

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74892

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Systematic Review - Chemistry & Clinical Importance of Anticancer Drugs, Plus Recent Advances in Discovery

Mrs. Hina A. Momin¹, Ms. Pratiksha S. Gore², Mahadev B. Mundhe³

Department of Pharmaceutical Chemistry¹, Department of Pharmaceutics², Department of Pharmacology, Delight College of Pharmacy, Koregaon Bhima

Abstract: Cancer is a process of uncontrolled cell proliferation that leads to the development of an abnormally growing tumor, determining initially a local disease that might spread, impairing other organs or important processes. One of the most fatal diseases in recent times, cancer kills many lives each year. The effective management of this condition has been impacted by the variances in the disease across the globe, the impact of the medical facilities that are available, and other socioeconomic issues. The aim of this study was to summaries previously published articles regarding recent advances in anticancer drug discovery collected from journals through Pub Med Central, Google Scholar, and Science Direct from March 20 toMay 12 was identified well, and points that I assumed were important and recent (2017–2023) were included. Anticancer pharmacotherapy has evolved from broadly cytotoxic agents to precision medicines and biologics. This review summarizes the chemistry and clinical importance of major anticancer drug classes (alkylators, antimetabolites, plant alkaloids, topoisomerase inhibitors, kinase inhibitors, hormonal agents, monoclonal antibodies, antibody-drug conjugates (ADCs), immunotherapies and targeted protein degraders such as PROTACs). We highlight recent discovery advances — ADC design, targeted protein degradation (PROTACs/molecular glues), sophisticated kinase/RTK inhibitors, CAR-T and other cellular therapies, and regulatory trends — and outline remaining chemical and translational challenges.

Keywords: Cancer, DrugdiscoveryDrugtargetsDrugrepurposing, cytotoxic.

I. INTRODUCTION

Cancer is a condition where cells grow uncontrollably, formingtumorsthatdevelopabnormallyandcanspread to other organs or vital systems, impairing their ability to function.¹ Several determinant agents, including genetic mutations, pollution, food contaminants, viruses, chemicals, andionizing radiation, interact to cause cancer, which is why it is regarded as a multifactorial disease.² Multiple evolutionarily conserved cell cycle control mechanisms tightly regulate cell division to guarantee the generation of two genetically identical cells.³ One of the deadliest illnesses in recent memory, cancer claims many lives each year.

The proper management of this disease has been impacted by the variations in the disease across the globe, the impact of the medical facilities that are available, and other socioeconomic factors. According to the 2023 global cancer statistics, there will be 20 million additional cases of cancer and 10 million deaths from cancer. Over the following two decades, there will be a roughly 60% increase in the cancer burden, placing additional strain on communities, individuals, and health systems.

AccordingtoresearchdoneinEthiopiabetween2000 and 2016, cancer was responsible for an estimated 50,913.5(95%)deathsamongpeopleofallagesand both genders (the majority of the patients were females), with a crude death rate of 49.7 per 100,000 and an age- standardized death rate of 93.5 per 100,000.

The number of cancer cases has increased to previously unheard-of levels as a result of longer life expectancies. As a result, the pharmaceutical sector has invested a sizable amount of money in this therapeutic field. Despite these efforts, the field of cancerdrug research continues to be remarkably difficult, and the rapeutic advancements have not yet produced the anticipated clinical outcomes. However, since the first half of the 20th century, drug manufacturers have continued to produce medicines despite their high cost-benefit ratio by taking into account the improved understanding of the disease's physiopathology. Drug companies have created a variety of anticancer drug classes, such as cytotoxic drugs (alkylating agents, antimetabolites, antibiotics, plant extracts, and other cytotoxic drugs), hormones and hormone antagonists, and immuno modulators.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

However, these chemotherapies have issues with lack of specificity, cytotoxicity, induction of multi-drugres is tance, and stem growth. 10 The identification of new molecular targets has raised hopesforcreating bettertreatments. Themain obstacles in cancer drug discovery, improving drug selectivityandloweringsideeffects,havebeen addressedbymonoclonalantibodiesandantibody-small molecule conjugates.^{5,10} Manufacturers and researchershavepublishedatonofliteratureon drug targets and new drug development bytaking strategies into difficulties anticancer drugs, theirtoxicityprofiles, nonselectivitycharacteristics, and related side effects. This review therefore aims and collection compile summarize ofpublicationscenteredonnovelchemical compounds with cytotoxic activity on cancer cells in vitro, or both, in particular novel biomarkers and target proteins with potential therapeutic properties.

II. MATERIALS AND METHODS

In this review, the reviewer uses websites such as Google Scholar, PubMed Central, and Science Direct as searching tools via a personal computer and other accessories.

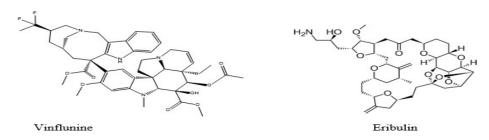
-Alkylating Agents -Antimetabolites -Topoisomerase Inhibitors -Microtubule Inhibitors -Tyrosine Kinase Inhibitors -DiagnosticTherapeutic -Proteasome Inhibitors 1. Traditional Cytotoxic Agents 2. Targeted Therapies -Epigenetic Modulators Chelator-Radionuclide **Agents** Conjugates -PROTACs 3. Targeted Protein -Molecular Glues **Degraders** 9. Radiopharmaceuticals & Theranostics -Monoclonal Antibodies 4. Biologics and ADCs Anticancer Drugs -Antibody-Drug Conjugates 5. Small-Molecule -Checkpoint Inhibitors -Enzyme Modulators **Immunomodulators** 8. Advanced Drug -Platinum Compounds 6. Metal-Based Agents **Delivery Systems** -Non-Platinum Metals 7. Hormonal Therapies -Nanoparticles -SERMs / SERDs -Liposomes -Anti-Androgens -Polymer Conjugates

III. GENERALOVERVIEWOFANTICANCERDRUGDISCOVERY

Due to their intricate, pricey, time-consuming, and difficult tasks, researchers and drugmanufacturers have faced significant challenges in the design and discovery of anticancer drugs. 11 Aside from the complexity, first-handtreatments are extremely toxic anddonottargetcancercellsspecifically. 12,13 This is true even though manufacturers developinganticancerdrugs. Itisthereforeofgreatinterest to design and develop novel, selective small-molecule drugs, especially with the aid of in silico tools that have been developed in recent years. ¹⁴ But recently, artificial intelligence (AI) has emerged as a strong and promising technology for quicker, less expensive, and more efficient anti-cancer drug designs than the previously employed CADD.11 The search for novel drug molecules and the synthesis of more appealing drug molecules can both be spedupbyartificialintelligence. Targetidentificationis the first step in the anti-cancer drug discovery process, and after that comes structure-based, ligand-based, and fragment-basedscreeningofsuccessfulcompounds, de novo anti-cancer drug design for large compounds, anti-cancerdrugrepurposing, and precise anti-cancer drug reaction prediction. ^{15,16} Anticancer medications advance as they are discovered fromnaturalproductsorsynthetically,takinginto accountthetoxicityandefficacyofmedicationsand using thisartificial intelligence-basedadvancedtechnology orpreviousCADDasatoolfordrugdesignanddiscovery. Asoflate, drugrepurposing based on promisingtargetshasalsobecomepopular. 17-19 However, there are drawback stocancer immunotherapy, such as resistance, the ability of cancer cells to evade the immune response, and issues with delivery methods.²⁰ Nanoparticles using nanocarriers as vehicles have some issues that could solve these issues, according to recent advancements.²¹Becauseoftheirspecialqualities, such as biocompatibility, permeability, stability, decreased toxicity, increased improved precision targeting, retentioneffect, ²²nanoparticles can be used to treat cancer.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

IV. RECENT ADVANCE SINANTIC ANCER DRUG TARGETSAND BIOMARKERS


Targetedtherapyholdsthekeytoraisingoverall survival rates while lowering the unfavorable side effects ofcancertreatment. Compared to patients who did not receive matched targeted the rapies, patients who did both overall survival and progression-free survival significantly improved. The purpose of treating cancer, numerous drug targets have been found. Due to efficacy or toxicity issues, the majority of molecularly targeted agents were ineffective. Researchers are being challenged to concentrate on the drug targets that can aid in the complete eradication of the disease by recent work in the field of molecular biology and a better understanding of the molecular pathology of cancer.

A. Kinasesastargets

medications known kinase inhibitorsdirectlyinteractwiththeactivesiteofthe Α group of anti-cancer as targetenzymetopreventkinaseactivity. According to estimates, the human genome contains about 2000 kinases that are either serine/threonine- or tyrosine- specificandconnectedtooneanother.²⁴Clinical oncologywasfirstintroducedtoimatinib, thento bosutinib, sorafenib, and sunitinib. Despite having the samemodeofaction—competitiveATPinhibitionatthe tyrosine kinase catalytic binding distinct from another terms of the range targeted site—they kinases, theirpharmacokinetics, and the negative effects that are substance-specific. ²⁵

B. Tubulin/microtubuleastarget

A major component of the eukaryotic cytoskeleton, microtubulesareformedbythepolymerization of the globular the globular protein tubulin, which has a molecular weight of 52 KD. Through each stage of the cell cycle, microtubules continuously lengthen and shorten. Compared to normal cells, cancer cells rapidly divide and expand. The development of microtubule-targeting agents for the treatment of cancer is being investigated because they are essential for cell division and growth. As a result, the development of anti-cancer medications now includes tubulina sone of their keytargets. To find and develop safer and more effective drug candidates, a number of tubulin-targeting agents have been synthesized, and structure-activity relationship studies have been carried out. 24,26

C. Vasculartargetingagents

Vascular targeting agents (VTAs) are primarily cancer therapiesthatarecreatedspecificallytotargethe tumor's vasculature and, as a result, prevent the growthanddevelopmentoftumors. Giventheavailability of blood-bornemedications, it becomes a successful strategy in the treatment of cancer. A steady flow of oxygen and nutrients is necessary because tumor cells divide rapidly. Therefore, the growth of blood vessel networks is necessary for the development, progression, and metastasis of tumors. Vascular disrupting agents (VDAs) can stop blood flow to tumors. ^{27,28}

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Fosbretabulin

D. Angiogenesisinhibitors

A brand-new class of medicines called angiogenesis inhibitors is intended to prevent tumor vascularization. VEGF-A is VEGF-A overexpressed in tumor growth, invasion, and metastases. Targeting at the moment are VEGF-AandVEGFR2inhibitors²⁸.Non-small-celllungcancer.

(NSCLC) is treated with angiogenesis inhibitors, such as bevacizumab and ramucirumab. These medicines aim to block VEGFs.²⁹

Bevacizumab

E. Monoclonalantibodies

To stop tumor vascularization, a new class of drugs called angiogenesis inhibitors is being developed. Tumor growth, invasion, and metastases all exhibitover expressed VEGF-A. VEGF-A and VEGFR2 inhibitors currently target VEGF-A.²⁸ Angiogenesis inhibitors (AIs), like bevacizumabandramucirumab, areused to treat non-small-celllung cancer (NSCLC). These drugstry to stop VEGFs.²⁹

Recent Advance sin Drug Repurposing for the Discovery of New Anticancer Drugs

Drug repositioning, another name for drug repurposing, is a tactic that looks at additional diseases besides the one for which a drug has already received approval. 30–32

1) Antiplatelet Agents

Althoughaspirin's clinical use as an anticancer medication has been expanded and regular use of the medication is associated with a lower risk of breast cancer, aspirin is primarily used as an antiplatelet medication for cardiovascular diseases. Henry et al. suggests that aspirin and PI3Kinhibitors may be used in combination therapy to treat breast cancer. ³³

2) Anti-inflammatorydrugs

Accordingtorecentinvivodata, diclofenacsuccessfully slows the growth of pancreatic tumor sin mice. Diclofenacther apyresulted in a rise in a contract of the c apoptosisandafallinangiogenesis, accordingto analysis of the tumor tissue removed during surgery. Additionally, melanoma cells were used to test the effectiveness of a diclofenac and sorafenib (a kinase inhibitor)combination, and the results were positive for all cancercells.³⁴Furthermore, ininvivoratmodels, theselective COX-2 inhibitor celecoxib inhibited the growth of breast cancer cells and decreased tumor development.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

It was discovered that the level of COX-2 expression andthe invasiveness of the tumor cells were required for growth inhibition. ³⁵Mesalazine has also been mentioned as having anti-cancer potential in a variety of cancers, including colorectal cancer, gastric cancer, breast cancer, and colon cancer. ³⁶

3) Antidiabetic agents

Thefirstlineoftreatmentfortype2diabetesmellitus ismetformin,anoralmedication.Numerouscancer types,includingpancreatic, endometrial,breast,lung, and prostrate, have shown it to have anti-neoplastic activity.³⁷ Through numerous preclinical and clinical studies, thiazolidinediones (TZDs) have been identified as apotentleadinthetreatmentofbreastandprostatecancer. Troglitazone, rosiglitazone, and pioglitazone are the three key components of this medication.³⁸

V. CONCLUSION

The extremely Beginningwiththefirstnitrogenmustards,researchersand global impact of cancer is negative. pharmaceutical companies tried their best to find cures. The lack of selectivity, effectiveness, side effects, and metastatic nature of the diseases availabilityofawiderangeoftreatmentoptions make effective treatment challenging, despite the asalternatives.Recentadvancesinthefieldof molecular biologyandadeepercomprehensionofthe molecular pathology of cancer have pushed researchers to concentrate on the drugtargets that can aid in the total eradication of the disease.

The discovery of anticancer drugs is outlined in this review's recent highlights. Researchers betterabletoidentifyspecifictreatmentswithlowertoxicity and better tolerability thanks to recent advances in drug target and discovery. Numerous drug targets have been found for the treatment of cancer based on a variety of articles written by academics, in toxicity. order to improve their efficacy and decrease their The most effective cancertreatmentfocusesarekinase, microtubulin, vascular targeting, angiogenesis, and monoclonal antibodies. Researcherslookintoalternativeusesofadrugthathas already been approved for one condition for other diseases in addition to its original indication in order to significantly reduce the cost, labor, and research time.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Antiplatelet, antidiabetic, anti-inflammatory, antimicrobial, and antipsychotic agents are among the repurposed medications that are mentioned.

Apopularmethodforfindingnewclassesofanticanceragentsaswellastheirinventivemodesofactionisthroughthediscoveryofphytochemica ls. Quercetin,ginseng,artemisinin,andcurcumin allhavethepotentialtofightcancer.Ontheother hand, natural products are recognized as superior andmore potent chemotherapeutic agents. A significantamountofanticanceractivityisexhibited bynewlydevelopedmechanismsthataredesigning novelheterometalliccomplexes withmetalcenters andheterocyclicandbisheterocyclicsubstances like thiazolidin-4-ones, 1,3,4-thiadiazoles, and thiazoles to overcome the toxicity of chemotherapies.

REFERENCES

- [1] Otto T, Sicinski P.Cell cycle proteins as promising targets in cancertherapy. Nat Rev Cancer. 2017;17(2):93–115.
- [2] GrazianoG, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, et al. Multicomponent Reaction-Assisted Drug Discovery: A Time-and Cost-Effective Green Approach Speeding Up Identification and Optimization of Anticancer Drugs. Int J Mol Sci. 2023;24(7):6581. doi:10.3390/ijms24076581.
- [3] MatthewsHK,BertoliC,DeBruinR.Cellcyclecontrolincancer.
- [4] NatRevMolCellBiol.2022;23(1):74-88.
- [5] Chhikara BS, Parang K.Global Cancer Statistics 2022: The trendsprojection analysis. Chem Biol Lett. 2023;10(1):1–16.
- [6] Kim KW,Roh JK, WeeHJ, Kim C.Cancer Drug Discovery.1st ed.Berlin/Heidelberg, Germany: Springer; 2016. p. 276.
- [7] Magalhaes LG, Ferreira LL, Andricopulo AD.Recent advances and perspectives in cancer drug design. Anais da Acad Brasileira de Ciências. 2018;90(1):1233–50.
- [8] Lythgoe MP, Krell J, Mills MS, Vasudevan EC, Savage A.DevelopmentandeconomictrendsinanticancerdrugslicensedintheUK from 2015 to 2019. *Drug Discov Today*. 2021;26(2):301–8.
- [9] Liu Z, Delavan B, Roberts R, Tong W.Lessons learned from two decades of anticancer drugs. Trends Pharmacol Sci. 2017;38:852–72.
- [10] Ma X, Wang Z.Anticancer drug discovery in the future: anevolutionary perspective. Drug Discov Today. 2009;14:1136-78.
- [11] Cheng Z, Li M, Dey R, Chen Y.Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol. 2021;14(1):1–27.
- [12] WangL,SongY,WangH,ZhangX,WangM,HeJ.AdvancesofArtificialIntelligenceinAnti-CancerDrugDesign:A Review of the Past Decade. *Pharmaceuticals*. 2023;16(2):253.doi:10.3390/ph16020253.
- [13] AlcántarGM,PicchettiP,CasiniA.GoldComplexesinAnticancer Therapy: From New Design Principles to Particle-BasedDelivery Systems. *Angewandte Chemie*. 2023;62(22):e202218000.doi:10.1002/anie.202218000.
- [14] Hirlekar BU, Nuthi A, Singh KD, Murty US, Dixit VA.Anoverview of compound properties, multiparameter optimization and computational drug design methods for PARP-1 inhibitor drugs. Eur J Med Chem. 2023;252:115300.doi:10.1016/j.ejmech.2023.115300.
- [15] Bojórquez NDCQ, Campos MR.Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer DrugDiscoveryProcess...CurrentCancerDrugTargets.2023;23(5):333–78.
- [16] Kumar R, Saha P.A review on artificial intelligence and machinelearningtoimprovecancermanagementanddrugdiscovery. *IntJResAppl Sci Biotechnol.* 2022;9(3):149–56.
- [17] You Y, Lai X, Pan Y, Zheng H, Vera J, Liu S, et al. Artificial intelligence in cancertarget identification and drug discovery. Signal Transduct Targeted Ther. 2022;7(1):156.
- [18] Shim JS, Liu JO.Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 2014;10(7):654–63.
- [19] SiddiquiAJ, JahanS, SinghR, SaxenaJ, AshrafSA, KhanA, et al. Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. Bio Med Res Int. 2022;p. 5425485.doi:10.1155/2022/5425485.
- [20] RahmanMA,SaikatAS,RahmanMS,IslamM,ParvezMA,Kim
- [21] B.RecentUpdateandDrugTargetinMolecularandPharmacologicalInsightsintoAutophagyModulationinCancerTreatmentandFutureProgress. Cells. 2023;12(3):458. doi:10.3390/cells12030458.
- [22] Hu CM, Aryal S, Zhang L.Nanoparticle-assisted combinationtherapies for effective cancer treatment. Therapeutic Deliv. 2010;1(2):323-57.
- [23] Bajpai S, Tiwary SK, Sonker M, Joshi A, Gupta V, Kumar Y, et al.Recent advances in nanoparticle-based cancer treatment: a review. ACS Applied Nano Mater. 2021;4(7):6441–70.
- [24] Brigger I, Dubernet C, Couvreur P.Nanoparticles in cancer therapyand diagnosis. Adv Drug Deliv Rev. 2012;54(5):24–36.
- [25] ZhouZ,LiM.Targetedtherapiesforcancer. BMCMed. 2022; 20:90. doi:10.1186/s12916-022-02287-3.
- $[26] \begin{tabular}{ll} ZhouZ, LiM. Targeted the rapies for cancer. {\it BMCMed}. 2022; 20:90. doi: 10.1186/s12916-022-02287-3. \\ \end{tabular}$
- [27] Kumar B, Singh S, Skvortsova I, Kumar V.Promising Targets in Anti-cancer Drug Development: Recent Updates. Curr Med Chem. 2017;24(42):4729-52.
- $[28] \ \ Hartmann JT, \ Haap M, \ Kopp HG, \ Lipp HP. \ Tyrosine \ kinase in hibitors-are view on pharmacology, \ metabolism and side effects. \ \textit{Metab Side Effects}. \ 2009; 10(5): 470-81.$
- [29] Khwaja S, Kumar K, Das R, Negi AS.Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem. 2021;116:105320.
- [30] Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10(2):415-42.
- [31] Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, VaughnD, et al.Phase I trial of the antivascular agent combretastatin A4phosphate on a 5-day schedule to patients with cancer: magneticresonance imaging evidence for altered tumor blood flow. J ClinOncol. 2003;21(23):442–66.
- [32] MelincoviciCS,Bos,caAB,S,us,manS.Vascularendothelialgrowthfactor (VEGF)-key factor in normal and pathological angiogenesis. *Rom J Morphol Embryol*. 2018;59(2):455–67.
- [33] NathJ,PaulR,GhoshSK.Drugrepurposingandrelabelingforcancertherapy:Emergingbenzimidazoleantihelminthicwith potent anticancer effects. *Life Sci.* 2020;258:118189.doi:10.1016/j.lfs.2020.118189.
- [34] Rudrapal M, Khairnar SJ, Jadhav AG.Drug repurposing (DR): Anemerging approach in drug discovery. Mol Asp Ther Appl. 2021;p.1–20.
- [35] Sliwinska PN, Scapozza L, Altaba AR.Drug repurposing inoncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(2):434–54.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- [36] HenryWS,LaszewskiT,TsangT,BecaF,BeckAH,McallisterSS.Aspirin Suppresses Growth in PI3K-Mutant Breast Cancer byActivating AMPK and Inhibiting $mTORC1\ Signaling. Cancer\ Res. 2017; 77(3):790-801.$
- Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP.Repurposing Drugs in Oncology (ReDO) Diclofenac as an anti-cancer agent. E Cancer Med Sci. 2016;10:1-28.
- [38] Li J, Hao Q, Cao W, Vadgama JV, Wu Y.Celecoxib in breastcancer prevention and therapy. Cancer Manage Res. 2018;10:4653-67.doi:10.2147/CMAR.S178567.
- [39] Schwab M.PPARyis involved in mesalazine-mediated inductionof inhibition cell apoptosis and of growth colon cancer cells. Carcinogenesis. 2008;29(7):1407-21.
- [40] Arrieta O, Barron F, Padilla MS.Effect of metformin plus tyrosinekinaseinhibitorscompared with tyrosinekinaseinhibitorsalonein patients with epidermal growth factor receptor-mutated lungadenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5(11):e192553. doi:10.1001/jamaoncol. 2019. 2553.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)