where k=4 for both the datasets. Fold-wise mean classification accuracy is used as the performance metric during development. For performance comparison, we have used the baseline systems of the DCASE challenges of 2018 and 2017, which are Log-Mel band energies with CNN [1] and Log-Mel band energies with MLP [25].

B. AnalysisofResultsonDCASE2018SubtaskA

The results for the subtask A are given in Table 1 for the DCASE 2018 baseline system and proposed systems (P1-P7). This subtask is concerned with the basic problem of ASC, in which all available dataisrecordedwiththesamedevice, whichinthis case is device A (Zoom F8 audio recorder).

From the table, it can be observed that individual PLP features performbetterthan PLPC Cand Log-Melfeatures. Fortwofeatures combination proposed systems (P4-P6), performance has increased consistently, out of which P6 has given better performance than P4 and P5 with a relative performance of 11.3% as compared to base-line system.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Further, it is observed that the DNN score fusion of PLP, PLPCC and Log-Mel band energies features (P7) has given significant improvement in accuracy and indicates complementary information based on 11.4% of relative improvement. Using prosed features (P7) the Shopping mall, Park and Street traffic classes are well-classified when compared to other classes for subtask A. From the table, it can also be observed that the proposed system has given an improvement in the average accuracy. The relative improvements of 8.9%, 8.6%, 8.6%, 9.2%, 11.0%, 11.3%, and 11.4% are obtained for P1-P7 respectively as compared to the DCASE 2018 baseline system.

C. AnalysisofResultsonDCASE2018SubtaskB

TheresultsforthesubtaskBarepresentedinTables2and3. This subtask is concerned with the situation in which an application will betested with a few different types of device A, device B- Samsung Galaxy S7 and device C-IPhone SE), preferably not the samedeviceastheonesusedtorecordthedevelopmentdata. Theresults of the Subtask B are given in Table 2 for the DCASE 2018 baselineandtheproposedsystemwhichusestheDNNscorefusion of PLP, PLPCC and Log-Mel band energies features (P7). Fromthistable, it can be noted that individual PLP features perform better than PLPCC and Log-Melfeatures. For two features combination consistently,outofwhichP6gavebetterperformancethanP4and proposed systems (P4-P6),performance has increased P5witharelativeperformanceof14.2% compared to DCASE 2018 baseline system. It can be observed that the DNN score fusion of PLP, PLPCC and Log-Mel band energies feature in the proposed system (P7) has given significant improvement compared to the DCASE 2018 baseline system. Overall, 14.4% relative improve- mentisachieved with the proposed system. Using proposed features (P7)theBus,Park,StreettrafficandShoppingmallclassesarewell

Table3.Average(B,C)accuraciesforSubtaskB.

Accuracy	Baseline-2018[1]	P1	P2	P3	P4	P5	P6	P7
Average	45.6%(±3.6)	59.2%	58.1%	54.5%	59.3%	59.6%	59.8%	60.0%

Table 4. Average accuracies for DCASE 2017 dataset on 4 fold cross svalidation.

Accuracy	Baseline-2017[25]	P1	P2	P3	P4	P5	P6	P7
Average	74.8	80.6%	79.5%	75.9%	80.1%	80.4%	80.6%	80.8%

classifiedwhencomparedtootherclassesforsubtaskB.Further,we havealsoexperimentedwiththeotherproposedsystems(P1,P2,P3, P4, P5, P6, and P7). The average (B, C) performance was obtained with various proposed feature sets shown in Table 3. From the table, it can be observed that all the proposed systems have given an improvement in the average (B,C) accuracy. The relative improvements of 13.6%, 12.5%, 8.9%, 13.7%, 14.0%, 14.2%, and 14.4% are

obtained for P1-P7 respectively as compared to the DCASE 2018 baseline system.

D. Analysis of Results on TUTA coustic Scenes 2017 Ddataset

TheresultsonTUTAcousticScenes2017datasetforASCtaskare presented in Tables 4 and 5.

From the Table 4, individual PLP features perform better than PLPCC and Log-Mel features. For two features combination proposed systems (P4-P6), performance has increased consistently, out of which P6 has given better performance than P4 and P5 with a relative performance of 5.8% compared to DCASE 2017 baseline system. It can be observed that all the proposed systems have given an improvement in the average accuracy. The relative improvements of 5.8%, 4.7%, 1.1%, 5.3%, 5.6%, 5.8%, and 6.0% are obtained for P1-P7 respectively as compared to the DCASE 2017 baseline system.

TheresultsonTUTAcousticScenes2017datasetaregiven in Table 5 for the DCASE 2017 baseline and our proposed sys-tem, which is the DNN score fusion of PLP, PLPCC and Log-Mel bandenergiesfeatures(P7)andalsothecomparisonwithstate-of-art in [29].

Table5.ASCresults, averaged over evaluation folds and compari- son with DCASE 2017 Baseline system and state of the art [14].

AcousticSce	Baseline-	Fusionwithoutaugmenta	ProposedSystem
ne	2017[25](%)	tion[14]	(P7)(%)
Beach	75.3	70.9	51.3
Bus	71.8	82.1	87.2

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Cafe/Restau	57.7	71.8	64.1
rant			
Car	97.1	89.0	100.0
CityCenter	90.7	85.6	94.9
ForestPath	79.5	97.3	47.4
GroceryStor	58.7	83.3	89.7
e			
Home	68.6	76.0	89.7
Library	57.1	82.0	80.8
MetroStation	91.7	90.7	98.7
Office	99.7	95.1	97.4
Park	70.2	69.9	55.1
ResidentialA	64.1	71.8	94.9
rea			
Train	58.0	71.8	69.2
Tram	81.7	84.6	91.0
Overallaccur	74.8	81.5	80.8
acy			

Itcanbeseenfromthetablethat,theproposedfeatures(P7), are well classified for Car, City center and Office classes compared to DCASE 2017 baseline [25] and [29].

V. SUMMARY AND CONCLUSIONS

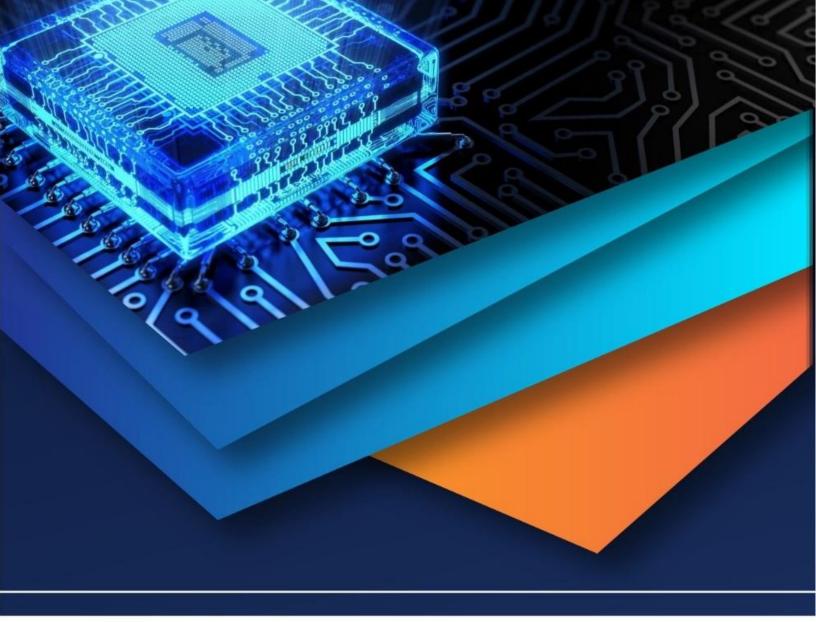
Inthispaper, an investigation of PLP and PLPCC features with DNN architecture has been applied to model the ASC. We experimented with TUT Acoustic Scenes 2018 Datasets of task1 including Sub- task A and B and TUT Acoustic Scenes 2017 dataset. The study demonstrated that the capability of individual feature sets and fu- sion of PLP, PLPCC and Log-Mel band energies at DNN score de- cisionlevel. IndividualPLPfeaturesyieldanimprovementof8.9% and 13.6% and PLPCC features result in an improvement of 12.5% 8.6% and for subtask Α subtask В of **DCASE** 2018 and challenge. SignificantimprovementsinaccuracyisachievedforDNNdecision levelscoresobtainedfromPLP,PLPCCandLog-Melbandenergies. Improvementsof11.4% and14.4% wereachieved in subtasks A and Brespectively compared to the DCASE 2018 ASC baseline system. From DCASE TUT Acoustic Scenes 2017 dataset, individual PLP featuresyieldanimprovementof5.8% and PLPCC features resultin an improvement of 4.7% respectively. An improvement of 6.0% is achieved with the fusion study compared to the DCASE 2017 baselinesystem. This shows that PLP, PLPCC and Log-Melbandener-gies carry complementary acoustic information. Future work would be dedicated to the investigation of different combinations of fea- tures for ASC.

REFERENCES

- [1] Mesaros, Annamaria and Heittola, Toni and Virtanen, Tuo- mas, "A multi-device dataset for urban acoustic scene clas- sification," Submitted to DCASE2018 Workshop, 2018.
- [2] Daniele Barchiesi, Dimitrios Giannoulis, Dan Stowell, and MarkD.Plumbley, "Acousticsceneslassification: Classifying environments from the sounds they produce," The Journal of IEEE Signal Processing Magazine, vol. 32, pp. 16–34, 2015.
- [3] SChu,SNarayanan,CJKuo,andMJMataric,"WhereamI? scene recognition for mobile robots using audio features,"in Proc.IEEEInternationalConferenceonMultimediaandExpo, 2006, pp. 885–888.
- [4] J T Geiger, B Schuller, and G Rigoll, "Recognising acoustic sceneswithlarge-scaleaudiofeatureextraction and SVM," in Proc. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events, 2013.
- [5] W Nogueira, G Roma, and P Herrera, "Sound scene identification based on MFCC, binaural features and a support vector machine classifier," in Proc. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events, 2013.
- [6] A. Rakotomamonjy and G. Gasso, "Histogram of gradientsof time-frequency representations for audio scene detection," IEEETransactionsonAudio, Speech, and Language Process-ing, vol. 23, no. 1, 2015.
- [7] AxelPlinge,ReneGrzeszick,andGernotAFink,"ABag-of-featuresapproachtoacousticeventdetection,"inProc.IEEE InternationalConferenceonAcousticsSpeechandSignalPro-cessing (ICASSP), 2014, pp. 3704–3708.
- [8] PKhunarsal, CLursinsap, and TRaicharoen, "Veryshorttime environmental sound classification based on spectrogram pattern matching," The Journal of the Information Sciences, vol. 243, pp. 57–74, 2013.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- [9] JSalamonandJPBello, "Deepconvolutional neural networks and data augmentation for environmental sound classification," vol. 24, no. 3, pp. 279–283, 2017.
- [10] W Nogueira, G Roma, and P Herrera, "Sound scene identification based on MFCC, binaural features and a support vector machine classifier," in Proc. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events, 2013.
- [11]M Chum, A Habshush, A Rahman, and C Sang, "Scene classification challenge using hidden Markov models and frame based classification," in Proc. IEEE AASP Challenge on DetectionandClassificationofAcousticScenesandEvents, 2013.
- [12] HamidEghbal-Zadeh, BernhardLehner, Matthias Dorfer, and Gerhard Widmer, "CP-JKU submissions for DCASE-2016:a hybrid approach using binaural i-vectors and deep convolu- tional neural networks," Tech. Rep., DCASE 2016 Challenge, September 2016.
- [13] Rakib Hyder, Shabnam Ghaffarzadegan, Zhe Feng, John H L Hansen, and Taufiq Hasan, "Acoustic scene classification using a CNN-Supervector system trained with auditory and spectro-gram image features," in Proc. INTERSPEECH, 2017.
- [14] SeongkyuMun, SangwookPark, DavidHan, and Hanseok Ko, "Generative adversarial network based acoustic scene training setaugmentation and selection using SVM hyper-plane," Tech. Rep., DCASE 2017 Challenge, September 2017.
- [15] YPetetin, CLaroche, and AMayoue, "Deepneural networks for audioscene recognition," in Proc. Europian Conference on Signal Processing (EUSIPCO), 2015, pp. 125–129.
- [16] V Bisot, R Serizel, S Essid, and G Richard, "Acoustic scene classification with matrix factorization for unsupervised fea- ture learning," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 6445–6449.
- [17] HongweiSongandJiqingHanandShiwenDeng, "Acompact and discriminative feature based on auditory summary statistics for acoustic scene classification," in Proc. Interspeech, 2018, pp. 3294–3298.
- [18] Manjunath Mulimani and Shashidhar G Koolagudi, "Robust acoustic event classification using bag-of-visual-words," in Proc. Interspeech, 2018, pp. 3319–3322.
- [19] Qian, Kun and Ren, Zhao and Pandit, Vedhas and Yang, Zi- jiangandZhang, ZixingandSchuller, Bjoʻrn, "Waveletsrevis- ited for the classification of acoustic scenes," in Proc. Work- shop on Detection and Classification of Acoustic Scenes and Events (DCASE), November 2017, pp. 108–112.
- [20] ShefaliWaldekarandGoutamSaha, "Wavelet-basedaudiofea- tures for acoustic scene classification," Tech. Rep., DCASE Challenge, September 2018.
- [21] Shefali Waldekarand Goutam Saha, "Wavelettransform based mel-scaled features for a coustic scene classification," in Proc. Interspeech, 2018, pp. 3323–3327.
- [22] Sakashita, Yuma and Aono, Masaki, "Acoustic scene classi- fication by ensemble of spectrograms based on adaptive tem- poral divisions," Tech. Rep., DCASE Challenge, September 2018.
- [23] Dorfer, Matthias and Lehner, Bernhard and Eghbal-zadeh, Hamid and Christop, Heindl and Fabian, Paischer and Ger-hard, Widmer, "Acousticscene classification with fully convolutional neural networks and I-vectors," Tech. Rep., DCASE Challenge, September 2018.
- [24] Zeinali, Hossein and Burget, Lukas and Cernocky, Honza, "Convolutional neural networks and x-vector embedding for dcase2018acousticsceneclassificationchallenge," Tech.Rep., DCASE Challenge, September 2018.
- [25] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen, "TUT database for acoustic scene classification and sound eventdetection,"inProc.24thConferenceonEuropeanSignal Processing (EUSIPCO), Budapest, Hungary, 2016.
- [26] Hynek Hermansky, "Perceptual linear predictive (PLP) analy-sis of speech," The Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–1752, 1990.
- [27] Hacker Christian Hoenig Florian, Stemmer Georg and Brug- naraFabio, "RevisingPerceptualLinearPrediction(PLP)," in Proc. INTERSPEECH, 2005, pp. 2997–3000
- [28] J Schmidhuber, "Deep learning in neural networks: An overview," arXiv, 2014.
- [29] Diederik, P Kingma, and Jmmy Lei Ba, "ADAM: A Method for Stochastic Optimization," in Proc. Conference on ICLR, 2015.



10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)