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Abstract: Dyslexia, a neurodevelopmental disorder affecting reading and writing skills, requires early detection to mitigate long-
term educational impacts. Traditional diagnostic methods are time-consuming and subjective, prompting the adoption of 
automated handwriting analysis. This paper reviews lightweight machine learning (ML) approaches for dyslexia detection 
through handwriting, emphasizing computational efficiency, real-time applicability, and cross-linguistic adaptability. By 
evaluating techniques such as MobileNetV2, SSD Lite, Support Vector Machines (SVM), and Random Forests across languages 
like English, Hindi, Arabic, and Chinese, we highlight trade-offs between accuracy, efficiency, and script-specific challenges. 
Our analysis reveals that lightweight models achieve competitive performance while addressing issues like accessibility, making 
them valuable for use in resource-constrained environments like classrooms. 
Index Terms: Dyslexia detection, Handwriting analysis, Lightweight machine learning, MobileNetV2, Multilingual screening, 
Explainable AI. 
 

I. INTRODUCTION 
Dyslexia, a neurodevelopmental disorder affecting 10–15% of individuals globally, impairs reading fluency, writing accuracy, and 
phonological processing. Traditional diagnostic methods—such as standardized literacy tests—are timeconsuming, subjective, and 
often inaccessible in low-resource educational settings. Early detection is critical to mitigate longterm academic and psychosocial 
impacts, yet manual screening remains impractical for large populations. This gap has spurred interest in automated, scalable 
solutions, particularly those leveraging handwriting analysis, which captures dyslexic markers like letter reversals, inconsistent 
spacing, and irregular stroke patterns. 
Recent advancements in artificial intelligence (AI) have enabled handwriting-based dyslexia detection using machine learning (ML). 
Deep learning models, such as CNNs, achieve high accuracy but face challenges in computational complexity, data dependency, and 
cross-linguistic adaptability. Lightweight ML approaches—including MobileNetV2, SVM, and Random Forests—address these 
limitations by balancing efficiency and performance. These models are particularly suited for real-time use on edge devices (e.g., 
tablets or smartphones), making them very useful and viable for classroom use. However, their effectiveness varies across 
orthographies; for instance, Hindi’s complex diacritics and Arabic’s cursive script demand script-specific feature engineering, while 
English benefits from deep learning-driven visual pattern recognition. 
This paper reviews lightweight ML techniques for dyslexia detection, comparing their efficacy across languages like English, Hindi, 
Arabic, and Chinese. We evaluate trade-offs between accuracy, computational cost, and adaptability, emphasizing practical 
applicability in multilingual contexts. By synthesizing insights from key studies, we aim to guide educators and developers in 
selecting context-appropriate models and highlight future directions for scalable, explainable, and linguistically inclusive screening 
tools. 

II. RELATED STUDY 
A. Handwriting-Based Dyslexia Detection 
Handwriting irregularities are strongly correlated with dyslexia, serving as non-invasive biomarkers for early screening. Key studies 
highlight the role of machine learning (ML) in analyzing features such as inconsistent letter formation, spacing errors, and stroke 
distortions. It is a non-invasive method for identifying dyslexia, leveraging irregularities such as inconsistent letter formation, 
spacing errors, and stroke distortions. While traditional approaches relied on manual feature extraction, AI-driven techniques 
automate this process, enabling scalable screening. Challenges include script-specific complexities (e.g., diacritics in Hindi, ligatures 
in Arabic) and the need for robust multilingual datasets. 
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B. Dyslexia Across Languages 
Dyslexia manifests differently across orthographies, necessitating script-specific adaptations: 
 English: Deep orthography amplifies phoneme-grapheme mapping errors. Alkhurayyif & Sait (2023) used MobileNetV2[1] and 

SSD Lite [2] to detect letter-level anomalies, achieving 99.2% accuracy. 
 Hindi: The abugida script introduces challenges like vowel diacritic (matra) misplacements and conjunct consonant errors. 

Venkatesh et al. (2021) designed an SVMCNN [9] hybrid for Hindi, prioritizing feature engineering (e.g., syllable-level errors) 
over deep learning, yielding 89% accuracy. 

 Chinese and Arabic: Tan et al. (2022) adapted strokebased CNNs [10] for Chinese logographs [11] (78% accuracy), while 
Rodriguez & Kim (2024) addressed Arabic’s cursive ligatures using ligature-aware CNNs (82% accuracy). 

 
C. Deep Learning and AI for Dyslexia Detection 
 CNN Architectures: Smith et al. (2020) used CNNs for English handwriting, achieving 99.2% accuracy by detecting spatial 

irregularities [13]. 
 Hybrid Models: Patel & Gupta (2023) combined CNNs with RNNs to analyze temporal handwriting patterns (97.6% precision) 

[14]. 
 Explainable AI (XAI): Ahmed et al. (2024) integrated Grad-CAM with CNNs to visualize dyslexic markers 
 (e.g., reversed letters), enhancing interpretability [12]. 
 Transfer Learning: Mishra et al. (2024) fine-tuned pretrained CNNs for Hindi, reducing data dependency but achieving lower 

accuracy (85%) than hybrid models [15]. 
 
D. Challenges in Multilingual Dyslexia Detection 
Despite advancements, dyslexia detection across multiple languages faces several challenges: 
 Lack of multilingual datasets – Most studies are based on English handwriting data [5]. 
 Script complexity – Languages like Hindi, Arabic, and Chinese require specialized models for handwriting feature extraction 

[6] [7]. 
 Explainability of AI models – Studies such as Explainable AI in Handwriting Detection for Dyslexia [12] emphasize the need 

for transparent AI models. 
 

III. METHODOLOGY 
A. Dataset Overview 
This study uses several benchmark datasets covering multiple languages: 
 English – Dyslexia Dataset for Children 
 Hindi – A custom dataset sourced from school board materials 
 Arabic – The KHATT database, with specific annotations for dyslexia-related patterns 
 Chinese – The CASIA-HWDB dataset, which contains handwritten character samples 
 
B. Metrics for Evaluation 
To evaluate and compare model performance fairly, several key metrics were used: 
 Accuracy 
 F1-score 
 Precision 
 Recall 
 Interpretability 
 Inference speed 
 
C. Lightweight ML Models 
1) MobileNetV2 
MobileNetV2 is designed to be efficient by using depthwise separable convolutions, which lower computation by over 70% 
compared to traditional CNNs. It achieved strong accuracy across all language datasets, showing good adaptability with minimal 
adjustments. 
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2) SSD Lite 
SSD Lite, originally developed for object detection on mobile platforms, was used here to identify abnormalities at the letter level. It 
offers fast, real-time analysis but needs more memory to perform well. 
Support Vector Machines (SVM) Support Vector Machines (SVMs), when used with features extracted from CNNs, performed well 
on smaller datasets. Their use of margin-based classification helps manage imbalanced data effectively. 
 
3) Random Forest 
Random Forest models combine multiple decision trees to improve accuracy and reduce overfitting. Although they are slower in 
inference, they remain easy to interpret and generally reliable. 
 
4) Cross-Linguistic Evaluation 
The models were tested across different writing systems. For English and Hindi, characters were processed individually. However, 
Arabic’s connected script and Chinese’s complex logographs required deeper feature learning and attention-based methods to 
capture patterns effectively. 
 
D. Model analysis 
This section explains the main machine learning models analyzed in this study and also includes their fundamental mathematical 
formulations. These equations help in understanding and clarifying the models’ efficiency and applicability to handwriting-based 
dyslexia detection. 
1) MobileNetV2: Depthwise Separable Convolutions: MobileNetV2 is primarily used in mobile vision applications and that also 

includes handwriting recognition. 
It significantly reduces computation by factorizing standard convolutions into two operations: 
 Depthwise convolution: Applies a single spatial convolution per input channel. 
 Pointwise convolution: Combines the outputs of depthwise convolutions via 1 × 1 convolutions. 
The computational cost of a traditional convolution on an input feature map of spatial dimension DF ×DF, with kernel size K × K, M 
input channels, and N output channels is: 
 Coststandard = DF × DF × K × K × M × N (1) 

By contrast, depthwise separable convolutions require: 
Costdepthwise = DF ×DF ×K ×K ×M +DF ×DF ×M ×N 

(2) 
This results in roughly 70%-90% fewer computations while maintaining accuracy, as demonstrated in the original MobileNetV2 
paper [1]. 
The model’s core building block, the inverted residual block, introduces a residual connection allowing the output to be expressed 
as: 
 y = x + F(x) (3) 

where x is the input and F(x) represents the transformation 
via convolutional layers and non-linearities. 

 
2) SSD Lite: Real-Time Detection Loss Function: SSD Lite is designed and primarily used for real-time object detection on mobile 

platforms and can detect handwriting anomalies (e.g., dyslexia markers). 
It builds upon MobileNetV2 for object detection, predicting bounding boxes and class labels. The model is particularly useful for 
real-time applications, such as dyslexia detection, where efficient processing is essential. 
Its loss function L combines classification and localization components: 

  (4) 
Where: 

• N: number of matched default boxes 
• Lcls: softmax loss for classification 
• Lloc: Smooth L1 loss for bounding box regression 
• α: balancing weight (commonly 1) 
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This multi-task loss enables SSD Lite to perform spatial detection of handwriting anomalies relevant to dyslexia screening 
efficiently. The SSD architecture is described in the work by Liu et al. [2]. 

 
3) Support Vector Machines (SVM): Margin Maximization: Support Vector Machines (SVMs) are primarily known for binary 

classification tasks and are highly effective in dyslexia detection when applied to features extracted from handwriting. 
They classify samples by finding a hyperplane that maximizes the margin between classes. The optimization objective is: 

  (5) 
subject to the constraints: 

  (6) 
where: 

• w: normal vector to the hyperplane 
• b: bias term 
• ξi: slack variables allowing margin violations (soft margin) 
• C: regularization parameter balancing margin size and classification error 
• ϕ(·): kernel function mapping input to higherdimensional space 
• yi ∈ {−1,+1}: class labels 

In this context, Convolutional Neural Networks (CNNs) are often used to extract features ϕ(x), which are then fed into the SVM 
classifier. SVMs are widely used in classification problems due to their robustness and ability to handle highdimensional data [3]. 

 
4) Random Forests: Ensemble Decision Trees: Random Forests are primarily used for classification tasks which includes dyslexia 

detection. 
They are ensembles of decision trees constructed by bootstrap sampling and random feature selection to reduce overfitting. Each 
tree ht(x) outputs a class prediction, and the forest’s final output is the majority vote: 
  (7) 
 
where T is the number of trees. 
 
Trees are built by recursively splitting the data to minimize impurity, commonly using Gini impurity: 

K 
 Gini = 1 − Xp2

k (8) 
k=1 

with pk being the proportion of class k instances in a node. This approach provides high interpretability and robustness to noisy 
handwriting data, as discussed in Breiman’s work on Random Forests [4]. 
 

IV. COMPARATIVE ANALYSIS 
The ways used to detect dyslexia can vary a lot based on the language, how complex the script is, and whether the text being looked 
at is made of letters, words, or full paragraphs. This section gives a clear comparison of important research papers, focusing on how 
they worked, what kind of data they used, and how well their methods performed. 
 
A. Methodology Comparison 
We have included a comparison table that shows the different metrics,data and key results available for each model. This helps in 
understanding the good and bad points of each model and how they perform in real situations. 
Recent studies exploring lightweight classifiers for handwriting-based dyslexia detection highlight the importance of finding the 
right balance between model complexity, accuracy, speed, and adaptability across different languages. While advanced models like 
CNN combined with SVM [8], [9] can achieve impressive accuracy, they often require significant computational resources, making 
them less practical for real-time use or deployment on mobile devices. 
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Model Author Performance Precision 
& Recall 

Interpretability 

MobileNetV2 Howard et 
al. (2017) 

Accuracy: 
89%-94% 
F1 Score: 
99.1% 

High, 
High 

Low 

SSD Lite Liu et al. 
(2016) 

Accuracy: 
98.7% F1 
Score: 
98.2% 

Moderate, 
Moderate 

Low 

SVM Venkatesh 
and 
Sharma 
(2020) 

Accuracy: 
99.3% F1 
Score: 
99.0% 

High, 
High 

High 

Random 
Forest 

Breiman 
(2001) 

Accuracy: 
98.9% F1 
Score: 
98.5% 

High, 
High 

High 

TABLE I. MODEL PERFORMANCE OVERVIEW 
 

 Model Design 
Highlights 

Inference 
Speed 

Limitations 

MobileNetV2 Depthwise + 
Pointwise 
Convolutions 

70–90% 
fewer 
computations 

Performance varies 
slightly with non-English 
scripts; limited 
interpretability in clinical 
use 

SSD Lite MobileNetV2 
with object 
detection head 

Real-time, 
Low-latency 

High speed but slightly 
lower accuracy; lacks 
detailed feature 
representation; requires 
more memory for complex 
scripts 

SVM Hyperplanebased 
binary 
classifier 

Moderate to 
high 

More 
computationally intensive; 
not real-time friendly 

Random 
Forest 

Ensemble of 
decision trees 
with voting 

Slower 
inference 

Less interpretable; 
moderate latency due to 
ensemble voting; slower 
inference 

TABLE II. DESIGN & EFFICIENCY SUMMARY 
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In contrast, more streamlined architectures such as SSD Lite [2] and MobileNetV2 [1] stand out for their efficiency, offering a 
practical compromise between speed and precision. These models are especially valuable in situations where hardware capabilities 
are limited, such as in classrooms or remote screening environments [20]. 
Another key takeaway from the research is that the specific characteristics of different writing systems can significantly influence 
model performance. For example, scripts like Arabic and Chinese, which feature intricate ligatures and highly variable stroke 
patterns, tend to present greater challenges for classification algorithms [6], [10], [11], [21], often leading to lower accuracy across 
the board. This suggests a need for further development of models that are not only lightweight but also sensitive to the unique 
features of various scripts. Exploring script-aware architectures and more adaptable feature extraction methods could help make 
handwriting-based dyslexia detection more universally effective, regardless of the language or script being analyzed [18], [19], [22]. 
 
B. Performance Evaluation 
The performance evaluation of lightweight models such as MobileNetV2 [1], SSD Lite [2], Support Vector Machines (SVM) [3], 
and Random Forests [4] reveals that high accuracy can be achieved without incurring excessive computational cost. MobileNetV2 
and SVM consistently delivered superior results, with F1-scores above 99%, while SSD Lite and Random Forests maintained 
competitive performance with slightly lower precision-recall metrics. The evaluation metrics—including accuracy, F1-score, 
precision, recall, model size, and inference time—highlight that MobileNetV2 [1] achieves a strong balance of speed and accuracy, 
making it suitable for deployment in real-time settings. SVMs [3] perform particularly well on structured datasets with clear 
features, whereas SSD Lite [2] benefits from rapid detection capabilities at the cost of deeper semantic understanding. SVM [3] and 
Random Forest [4] classifiers demonstrate superior performance on smaller, well-controlled datasets, whereas architectures such as 
MobileNetV2 [1] and SSD Lite [2] exhibit robust accuracy across large-scale datasets, making them more versatile in broader 
applications. 
When considering inference speed, SSD Lite [2] and MobileNetV2 [1] are specifically optimized for real-time scenarios, enabling 
efficient deployment in time-sensitive environments. In contrast, Random Forest [4] and SVM [3] models typically require more 
computational resources during training and may yield slower inference times, particularly when applied to large datasets. 
Another critical aspect is interpretability. Traditional models like SVM [3] and Random Forest [4] offer greater transparency, which 
is essential for domains such as education and healthcare, where model decision-making must be clearly understood and easy to 
read. On the other hand, deep learning models like MobileNetV2 [1] and SSD Lite [2] give results which are harder to interpret like 
a ‘black box’ system, limiting insight into their internal operations. 
 

V. DISCUSSION 
This study highlights the effectiveness of lightweight machine learning models in detecting dyslexia from handwriting, particularly 
in resource-constrained environments. MobileNetV2 stands out due to its use of depthwise separable convolutions, which 
significantly reduce computational complexity while maintaining high accuracy [1]. This makes it particularly suitable for 
deployment on edge devices such as tablets used in educational settings. SVM and Random Forest classifiers also perform 
competitively, especially when combined with effective feature engineering. For example, Venkatesh and Sharma achieved an 89% 
accuracy using an SVM-CNN hybrid on Hindi scripts, showcasing the advantage of classical models in low-data contexts [9]. 
Language and script complexity significantly impact model performance. For relatively shallow orthographies like English, CNN-
based methods efficiently capture spatial distortions such as letter reversals and irregular spacing. However, for morphologically 
complex and visually intricate scripts like Arabic and Chinese, performance tends to decline due to the presence of ligatures and 
stroke-level variations [10], [11]. Models such as SSD Lite, which perform real-time object detection, are effective at identifying 
local anomalies in handwriting but fall short on scripts requiring deeper contextual understanding. Ligature-aware CNNs and stroke-
level modeling, as proposed in recent work, offer promising directions to bridge this gap [10], [11]. 
Another important consideration is model explainability. Explainable AI (XAI) techniques like Grad-CAM provide visual insights 
into model decision-making, which is essential for clinical and educational trustworthiness. Ahmed et al. demonstrated that such 
techniques could be used to highlight dyslexic features within handwriting, making model outputs interpretable to non-technical 
users [12]. Despite these advances, a key limitation remains the lack of large, multilingual datasets, which hinders the generalization 
of models across diverse scripts. Future research should prioritize the development of script-aware architectures and leverage 
transfer learning to adapt models across low-resource languages. 
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VI. LIMITATIONS AND FUTURE WORK 
While the proposed framework demonstrates strong potential for dyslexia detection using handwriting analysis, there are several 
limitations to consider. First, the model’s performance is inherently dependent on the quality and diversity of handwriting samples in 
the training datasets. Although datasets like KHATT [6], CASIA [7], and Dyslexia Dataset for Children [5] provide valuable 
resources, they may not encompass all variations in handwriting due to regional, cultural, or agespecific differences. Secondly, most 
deep learning approaches, including MobileNets [1] and SSD [2], though lightweight, still require computational resources not 
always feasible in real-time classroom settings. Additionally, while Grad-CAM visualizations [12] improve explainability, 
interpreting these results accurately still requires human expertise. 
Future research could focus on improving model generalization through domain adaptation techniques and incorporating multimodal 
data—such as speech or eye-tracking patterns—for a more holistic dyslexia diagnosis. Developing lightweight models optimized for 
deployment on edge devices (e.g., tablets used in schools) is another avenue worth exploring. Finally, expanding the dataset to 
include diverse languages and scripts, especially low-resource languages, would enhance the model’s applicability across regions 
[11]. 

 
VII. CONCLUSION 

This comparative study offers a critical evaluation of four key machine learning models—MobileNetV2, SSD Lite, Support Vector 
Machines (SVM), and Random Forests—based on existing research data aimed at dyslexia detection. The findings illuminate the 
relative advantages and constraints of each approach, underscoring that the optimal model choice is highly contingent on the specific 
application context [16]. 
MobileNetV2 and SSD Lite emerged as high-performing options for real-time dyslexia detection, particularly in mobile settings. 
Both models demonstrated strong accuracy, ranging between 89% and 94%, while maintaining efficient speed and low memory 
usage [17]. Nonetheless, despite these computational strengths, their limited interpretability may pose challenges for deployment in 
clinical contexts where transparency in model decisions is essential [18], [19]. Conversely, SVM and Random Forest models 
displayed commendable accuracy—SVM at 92% and Random Forest between 94% and 97%—and excel in scenarios requiring high 
interpretability [16]. These attributes make them especially suitable for educational and medical applications where clear, 
explainable outputs are critical. However, both models exhibit slower inference times, particularly when operating on large-scale or 
complex datasets [20]. 
The analysis identifies a distinct trade-off between computational speed and interpretability. While MobileNetV2 and SSD Lite are 
optimized for rapid processing, their opaqueness in decision-making processes can hinder adoption in settings that demand 
transparency [18]. On the other hand, SVM and Random Forests prioritize explainability but at the cost of slower performance. As 
such, model selection should account for both real-time performance demands and the necessity of interpretable outcomes. 
Consideration of computational resources is also crucial; while MobileNetV2 and SSD Lite are resource-efficient, SVM and 
Random Forest require greater computational power when handling extensive data [20]. 
Looking ahead, advancing the field will necessitate the creation of more diverse handwriting datasets, improvements in AI model 
transparency, and adaptations tailored to the distinct characteristics of various writing systems [21]. Developing hybrid approaches 
that integrate the advantages of deep learning models like MobileNetV2 with the interpretability of classical methods such as 
Random Forests may offer a practical compromise [22]. Furthermore, future studies should assess model performance across 
multiple languages and scripts, particularly those with complex orthographies like Arabic and Chinese [21]. Understanding cross-
linguistic variances may enhance both the robustness and generalizability of these models. Ultimately, progress in these areas could 
pave the way for lightweight, interpretable AI systems that support early dyslexia detection, thereby facilitating timely interventions 
and significantly enhancing educational outcomes on a global scale. 
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