

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77329>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Compact Dual-Mode Portable Flask for Water Heating and Cooling Applications

Basudeb Dey¹, Animesh Halder², Ankit Singh³, Priyanshu Biswas⁴, Raj Mondal⁵, Aryan Tanti⁶, Rittika Shaw⁷

¹ Assistant Professor, ^{2, 3, 4, 5, 6, 7} B.Tech 4th Year Students, Department of Electrical Engineering, JIS College of Engineering, Kalyani, Nadia, W.B.

Abstract: The increasing demand for smart, energy-efficient, and user-friendly consumer products has encouraged innovation in portable beverage containers. This paper presents the design and conceptual development of an innovative portable water heating and cooling flask that integrates active thermal control technology with sustainable design principles. Unlike conventional insulated flasks that rely solely on passive insulation to maintain temperature, the proposed flask incorporates both heating and cooling elements, enabling users to actively regulate beverage temperature as required.

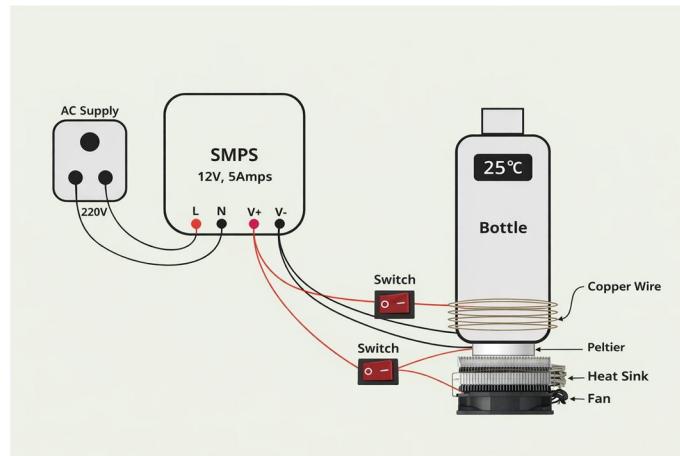
The system features an integrated digital temperature display that provides real-time monitoring of the liquid temperature, enhancing user safety, accuracy, and convenience. This functionality allows users to maintain beverages at preferred temperatures for various applications, including hot drinks, warm water for medical or dietary use, and cold drinking water in warm environments. The dual-mode operation increases versatility and expands the usability of the flask across diverse settings such as offices, educational institutions, travel, outdoor activities, and emergency conditions.

Sustainability is a key aspect of the proposed design. By minimizing reliance on traditional appliances such as electric kettles and refrigerators for small-scale heating and cooling needs, the flask contributes to energy conservation. Its reusable nature further supports environmental sustainability by reducing the consumption of single-use plastic containers. Additionally, efficient thermal management and optimized power usage help ensure reliable performance with reduced energy consumption.

The proposed portable water heating and cooling flask demonstrates the potential of smart drinkware solutions that combine thermal engineering, electronics, and ergonomic design. This concept offers a practical and efficient alternative to traditional beverage containers and provides a foundation for future research, optimization, and commercialization of intelligent temperature-controlled drinkware.

Keywords: Portable water flask; Electrical heating system; Thermoelectric cooling (Peltier); Temperature control circuit; Energy-efficient design; Smart consumer appliance

I. INTRODUCTION


Technological advancements in electrical and electronic systems have led to the development of smart, portable, and energy-efficient consumer products that enhance everyday convenience. One such emerging innovation is the portable water heating and cooling flask, which offers active temperature control for beverages. Conventional insulated flasks depend solely on passive thermal insulation and are limited to maintaining the initial temperature of stored liquids. They lack the ability to adjust or regulate beverage temperature once filled, which restricts their usability in dynamic environments.

The portable water heating and cooling flask overcomes this limitation by integrating electrical heating elements and thermoelectric cooling technology within a compact and portable design. This dual-function system enables users to heat or cool water on demand, providing greater flexibility and comfort. Such a device is particularly useful in offices, educational institutions, travel scenarios, outdoor activities, and emergency conditions where access to conventional heating or cooling appliances may be limited.

From an electrical engineering perspective, the system incorporates key components such as resistive heating elements, thermoelectric (Peltier) modules, temperature sensors, and control circuitry to ensure precise temperature regulation. The inclusion of a digital temperature display allows real-time monitoring, enhancing user safety and operational accuracy. Efficient power management and thermal control are critical to achieving reliable performance while minimizing energy consumption.

In addition to convenience and functionality, sustainability plays a vital role in the design of the portable flask. By reducing reliance on larger electrical appliances for small-scale heating and cooling needs, the device contributes to energy conservation. Its reusable design also helps reduce single-use plastic waste. The portable water heating and cooling flask thus represents a smart, efficient, and sustainable solution for modern beverage consumption.

II. SYSTEM DIAGRAM AND DESCRIPTION

The portable water heating and cooling flask represents a next-generation drinkware solution that integrates modern technology, sustainability, and versatile design to enhance everyday beverage consumption. Unlike conventional insulated flasks that depend solely on passive thermal insulation to retain temperature, this system incorporates active heating and cooling mechanisms, enabling users to regulate the temperature of their drinks according to their needs. This capability allows beverages to be heated or cooled on demand, offering greater flexibility and convenience in dynamic environments.

The flask is equipped with a digital temperature display that provides real-time information about the liquid temperature, ensuring accuracy, safety, and ease of use. This feature helps users maintain beverages at optimal temperatures for various purposes, such as hot coffee or tea, warm water for health-related needs, or chilled drinking water in hot conditions. The controlled temperature functionality significantly improves user comfort compared to traditional drinkware solutions.

Designed with portability and practicality in mind, the flask supports a wide range of applications, including office use, travel, academic settings, outdoor activities, and emergency situations. Its reusable and energy-efficient design contributes to sustainability by reducing reliance on disposable containers and minimizing the use of conventional heating and cooling appliances for small-scale requirements. Overall, the innovative water heating and cooling flask offers a smart, efficient, and eco-friendly approach to modern beverage management.

III. HARDWARE REQUIRED AND SPECIFICATIONS

Sl. No.	Name of Component	Specification / Description	Quantity
1	Peltier Module	Thermoelectric cooling/heating module	1
2	SMPS	12 V, 5 A	1
3	Heat Sink	Aluminum heat sink	1
4	Cooling Fan	DC cooling fan	1
5	Digital Temperature Display	LED/LCD type	1
6	Copper Wire	30 SWG, 5 meters	1
7	Heat Paste	Thermal paste	1
8	Rocket Switch	ON/OFF switch	3
9	Copper Bottle / Glass	Water container	1
10	Heat Resistant Glue / Tape	Insulation and fixing	1

IV. CONCLUSION

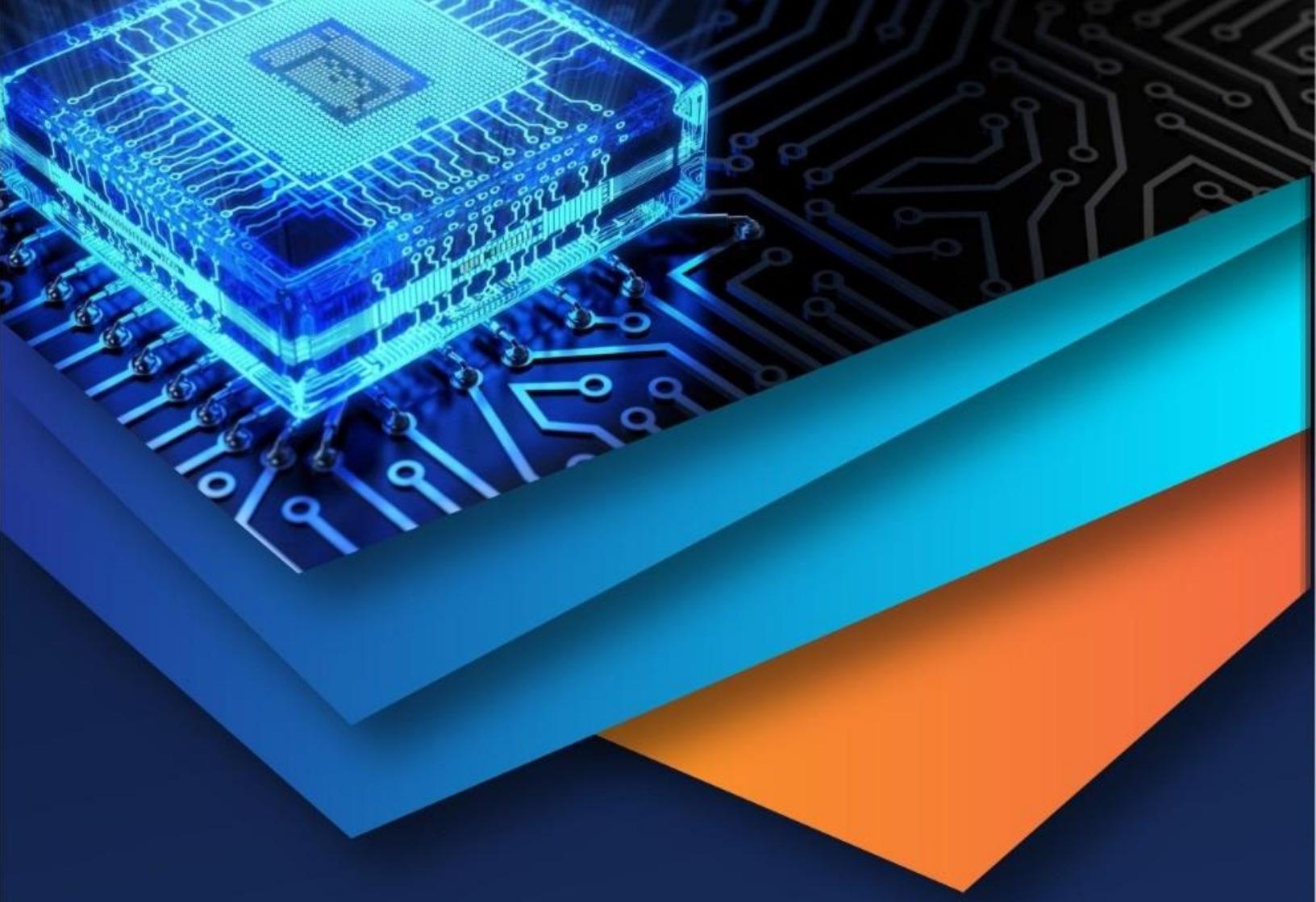
The compact dual-mode portable flask presented in this project successfully demonstrates an effective solution for on-demand water heating and cooling. By integrating active electrical heating and thermoelectric cooling mechanisms, the system overcomes the limitations of conventional insulated flasks that rely only on passive temperature retention. The inclusion of a digital temperature display enables real-time monitoring, improving user convenience and safety.

The prototype achieves the desired objectives of portability, functionality, and cost-effectiveness using readily available components such as a Peltier module, SMPS, heat sink, and cooling fan. Its dual-mode operation makes it suitable for various applications, including daily use, travel, academic environments, and emergency conditions. Additionally, the reusable and energy-efficient design supports sustainability by reducing reliance on disposable containers and minimizing small-scale energy consumption.

Overall, the developed portable flask offers a practical and economical approach to modern beverage temperature management and provides a strong foundation for future enhancements such as battery operation and smart control features.

V. FUTURE SCOPE

The compact dual-mode portable flask developed in this project offers significant potential for further improvement and enhancement. One important future development is the integration of a rechargeable battery system, allowing the flask to operate independently of external power sources and improving portability. The addition of smart control features, such as microcontroller-based temperature regulation, mobile app connectivity, or IoT integration, could enable precise and automated temperature control based on user preferences.


Efficiency can be further improved by using advanced thermoelectric modules and improved thermal insulation materials to reduce power consumption and enhance heating and cooling performance. Incorporating safety features such as over-temperature protection, automatic cut-off, and leakage detection would increase reliability and user safety. The design can also be optimized for lightweight materials and ergonomic handling to enhance user comfort.

Additionally, scaling the design for commercial production and adapting it for specific applications such as medical use, outdoor expeditions, and emergency relief operations presents promising opportunities. These enhancements would make the portable flask more efficient, user-friendly, and suitable for widespread adoption in modern lifestyles.

REFERENCES

- [1] P. Baskaran and M. Rajasekar, "Recent trends and future perspectives of thermoelectric materials and their applications," *RSC Advances*, vol. 14, pp. 21706–21744, 2024.
- [2] S. Patel and P. M. Patel, "Advancement in thermoelectric innovation: crafting a portable climate control system," *Asian Journal of Current Research*, vol. 9, no. 2, pp. 158–162, 2024.
- [3] X. Wang et al., "Numerical simulation on thermoelectric cooling of core power devices in air conditioning," *Applied Sciences*, vol. 13, no. 12, 7274, 2023.
- [4] "Thermal modeling and experimental investigation of a thermoelectric drinking water cooler integrated with heat pipe heatsink," *Engineered Science*, vol. 31, 1271, 2024.
- [5] "Enhanced performance of a thermoelectric module with heat pipes for refrigeration applications," *Energies*, vol. 18, no. 10, 2426, 2025.
- [6] (Conference/Proceedings) "A portable thermoelectric bottle for dual heating and cooling with integrated hydration tracking system," *APS Proceedings*, 2025.
- [7] References (Recent Journal Papers)

- [8] P. Baskaran and M. Rajasekar, "Recent trends and future perspectives of thermoelectric materials and their applications," *RSC Advances*, vol. 14, pp. 21706-21744, 2024.
- [9] S. Patel and P. M. Patel, "Advancement in thermoelectric innovation: crafting a portable climate control system," *Asian Journal of Current Research*, vol. 9, no. 2, pp. 158-162, 2024.
- [10] X. Wang et al., "Numerical simulation on thermoelectric cooling of core power devices in air conditioning," *Applied Sciences*, vol. 13, no. 12, 7274, 2023.
- [11] "Thermal modelling and experimental investigation of a thermoelectric drinking water cooler integrated with heat pipe heatsink," *Engineered Science*, vol. 31, 1271, 2024.
- [12] "Enhanced performance of a thermoelectric module with heat pipes for refrigeration applications," *Energies*, vol. 18, no. 10, 2426, 2025.
- [13] (Conference/Proceedings) "A portable thermoelectric bottle for dual heating and cooling with integrated hydration tracking system," *APS Proceedings*, 2025.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)