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Abstract: Purpose — The increasing integration of artificial intelligence into medical imaging has significantly advanced lung
disease detection using chest X-rays and related modalities. This survey conducts a comprehensive comparative analysis of 12
researchworkspublishedbetween 2021 and 2025, with emphasis on five key studies employing machine learning, deep learning,
and hybrid algorithms for image-based lung disease classification.
Design/methodology/approach—Thereviewexaminesmethodologiesinvolving  segmentation-classification pipelines, attention-
enhanced CNNs, hybrid CNN-ELM architectures, multi-branch deep networks, and fusion models combining handcrafted and
deep features. Datasets used across these studies include NIH ChestX-rayl4, JSRT, MC, LC25000, SIIM-ACR, LIDC-
IDRI,andCOVID-19imagerepositories.Eachalgorithmisanalyzedinterms of preprocessing strategies, model design, evaluation
metrics, computational efficiency, and applicability to different imaging types such as chest X-rays, CT scans, and
histopathologyslides.

Findings — The analysis shows thatnosinglearchitectureperformsbestacrossalltasks;instead, each model demonstrates unique
advantages depending on data modality and clinical objective. Attention-based CNNs excel in feature refinement, hybrid CNN-
ELM models offer lightweight computation, and dual-branch frameworks improve multi-label chest disease detection..
Originality/value — By consolidating state-of-the-art image-based lung disease classification research, this survey highlights
methodological strengths, limitations, and emerging trends. Although key research gaps are identified for future inclusion, the
present review provides a structured foundation for developing more scalable and reliable diagnostic systems.

Keywords: Lung disease classification, Chest X-rays, Deep learning, CNN, Hybrid models, Medical imaging Paper type Review
article

I. INTRODUCTION
Lung diseases such as COVID-19, pneumonia, pulmonary fibrosis, emphysema, edema, consolidation, pleural thickening,
atelectasis, cardiomegaly, lung nodules, masses, infiltration, hernia, effusion, and lung cancer continue to impose a substantial
health burden worldwide. Around the world, respiratory illnesses remain among the leading causes of morbidity and mortality, with
chest radiography and computed tomography (CT) serving as the most widely utilized imaging modalities for early diagnosis and
clinical assessment. However, the interpretation ofmedicalimagesremainschallenging.Theselimitationsoftenresultindiagnostic
variability and reduced accuracy, particularly in high-volume clinical settings.
The emergence of machine learning (ML) and deep learning (DL) has significantlytransformed the field of
medicalimageanalysisbyenablingautomated,data-driveninterpretationofcomplex imaging patterns.
Techniquessuchasconvolutionalneuralnetworks(CNNSs),attention-enhanced  architectures,hybridlearningframeworks,segmentation—
classificationpipelines, transformer-based models, and object-detection systems have demonstrated substantial improvements in
extracting discriminative features and detecting subtle disease signatures from CXR, CT, histopathology, and multimodal scans.
Theseadvancementshavecontributedtofaster diagnosis, improved sensitivity, and greater clinical reliability. Nevertheless, the
performanceof these models remains heavily dependent on dataset size, imagequality,andarchitecturaldesign, creating the need for a
structuredunderstandingofwhichalgorithmsperformbestunderspecific conditions.
Despite the rapid expansion of ML/DL research for lung disease detection, existing survey studies exhibit several notable
limitations. Most prior reviews focus primarily on lung cancer, limiting their applicability across the broader spectrum of thoracic
diseases encountered in clinical practice. Other reviews are constrained to a single imaging modality, typically either CXR or CT,
overlooking the value of multi-modality insights.
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Critically, the literature lacks a unifiedperformancecomparisonthatsystematicallyevaluatesdifferentarchitectural families—ranging
from classical ML models to CNNSs, attention networks, hybrid CNN-ELM frameworks, detection models, and transformer-based
pipelines—across multiple lung diseases and imaging types. With a significant increase in research output between 2021 and 2025,
an updated and consolidated review is required to contextualize these developments and provide clarity regarding the comparative
strengths and limitations of state-of-the-art approaches.

Contributions of This Review

Toaddressthesegaps,thisreviewmakesthefollowingkeycontributions:

1) A comprehensive comparative analysis of 12 recent ML/DL studies (2021-2025) covering a broad spectrum of lung diseases
across CXR, CT, histopathology, and multimodal imaging.

2) A unified summary of all models,detailingpreprocessingstrategies,architecturaldesign, segmentation components, classification
methods, performance metrics, and identified limitations.

3) A structured performance comparison acrossdiversealgorithmfamilies,offeringinsights into how different architectures behave
under varying imaging modalities and disease characteristics.

Il. REVIEW METHODOLOGY

Identification Articles searched from
bibliographic databases (6304)

Excluded Articles published before
2021 (1315)

k.

Articles published between
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Figure 1: Prisma Flow Diagram of the Review
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This review follows a structured methodology inspired by principles of systematic and scoping reviews to ensure transparent,
reproducible, and unbiased selection of relevant studies. The methodology includes database selection,keyword-
drivensearchstrategies,predefinedinclusion and exclusion criteria, a PRISMA-style screening workflow, and a standardized data
extraction process applied to all selected papers.

A. Literature Search Databases

The literature search was conducted primarily across IEEE Xplore, which served as the most significant source of relevant studies
due to its strong emphasis on computer science, medical image processing, and artificial intelligence research. To broaden the
search and minimize publication bias,supplementaryquerieswereperformedusingGoogleScholarandSpringerLink, enabling access to
interdisciplinary and medical imaging—focused research. These three sources collectively ensured coverage of a wide variety of

journals, conference papers, and emerging research preprints relevant to medical image classification.

Tablel:Summary of Literature Survey

Sr. |ArticleTitle-Author Modality  [Architecture |Advantages Disadvantages
No.
1 | MI2A:AMultimodal PET/CT MI2A, a multimodal The cross-attention | High metabolic
Information Interaction informationinteraction  [mechanismexplicitly| activity in certain
Architecture for architecture using models benign lesions
AutomatedDiagnosis U-Net—basedROlextraction, |interactionsbetween introduces
of Lung Nodules a PET-CT imaging encoder,| anatomical and | ambiguity,limiting
Using PET/CT cross-attention multimodal | metabolic features, classification
Imaging - Kai Li, fusion, and alignment improving performance
Tongtong Li, Lei lossfor lung multimodal despitemultimodal
Zhang, Junfeng Mao, noduleclassification. representation fusion.
Xuerong Shi, Zhijun learning.
Yao,LeiFang,BinHu
(2025)
2 | Attention Enhanced CT An attention-enhanced The hybrid design The model is
InceptionNeXt - hybrid deep learning model | effectivelycaptures | evaluated only on
Based Hybrid Deep integrating InceptionNeXt | both fine-grained | CTdataandlimited
Learning Model for blocks with grid and block and global public datasets,
Lung Cancer attention mechanisms, contextual features which may constrain
Detection - combiningCNNsandVision | with high accuracy |  generalization
BurhanettinOzdemir, Transformersforlungcancer | whilemaintaininga | across populations
Emrahaslan detection and subtype lightweight and imaging
,AndishakPacal(2025) classification. parameter count. protocols.

3 | Classification based CT+ A ResNet-based The modified Themodeldepends
deeplearningmodels |Histopathology| classification framework residual design on extensive data
for lung cancer and + CXR (ResNet+) enhanced with | preserves feature | augmentation and
diseaseusingmedical ResNet-D downsampling | informationduring multi-dataset

images - Ahmad and convolutional attention [ downsamplingand | training,whichmay
Chaddad, Jihao Peng, modulesforlungcancerand | improvesfocuson introduce
Yihang Wu (2025) disease classification across| diagnostically modality-specific
multiple imaging modalities.| relevant regions | bias and increase
across diverse | trainingcomplexity.
medical images.
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CNN-O-ELMNet:
Optimized
Lightweight and
Generalized Model for
Lung Disease
Classification and
Severity Assessment
-SaurabhAgarwal,
Yogesh Kumar
Meena,K.V.Arya
(2024)

CXR

CNN-O-ELMNet, a
lightweight hybrid
architecture combining
CNN-based feature
extractionwithanoptimized
Extreme Learning Machine
classifier tuned using the
Imperialistic Competitive
Algorithm for lung disease
classification and severity
assessment.

Themodelachieves
high accuracy with
extremely low
parameter count,
enabling fast
inference and
suitability for
resource-constraine
d clinical
environments.

Theseparationof
featureextraction
andclassification
may limit

end-to-end feature
optimization and
reduceadaptability
to highly complex
disease patterns.

AMulti-ModelDeep
Learning Framework
and
Algorithmsfor
Survival Rate
PredictionofLung

Histopathology

Amulti-modeldeeplearning
framework consisting of
LCSCNet for lung cancer
subtype classification and
LCSANEet for survival rate
prediction, enhanced with

The framework
jointly supports
cancersubtyping and
survival analysis
while
ROI-basedlearning

Theapproachrelies
on high-quality
histopathology

annotations and is
computationally

intensive, limiting

Cancer Subtypes With ROI-based processing and | improves focus on | scalabilityforlarge
Region of VGG16-based feature diagnostically  [whole-slidedatasets.
Interest Using learning. relevant tissue
Histopathology regions.
Imagery -
MattakoyyaAharonu,
Lokeshkumar
Ramasamy (2024)
Lung-RetinaNet: Lung CT Lung-RetinaNet, a The architecture The detection-
Cancer single-stageRetinaNet-based |effectivelyenhances [focused design

DetectionUsinga
RetinaNet With
Multi-ScaleFeature
Fusion and Context
Module - Praveena
K.,S.VenakataSatya
Krishna, R. Dinesh
Kumar, P. Keerthika
(2024)

detector augmented with
multi-scale feature fusion
andadilatedcontextmodule
for early lung tumor
localization and
classification.

small nodule
detection by
integrating
contextual and
multi-scale features
while maintaining
high detection
accuracy.

increases
architectural
complexity and
relies on precise
anchorgeneration,
which may affect
robustness on
heterogeneousCT
datasets.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue | Jan 2026- Available at www.ijraset.com

7 SynergisticAnalysis of CT LCDP system combining | The dual-module The framework
Lung Cancer’s Impact on AdaDenseNetwithtransfer | designenablesjoint | relies on multiple
Cardiovascular Disease learning and Prox-SMOTE | analysis of lung | sequential models,
using ML-Based for lung cancer detection, cancer and increasing system
Techniques - Gunasekaran followed by VGG16-based | cardiovascular risk | complexity and
Raja; Balakumar featureextractionandSVM | while mitigating | limitingend-to-end
Ramkumar;Bhargavi classification for class imbalance in optimization.
Rajendiran; Sahaya Beni cardiovascular disease CT datasets.
Prathiba; Thamodharan prediction.
Arumugam; Kalimuthu
Karuppanan; Lewis
Nkenyereye; Kapal Dev
(2024)
8 TransferLearning CXR A transfer-learning-based | The use of texture- [ Performance is
BasedMulti-Class Lung multi-class lung disease guided sensitivetodataset
Disease classification framework | learningimproves | fusionstrategyand
Prediction Using Textural using fused CXR datasets discrimination handcraftedtexture
Features and textural feature between visually extraction
DerivedFromFusion Data - enhancement via Local similar lung parameters.
Kurupati Sai Charan , Binary Patterns integrated diseases in
Omtri Vijaya Krishna, A. with CNN backbones such [multi-class settings.
K. llavarasi , Palla asEfficientNetandResNet.
Venkata Sai (2024)
9 | ADual-Branch Network CXR Adual-branchdeeplearning | The architecture The pipeline
for framework combining captures both  |introduces additional
DiagnosisofThorax lung-region segmentation localized lung computational
DiseasesfromChest X- using R-1 UNet with global |  pathology and overhead due to
Rays - G. Jignesh and local feature extraction | global contextual explicit lung
Chowdhary, Vivek viatwopre-trainedAlexNet cues, enabling segmentation and
Kanhangad (2022) models followed by effective multi-label Jrecurrent processing,
GRU-based feature diagnosis and increasingtraining
fusionformulti- improved and inference
labelthoraxdisease representation of complexity.
classification. diseases extending
beyond lung
boundaries.
10 A CT A weakly supervised 3D | Themodelreduces | Weaksupervision
Weakly-Supervised deep learning framework | annotation burden may limit
Framework for COVID-19 (DeCoVNet)thatperforms by avoiding localization
Classification and lung segmentation using a | voxel-level lesion | precision,andthe
LesionLocalization From pre-trained U-Net and labeling while still | framework is task-
Chest CT - Xinggang applies a lightweight 3D enabling lesion | specific, restricting
Wang, Xianbo Deng, Qing CNN for COVID-19 localizationandfast | adaptability to
Fu, Jiapei Feng, Hui Ma, classificationandlesion patient-level broader thoracic
Wenyu Liu , Chuansheng localization using patient- inference. diseasedetection.
Zheng (2022) levellabelsonly.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue | Jan 2026- Available at www.ijraset.com

11 STBi-YOLO: A CT STBIi-YOLO, areal-time Thearchitecture The model is
Real-Time Object single-stage lung nodule improves optimizedprimarily
DetectionMethodfor detector derived from small-nodule for detection tasks
Lung Nodule YOLO-v5s, enhanced with | localizationwhile and does not
Recognition-Kehong stochastic-pooling—based maintaining directly address
Liu (2022) spatial pyramid pooling, | real-timeinference disease
bidirectionalfeaturepyramid and reduced classification or
fusion, and EloU loss memory footprint. | clinical staging.
optimization.
12 Detection and CXR A fusion and normalization—| The framework The reliance on
classificationoflung based framework(F-RNN- reduces handcrafted feature
diseases for LSTM) computational engineering and
pneumonia and thatintegratesimagequality | overhead while multiple
Covid-19 using enhancement, adaptive ROl | maintaininghigh |preprocessingstages
machine and deep extraction, handcrafted accuracy by increases
learningtechniques- lung-specific feature focusing on pipelinecomplexity
Shimpy Goyal, Rajiv extraction (HOG, texture, lung-specific and limits full
Singh (2021) intensity, geometric featuresandenables | end-to-endlearning
moments), followed by disease severity scalability.
classification using soft analysis through
computingmethodsandan | ROI-based feature
RNN with LSTM for normalization.
pneumoniaandCOVID-19
detection.

B. Search Keywords

Thesearchstrategyemployedcombinationsofdisease-related,imaging-related,and  technique-specific ~ keywords to  ensure
comprehensive retrieval of ML/DL studies focused on lung-disease prediction from medical images.

Disease terms such as “lung disease,” “pulmonary disease,” “lung cancer,” “COVID-19,” “pneumonia,” “coronavirus,” and
“tuberculosis (TB)” were paired with imaging descriptors including “chest X-ray,” “CT image,” “medical image,”
“radiograph*,”and“CXR.”Thesewere further combined with computational terminology such as “machine learning,” “deep
learning,” “neural network,” “CNN,” *“convolutional neural network,” “U-Net,” *“transfer learning,” ‘“segmentation,”
“classification,” and “ensemble.” Boolean operators (AND/OR) were used to
refineandstructurethequery,ensuringthatonlystudiesapplying ML/DLmethodsto lung-image analysis were retrieved.

This expanded keyword selection was broad enough to capture general-purpose classification pipelines as well as highly specialized
architectures designed for specific lung conditions and imaging modalities.

C. Inclusion Criteria

Studies were included if they met four essential conditions: they were published within the 2021-2025 timeframe, utilized image-
based datasets such as CXR, CT, histopathology, or multimodal scans, implemented machine learning or deep learning models, and
reported quantitative performance metrics that enabled objective comparison. These criteria ensured that the selected studies were
methodologically robust and relevant to modern Al-driven clinical workflows.

D. Exclusion Criteria

To maintain thefocusoncomputationalimagingapproaches,studieswereexcludediftheyrelied solely on clinical or epidemiological
data, lacked an ML/DL component, or used datasets too small to provide meaningfulgeneralization. Papersthatutilizedaudio signals
(e.g.,lungsounds), textual records, or non-imaging modalities were also removed from consideration. Thisfiltering ensured that the
final set of studies aligned strictly with the objectives of evaluating ML/DL algorithms for image-based lung disease prediction.
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E. Data Extraction Process

For each selected study, a structureddataextractionprotocolwasfollowedtoensureconsistency and enable meaningful comparison
between models. Information was collected on the imaging modality employed, the specific datasets used, and
allpreprocessingorsegmentationtechniques  applied.  Particular ~ attention was given to architectural details of
theproposedmodels,including feature extraction strategies and classification mechanisms. Quantitative performance metrics such as
accuracy, AUC, precision, and recall were recordedalongsidethereportedstrengthsand limitations of each approach. Finally, the
clinical application of each model was noted to contextualize whether it addressed single-disease, multi-disease, or severity-based
classification scenarios. This systematic extraction ensured that the comparative evaluation presented later in this review is
grounded in a uniform and comprehensive evidence base.

1. IMAGING MODALITIES FOR LUNG DISEASE DETECTION
Medical imaging serves as the foundation for automated lung disease classification, with different modalities offering unique
diagnostic strengths and challenges. Thestudiesincludedin this review collectively utilize chest X-rays (CXR), computed
tomography(CT),histopathology images, and, in emerging cases, PET/CT multimodal scans. Each modality presents distinct visual
characteristics, level of anatomical detail, and computational requirements, which in turn influence the
architecturalchoicesofmachinelearninganddeeplearningmodels.Understanding these modality-specific properties is essential for
contextualizing model performance and determining the suitability of particular algorithms for various clinical scenarios.

A. ChestX-ray(CXR)

CXR remains the most widely used imaging modality for population-level screening and rapid diagnosis of thoracic diseases. In the
reviewed studies, CXR was employed to detect a wide spectrum of conditions, including COVID-19, pneumonia, tuberculosis,
pneumothorax, atelectasis, cardiomegaly, pleural thickening, emphysema, fibrosis, edema, consolidation, effusion, hernia, nodules,
masses, and infiltration. Despite its broad clinical relevance, CXR presents several inherent challenges that complicate automated
analysis. Images often exhibitlow contrast and overlapping anatomical structures, which obscure subtle pathological patterns and
reduce feature separability. Projection artifacts arising from the 2D representation of complex 3D anatomy further complicate
interpretation. Several studies also highlighted dataset imbalance as a persistent issue, wherein rare disease classes are
underrepresented, leading to biased model predictions and reduced robustness. As a result, CXR-based models often require
architectures capable of extracting both global contextual cues and fine-grained local patterns, motivating the use of dual-branch
networks, attention mechanisms, and hybrid CNNframeworks.

B. ComputedTomography(CT)Scans

CT imaging provides high-resolution, cross-sectional visualization of lung structures and is particularly effective in detecting early-
stage abnormalities such as lung nodules, tumors, and lesions associated with COVID-19 or pneumonia. Several studies in this
review utilized CTscans for identifying adenocarcinoma, squamous cell carcinoma, large-cellcarcinoma,andother malignancies, as
well as for performing lesion segmentation and assessing disease severity.The rich 3D spatial information inherent in CT images
typically requires more sophisticated processingpipelinesthanCXR. Many models first employ segmentation algorithms—such as U-
Net, Residual-Inception U-Net, or thresholding-based region-of-interestextraction—toisolate lung tissue and enhance the visibility
of malignancies. For instance, the ResNet+ study incorporated ROI-based segmentation using region growing, atlas methods, and
thresholding; Lung-RetinaNet combined detection with pseudo-segmentation using context aggregation mechanisms; and STBi-
YOLO integrated BiFPN and spatial pyramid pooling to refine nodule localization. These approaches demonstrate that segmentation
is frequently a prerequisite for achieving reliable CT-based classification, as it reduces noise, improves spatial focus, and supports
the detection of small or irregular lesions.

C. Histopathology Imaging

Histopathological analysis offers microscopic insight into  tissue morphology  and isindispensable
forlungcancersubtypeclassification,includingsubtypessuchasadenocarcinoma, squamous cell carcinoma, and small or large cell
carcinoma. The histopathology studies in this survey relied heavilyonpatch-basedanalysis,inwhichlargewhole-
slideimagesaredividedinto smaller tiles to accommodate computational constraints and improve learning stability.
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Preprocessingstepssuchascolornormalization,nuclearregionsegmentation,and high-resolution tile extraction were used to reduce
staining variability and highlight diagnostically relevantstructures.Duetotheextremelyhighresolutionandstructuralcomplexity of
histopathology images, models often employ deeper CNNs, multi-branch architectures, and attention mechanisms to effectively
capture both cellular and tissue-level patterns. These characteristics make
histopathologyamodalitythatdemandssignificantcomputationalresources but provides highly detailed information crucial for
precision oncology.

D. PET/CTandMultimodallmaging

Although fewer in number, multimodal imaging studies—particularly thoseintegratingPETand CT—represent an emerging direction
in lung disease analysis. Models such as MI2Ademonstrate how fusion of metabolic and anatomical information can support more
accurate diagnosis and disease staging. PET/CT-based learning frameworks require specialized feature fusion strategies to reconcile
the heterogeneous information extracted from different imaging sources. While still a minor component of the literature, these
multimodal systems exemplify advanced ML/DL applications and point toward future developments in comprehensive diagnostic
modeling.

E. ImpactofModalityonModelChoice

Each imaging modality inherently shapes the architectural decisions behind ML/DL model development. CXR, with its limited
contrast and superimposed anatomy, favors lightweight CNNs, dual-branchnetworks,andattention-
basedmechanismsthatjointlycaptureglobalcontext and localized abnormalities. CT imaging, characterized by high-resolution
volumetric detail, benefits from segmentation—classificationpipelines,transformer-enhancedmodels,anddetection architectures such
as YOLO and RetinaNet that excel in precise localization. Histopathology demands architectures capable of handling
extremeimagecomplexity,leadingtotheadoptionof deep CNNs, multi-branch networks, and transformer-based frameworks tailored to
patch-level representations. PET/CT applications further extend model design into multimodal fusion, requiring algorithms capable
of processing diverse information streams simultaneously. These variations highlight how the selection of an appropriate deep
learning method must be aligned with the visual and structural properties of the underlying imaging modality.

V. MACHINE LEARNING TECHNIQUES FOR LUNG DISEASE CLASSIFICATION
A wide range of machine learning and deep learning methodologies have been proposed for automated lung disease analysis,
reflecting the diversity of imaging modalities and diagnostic objectives encountered across clinical workflows. The techniques
identified in the selected studies can be organized into a taxonomy comprising traditional ML classifiers, convolutional neural
network families, segmentation—classification pipelines, attention and transformer-based architectures,hybridandmulti-
branchmodels,detection-orientedframeworks,andmulti-task learning systems. This taxonomy provides a structured foundation for
analyzing the relative strengths and limitations of contemporary computational approaches to lung disease prediction.

A. Traditional Machine Learning Models

Several studies incorporated classical ~machinelearningclassifierseitherasstandalonemodelsor as components  within
hybridframeworks.ApproachessuchasSupportVectorMachines(SVM), Artificial Neural Networks (ANNs), k-Nearest Neighbors
(KNN), and ensemble-based methods were employed in earlier-stage or lightweight classification tasks
involvinghandcraftedfeatures or dimensionally reduced image representations. The use of Extreme Learning Machine (ELM) and its
optimized form, O-ELM often enhanced through optimization strategies such as Imperialist Competitive Algorithm (ICA)
demonstrated the feasibility of fast andcomputationally efficient learning, particularly in hybrid CNN-ELM architectures. Although
traditionalMLmethodsgenerallyunderperformcomparedtodeeplearningmodelson high-dimensional medical images, they remain
relevant for low-resource environments and as complementary components within multi-stage pipelines.

B. CNN-BasedArchitectures

Convolutional neural networks remain the dominant family of models for lung disease classification due to their ability to learn
hierarchical spatial features directly from image data. The reviewed studies
employedarangeof CNNvariants,includingResNet,oftenenhancedwith CBAM attention and ResNet-D improvements, as well as
VGG-based models, MobileNetV2, EfficientNet and EfficientNetVV2L, and modern architecturessuchasinceptionNeXt,ConvNeXt,
and AdaDenseNet.
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Specialized CNN-derived frameworks, including 3D DeCoVNet for volumetric CT analysis and custom CNN blocks integrated into
RetinaNet-based detection systems, were used to extract multi-scale contextual and structural information. These CNN architectures
form the foundation for most classification pipelines due to their strong performance, modularity, and adaptability across CXR, CT,
and histopathology modalities.

C. Segmentation—ClassificationPipelines

Segmentation plays a critical role inimprovingclassificationaccuracy,particularlyforCT-based tasks requiring precise localization of
nodules, tumors, or pathological regions. The studies reviewed employed a variety of segmentation frameworks, most prominently
U-Net and its enhanced variant Residual-Inception U-Net (R-1 U-Net), which combine encoder—decoder structures with improved
multi-scale feature extraction. Other segmentation approaches were built upon
establishedbackbonessuchasVGG,ResNet,ConvNeXt,EfficientNet,MobileNetV2, and AdaDenseNet, enabling region-of-interest
extraction through thresholding, region growing, or patch-based feature isolation. Models such as 3D DeCoVNet further extended
segmentation capabilities to volumetric CT data, capturing spatial continuity across slices. These segmentation—classification
pipelines have shown particular effectiveness in early-stage lung cancer detection and COVID-19 lesion localization.

D. Attention andTransformer-BasedModels

Recent studies have incorporated attention mechanisms to enhance feature refinement and improve the sensitivity of models to
subtle pathologicalcues.Notableattentionmodulesinclude Convolutional Block Attention Module (CBAM), Multi-Head Self-
Attention (MHSA), and the Cross-Modal Attention Module (CAME), which were employed to selectively emphasize
diagnosticallyrelevant regions in both unimodal and multimodal learning contexts.Transformer-based architectures such as the
Vision Transformer (ViT) and hybrid CNN-VIT modelswereusedinstudiesrequiringlong-
rangedependencymodelingandricherglobalcontext integration,especiallyinhistopathologyandmulti-label CXRclassification. These
attention-driven architectures demonstrate improved localization strength and robustness, particularly in datasets affected by class
imbalance or noisy imaging conditions.

E. HybridandMulti-BranchArchitectures

Several studies proposed hybrid models that combine complementary learning strategies to enhance classification performance.
Frameworks such as CNN-O-ELMNet, which integrates CNN-based feature extraction with the fast-learning capability of
optimized ELM classifiers, illustrated the advantages of hybridization for computational efficiency. Multi-branch architectures such
as dual-branch AlexNet enhanced with GRUs, multi-scale fusion networks, and patch-based convolutional imaging extractors
(PCIE) were used to aggregate information across different spatial resolutions, feature channels, or imaging modalities. Additional
componentssuchasBiFPN(BidirectionalFeaturePyramidNetwork)enabledimproved multi-scale fusion and contributed to more
accurate  detection of small nodules and diffuse  abnormalities. These hybrid methods demonstrate
strongadaptabilityacrosstasksrequiringboth global and localized reasoning.

F. Detection-OrientedModels

Detection-focused models constituted an important subset of the reviewed approaches, particularly for tasks involving
noduleortumorlocalization.ArchitecturessuchasSTBi-YOLO, built upon YOLOv5s with BiFPN and stochastic-pooling—based
spatial pyramid pooling enhancements, showed improvements in sensitivity for small lesion detection. Similarly, RetinaNet-based
Lung-RetinaNet, incorporating a ResNet101 backbone with custom CNN context blocks, demonstrated strong performance in
identifying pulmonary nodules and lung tumors. These detection-oriented models leveragedone-stageandtwo-
stagedetectionparadigms to simultaneously identify and classify pathological regions, offering advantages for clinical workflows
where localization is as critical as classification.

G. Multi-Task Learning Models

Some studies extended beyond single-task classification by incorporating multi-task learning
objectives. Theseincludedframeworkscapableofperformingsubtypeclassificationalongside survival analysis, simultaneous prediction
of lung cancer and cardiovascular disease indicators, and multi-label classification of diverse thoracic abnormalities in CXR images.
Multi-task approaches enable sharedrepresentationlearningacrossrelatedtasks,oftenimprovingefficiency and generalizability while
providing richer diagnostic insights. Their presence among recent studies highlights a growing trend toward unified diagnostic
systems capable of supporting complex clinical decision-making.
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V. DETAILED REVIEW OF THE 12 SELECTED STUDIES

This section summarizes the twelve studies included in this review, organized by imaging modality to emphasize how algorithmic
choices  dependoninputdatacharacteristicsandclinical ~ tasks. The works spanchestradiography, computedtomography,
histopathology,andmultimodal PET/CT, and collectively employ a broad set of machine learning tools ranging from classical
classifiers and optimized extreme learning machines to convolutional backbones, attention modules, transformer hybrids, and
object-detection frameworks. For each modality, the subsequent subsections present concise descriptions of the principal proposed
models andnotable comparative baselines, typical preprocessing/segmentation patterns, and the principal strengths and limitations
reported by the authors.

A. CXR-basedApproaches
Table2:ComparisonofdifferentCXRbasedapproaches

Architecture Overview [DatasetsUsed Diseases Strengths Limitations
Identified
F-RNN-LSTM C19RD COVID-19, | Verylow computational | Requires handcrafted
framework: image (COVID-19,viral viral cost, features, not end-to-
enhancement — ROI [ pneumonia, normal), | pneumonia, stableaccuracy,robust | end DL; performance
extraction—extract36 CXIP (bacterial bacterial ROI extraction, high dependsonROI
handcrafted features pneumonia, viral pneumonia, accuracy (=95%), segmentation quality.
(HOG, GLCM, pneumonia, normal) normal supports severity analysis.
intensity, geometric
moments) —
normalization —
RNN+LSTMclassifier.
Dual-Branch Network: JSRT, 14 thorax Strong segmentation Segmentationmodel
Global + Local branches | Montgomery (MC) |diseases (hernia,| accuracy(=98-99%). very heavy (=140M
with pre- for segmentation;NIH| pneumonia, Best mean AUC parameters).
trainedAlexNet— feature| ChestXrayl4 for 14- |fibrosis, edema,| (0.842)outperforming Inferencetime
sequences class thorax disease | cardiomegaly, CRAL, CheXGCN, ~9.53sec.Limited in
processedbyResidual classification. effusion,etc.) | LLAGnet. Learns both | difficult cases (low-
GRU— concatenation global + lung-specific contrast images,
— final sigmoid local features; captures [missing lung regions).
classifier.UsesR-I long-range
U-Netforsegmentation dependenciesviaGRU.

ResNet+(ResNet-D+ Includes Pneumonia, Attention modules Slightly higher
CBAM) integrated into ChestXrayCXR Normal(CXR | improvefeaturefocus; inference time;
ResNet50/101: Improves | dataset (Pneumonia only) ResNet-D reduces feature| performance declines

on highly
unbalanceddatasets;
limited disease classes
in CXR evaluation.

loss; better generalization;
improved AUC on CXR
(0.960 for
ResNet50+).

feature
extractionviaattention and
modified downsampling;
end-to-endCNN classifier.

vs Normal), along
with other
non-CXRdatasets.
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CNN-O-ELMNet: CXRdatasets: Pneumothora x, | Extremelylightweight; Sensitivetodataset
EfficientNetv2L CNN SIIM-ACR Tuberculosis, high CXR accuracies imbalance;
forfeatureextraction— (pneumothorax), COVID-19 (TB: 98.2%, P vs NP: interpretability
Global AveragePooling RehmanTBdataset severity, 84.69%, COVID limitations;
—  Optimized ELM| (TB vs Normal), Normal. severity: 96.2%); strong |performance drops on
classifierusinglCA. Brixia COVID-19 generalization small or imbalanced
Lightweight, only CXR severity dataset. andlowcomputational datasets; requires
~2481trainableparams. cost; suitable for preprocessing like
low-resourcedevices. SMOTE for class
balance.
Hybrid Transfer Learning [Rdatasetwith 4 COVID-19, Fusion captures both Increasedfeature
Model: Extract features [classes: COVID-19, Pneumonia, [globalCNNfeatures+ local| dimensionality; more
using VGG16, AlexNet, Pneumonia,Lung Lung Opacity, [texture patterns; improved| computationally
ResNet50 — extract  [Opacity,Normal. Normal. multi-class separation; |expensive than single-
texturalfeatures(HOG, high accuracy compared model
LBP, GLCM) — to individual CNNs. transferlearning;
concatenate(fusion)— depends on
final classifier for multi- handcrafted features.
class CXR disease
detection.

B. F-RNN-LSTM(Proposed model)

The F-RNN-LSTM study proposes a sequential deep network tailored for temporal or ordered CXR feature streams, integrating
recurrent neural network constructs with long short-term memory units to capture progression-relevant patterns. The model employs
an RNN front end thataggregatesspatialfeaturesextractedbyCNNcomparators(ResNet23,ResNeXt-50,VGG16, DenseNet variants),
and utilizes an LSTM module to modelhigher-orderdependenciesthatmay correspond to disease progression or severity markers.
Evaluated primarily on COVID-19 and viral/bacterial pneumonia cases, the approach emphasizes improved sensitivity to temporal-
like feature relations and robustness to variable radiographic presentation; however, its reliance on sequential framing ofsingle-
imageinputsconstrainsdirectinterpretationandnecessitatescareful preprocessing to align image-derived feature sequences.

C. Dual-Branch Network (Global + Local) with R-1 U-Net segmentation

The Dual-Branch  architecture combines a global branch  operating on  whole-chest imagerywithalung-
focusedlocalbranchthatconsumessegmentedlungregionsproducedbya Residual-Inception U-Net (R-1 U-Net). Both branches leverage
pre-trained AlexNet backbones followed by residual GRU stacks to aggregate contextual and localized representations; fused
outputs are subsequently processed for multi-label classification across the 14 thoracicconditions in ChestXrayl4. This design
explicitly addresses the trade-off between global contextual cues and lesion-specific detail, improving detection of pathologies
thatmanifestboth as focal lesions and as diffuse changes. While effective at leveraging complementary information, the model’s
multi-stage pipeline increases computational overhead and requires quality segmentation masks for optimal performance.

D. ResNet+ (Attention-enhanced ResNet50/101)

ResNet+ augments ResNet backbones with Convolutional Block Attention Modules (CBAM) and ResNet-D style modifications to
enhance channel and spatial attention while preserving residual learningbenefits.AppliedtoCXRdatasetsforpneumoniaandCOVID-
19classification, this attention-augmented ResNet emphasizes refined feature maps that better localize subtle radiographic markers.
The architecture is straightforward to adapt from standard ResNet checkpoints and exhibits strong generalization in multi-class
settings, though it remains computationally intensive and can be sensitive to data imbalance without explicit calibration strategies.

E. CNN-O-ELMNet (EfficientNetV2L + Optimized ELM)
CNN-O-ELMNet adopts a hybrid design in which EfficientNetVV2L servesasapowerfulfeature extractor and an Optimized Extreme
Learning Machine (O-ELM), with parameters tuned by an Imperialist
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CompetitiveAlgorithm,performsthefinalclassification. Thisdivisionoflaboryields a lightweight classifier with rapid training and low
inference cost relative to fully end-to-end deep networks. Applied to tasks including pneumothorax detection, tuberculosis
screening, and COVID-19 severity assessment across diverse CXR datasets (SIIM-ACR, Rehman TB, Brixia), CNN-O-ELMNet
demonstrates notable computational efficiency and practical suitability forlow-resource settings;
itslimitationsincludepotentialsensitivitytofeaturedistributionshiftsand the need for careful feature normalization prior to O-ELM
classification.

F. Transfer-Learning+TexturalFeatureFusion

This hybridapproachfusesdeeprepresentationsfromtransfer-learned CNNbackbones(VGG16, AlexNet, ResNet50) with handcrafted
textural descriptors (LBP, GLCM, HOG, Haralick), concatenating multi-level features before classification. The fusion is motivated
by the complementary nature of deep semantic features and classic texture statistics, improving discrimination among COVID-19,
pneumonia, lung opacity, and normal classes. The method is particularlyeffective = whendatasetsizes
aremoderateandtexturecuesarediagnostically relevant,butitsperformancedependsonconsistentpreprocessingandcanbehamperedby
heterogeneity in radiographic acquisition protocols.

G. CT-basedApproaches
Table3:ComparisonofdifferentCTbasedapproaches

LArchitectureOverview DatasetsUsed Diseases Identified |Strengths Limitations
DeCoVNet:lightweight3D CT scans COVID-19 High ROC AUC Dataset from single
CNN taking CT volume + fromUnion (positive vs (0.959),PR AUC center; limited

(0.975).Requiresno
lesion annotations.

diseasediversity(no
CAP). UNet masks

lung mask — 3D stem — two
3D ResBlocks — progressive

Hospital, Wuhan| negative),with

lesion localization.

classifier. Fast inference (~1.93 imperfect; lung
Weakly-supervised lesion sec/scan). segmentationignores
mappingviaCAM+3DCC. Strong temporal info. Small
sensitivity/specificity | lesions sometimes

>0.9 at optimal points.

missed (false
negatives).

adaptive anchors; one-stage

CT tumor detector

(one-stage); robust
multi-scalefeatures

Hybrid CNN + ViT model IQ-OTH/NC Lung cancer Veryhighaccuracy, Generalizability
integrating InceptionNeXt CD (Malign, [(benign/ malignant)| lightweight(18.1M limited because
blocks, Grid Attention, Benign, Normal) + subtypes params), strong global| datasets are region-
BlockAttention,andHybrid &Chest CT (adenocarcinoma, + local feature specific;
Blocks for multi-scale feature | (Adenocarcino | squamous cell, |capture, robust across| reliesonlyonCT (no
extraction. ma, Large Cell, large-cell). datasets. multimodal data).
Squamous
Cell,Normal).
Lung-RetinaNet:Modified |LIDC-IDRI, Lung tumors Excellent tiny-tumor | Performance reduces
RetinaNet + ResNet101  [imbaCT Dataset (benign vs localization; very on
backbone; multi-scale feature malignant),lung highaccuracy;fast low-resolution CT;
fusion; dilated context block; nodules inference sensitive to

clutter/noise; long
trainingtime(single
GPU); currently
binaryclassification
only
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STBIi-YOLO: Modified LUNAL16CT Lung nodules Real-timedetection; | Noclassificationof
YOLO-v5s with Stochastic- Dataset (malignant/ benign |accuracy 96.1%; very [ nodulemalignancy;
Pooling SPP, BiFPNmulti- not differentiated). | high recall 93.3%; 4% | purely detection.
scalefusion, smaller than YOLO- | Slightlyslowerthan
andEloUloss.Designedfor v5; significantly better] YOLO-v5s; relies
small-target detection (tiny small-nodule detection.| heavily on bounding-
nodules) in CT. box quality.
LCDP System: AdaDenseNet | LUNALG, 1Q- Lung cancer Veryhighaccuracy: Nosegmentation—
(DenseNet-121TL)+ OTH/NC CD | (cancerous vs non- 98.28% (lung harder small-tumor
Prox-SMOTE for lung (cancerous& cancerous); cancer) & 91.62% delineation;
cancerdetection;VGG-16 [normal CT), and| Cardiovascular (CVD).Solvesclass | CT-onlysystem(no
feature extraction + SVM aCVvDCT disease (CVD+ vs |imbalance with Prox- [ multimodalmedical
classifier for CVD dataset CVD-). SMOTE.Uses TL for data); dataset
prediction.NoexplicitCT efficiency; strong imbalance requires
segmentation. generalization. synthetic
oversampling; limited
subtype classification.
ResNet50+ / ResNet101+ [IQ-OTH/NC CD|Lungcancer (benign| High accuracy on CT | No segmentation; CT
using CBAM + ResNet-D. CT vs malignantvs images; slice-level only (not
End-to-end CT classifier dataset; normal), COVID- | attentionenhances volumetric 3D);
withattentionandimproved COVIDx-CT 19, featureextraction; performance
downsampling. dataset. pneumonia. dataaugmentation decreasesonhighly
mitigates imbalance; imbalanced large
lower computation datasets
cost than original (COVIDx-CT).
ResNet.

H. DeCoVNet(3DCNNwithsegmentationpre-processing)

DeCoVNet is a volumetric 3D CNN designed for binary COVID-19 detection from chest CT. The pipeline incorporates a pretrained
2D U-Net for Ilung region segmentation followed by unsupervisedmaskgenerationand3Dconnected-componentfusion;
segmentedvolumesarethen analyzed by DeCoVNet variants to produce slice- and volume-level predictions. The model supports
weakly-supervised lesion localization via Class Activation Mapping and demonstrates efficacy in distinguishing infected from non-
infected lungs while preservingvolumetriccontext. The main limitations are the computational demand of 3D processing and
sensitivity to segmentation quality, particularly in heterogeneous CT acquisitions.

I. Attention-Enhanced InceptionNeXt Hybrid and Ensemble Systems

A broad class of CT studies augment Inception-style or ConvNeXt backbones with attention modules and ensemble mechanisms.
TheprincipalstudyproposesaninceptionNeXt+ViThybrid that combines convolutional feature extraction with transformer-based
global context encoding; comparative baselines include ensembles of ResNet-152, DenseNet-169, EfficientNet-B7, and capsule or
attention-augmented variants (VGG-CapsNet, MFMANet). Segmentation is sometimes omitted in favor of attention-guided feature
refinement, and context modules(pyramid pooling, atrous convolutions) are commonly used to capture multi-scale lesion cues.
These hybrid and ensemble frameworks achieve robust performance acrosstaskssuchasnodule malignancy prediction and multi-class
CT diagnosis, but they trade simplicity for high computational and memory requirements.

J. Lung-RetinaNet (Detection with context aggregation)

Lung-RetinaNet adapts the RetinaNet object-detection paradigm to CT-based tumor and nodule detection by integrating a dilated
context blockandacontextaggregationmodulethatreplacesa standard FPN. The model focuses on bounding-box localization and
classificationofpulmonary lesions, targeting especially tiny lesions that are often missed by standard detectors.
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Unlike segmentation-first pipelines, Lung-RetinaNet implicitly learns localization through detection heads, which simplifies the
pipeline but may providelesspreciselesionmasks;nonetheless,itis well-suited for screening scenarios requiring rapid candidate
localization.

K. STBi-YOLO(YOLOV5s variant with BiFPN & SPP refinements)

STBIi-YOLOextends YOLOV5s with a stochastic-pooling spatial pyramid module and BiFPN for improved multi-scale feature
fusion, enabling more accurate localization of smallnodulesin CT.Themodelforegoesexplicitmaskse gmentationinfavor
ofefficientbounding-boxdetection, achievingfavorabletrade-offsbetweenspeedandsensitivityforearlynoduledetection. STBi-YOLO’s
direct detection approach is advantageous forhigh-throughputscreeningbutmay struggle with pixel-level delineation required for
precise volumetric measurements.

L. AdaDenseNet and LCDP Systems (Classification-focused pipelines)

AdaDenseNet and integrated LCDP systems represent transfer-learning—based classification pipelines that leverage DenseNet
variants and lightweight multi-section CNNs for binary or multi-class lung cancer detection. These models may operate on
preprocessedCTsliceswithout explicit segmentation, relying on learned discriminative filters and classifier backends (e.g., VGG-16
+ SVM components) for downstream prediction. Such systems aretypicallysimplerto deploy and require less annotated
segmentation data, but they benefit from extensive data augmentation to generalize across scanner variability.

M. ResNet+ applied to CT (classification only)

ResNet+ architectures (ResNet50+/ResNet101+ with CBAM andResNet-Dmodifications)have been applied directly to CT slice
classification for three-class tasks (normal/benign/malignant) and multi-class COVID/normal/pneumonia settings. These works
typically skip segmentation, instead relying on large-scale slice-level augmentation and attention modules to focus on discriminative
regions. The approach is straightforward and competitive on well-curated CT datasets, but it lacks the spatial specificity that
segmentation or detection frameworks canprovide for precise lesion delineation.

N. Histopathology-basedApproaches
Table4:ComparisonofdifferentHistopathologybasedapproaches

Architecture Overview |DatasetsUsed Diseasesldentified Strengths Limitations
LCSCNet Lung histopathology | Benign,ADC,SCC, Highaccuracy Dataset relatively
(enhancedCNN) for patches(4classes) SCLC & survival | (LCSCNet: 96.55%); | small; generalization
subtype classification; | +TCGA (genomic | outcomeprediction. | ROI-basedsurvival unclear; no GAN
LCSANet +survivaldata). improves augmentation;SCC &
(VGG16-based)for interpretability; SCLC
survival prediction; colornormalization performancelower
Xception-U-Netfor +segmentation thanADC/Benign.
nuclear segmentation; improves robustness.
ROI extraction +
FCN/U-Netforcell
detection.
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ResNet50+ / LC25000,LCC Adenocarcinoma, Strong feature Performance drop on
ResNet101+with histopathology images Squamous Cell extraction with very large datasets.
ResNet-D only). Carcinoma,Benign CBAM focus Sensitive

toclassimbalance.
Requires significant
trainingtimedespite
optimizations.

mechanisms. e
Higheraccuracyvs
baselineResNets.e

Improved
generalization in
small-medium
datasets.

modifications +

CBAMattention
integrated into

bottlenecklayers.

lungtissue(LUAD,
LUSC, Benign).

O. LCSCNet / LCSANet (Subtype classification and survival prediction)

LCSCNet and LCSANet formatwo-stagehistopathologypipelineforlungcancersubtypingand survival analysis. LCSCNet uses a
patch-based enhanced CNN to classify tissue tiles intobenign, adenocarcinoma, squamous-cell carcinoma, and small-cell categories;
preprocessing commonly includes color normalization and Xception-based U-Net segmentation of nuclear regions to stabilize
stainingvariance.LCSANetaggregatesregion-of-interestfeaturestoperform survival prediction, coupling ROI-level feature extraction
with VGG16-derived encoders and FCN-based cell-detection submodules. This integrated approach leverages tissue
microarchitecture and spatial aggregation to provide both diagnostic subtype labels and prognostic insights; its limitations are
reliance on large, well-annotated histopathology repositories and substantial compute for whole-slide processing.

P. ResNet+ and Hybrid Histopathology Classifiers

Other histopathology studies apply ResNet+ variants (ResNet50+/ResNet101+ with CBAM and ResNet-
D)orhybridCNN-+transformerarchitecturestoL C25000andLCCdatasets. These methods combine attention mechanisms with deep
convolutional backbones and, in somecases, wavelet-based preprocessing to enhance texture representation. Patch-extraction and
feature selection strategies are common to manage giga-pixel whole-slide images. These architectures performstronglyonsubtype
discrimination tasks but require careful tiling strategies and domain-specific augmentation to mitigate staining and scanner-induced
variability.

PET/CTandMultimodal Approach
Table5:PET/CThbasedapproach

Architecture Overview |DatasetsUsed Diseasesldentified Strengths Limitations
MI2Amultimodal  |calPET/CT dataset Lung nodule| Strongmultimodal High metabolic
framework: PCIE for malignancy fusion activity in benign
PET & CT feature classification. (cross-attention + lesions reduces
extraction; alignment loss). specificity. Model
CAME for cross- Outperforms all  |complexityhighdue to
attention baseline CNN/VIT attentionstacking.
fusion;cross-modal encoders. PET+CT Requires large,
alignment loss; complementarycues well-annotated
multipathpooling+ significantly boost PET/CTdatasets.
MLP classifier. accuracy.
Q. MI2A (Multimodal Information Interaction Architecture)
MI2A exemplifies multimodal fusion for benign versus malignant nodule classification
byjointlyencodingPETmetabolicsignalsandCTstructuralinformation. Themodelusesa dual-branch PET-CT Imaging

Encoder(PCIE)toextractmodality-specificfeatures,followedby a Cross-Attention Multimodal Encoder (CAME) employing multihead
cross-attention to align and fuse representations.
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A cross-modal alignment loss further reduces inter-modality discrepancy and a multipath pooling fusion strategy combines global
and local pooled features for final classification. Evaluated on clinical PET/CT cohorts, MI2A demonstrates that complementary
metabolic and anatomical cues reduce misclassification of atypical nodules, albeit at the expense of increased architectural
complexity and the need for paired PET/CT acquisitions.

R. Cross-ModalityObservations

Across modalities, attention-enhanced backbones and segmentation-awarepipelinesconsistently improve localization-
sensitivetasks(e.g.,noduledetection,lesionsegmentation),whereashybrid approaches that combine deep feature extractors
withlightweightclassifiers(e.g.,0-ELM)offer attractive trade-offs for deployment in resource-constrained settings. Detection-
oriented frameworks(RetinaNet,YOLOvariants)performwellforcandidatelocalizationinCT,while transformer hybrids and attention
modules show particular promise for histopathology and complex multi-label CXR classification.

VI. COMPARATIVE ANALYSIS
This section synthesizes quantitativeresultsandmethodologicalcharacteristicsacrossthetwelve selected studies to provide a unified
comparative perspective. Performance was examinedusing accuracy, sensitivity (recall), specificity, and general diagnostic
consistency as reported in the respectivepapers.Inaddition,themodelswereevaluatedalongarchitectural,modality-dependent, and
disease-specific dimensions to highlight strengths, limitations, and clinical relevance. A
consolidatedcomparisontableisprovidedandaccompanyingchartsfurther illustrate model accuracy distribution and modality-wise
performance patterns.

Lung Disease Prediction Architectures and Accuracies
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Figure2:VariousML/DLArchitecturesforlungdiseasepredictionandtheir accuracies

A. Performance Comparison Across Models

Across all studies, reported accuracies generally remained high within well-curated datasets, although inter-dataset variability
significantly ~ affected  generalizability. Sensitivity ~ andspecificity ~ trends  revealthatarchitectures ~ employing
attentionmechanisms,segmentation-driven preprocessing, or hybrid feature extraction achieved superior balance between true
positive and true negative rates. For CXR-based studies, models such as F-RNN-LSTM, CNN-O-ELMNet, and the Transfer-
Learning Fusion model demonstrated strong sensitivity for pneumonia and COVID-19, particularly in datasets with diverse
radiographic patterns.
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CT-based studies—primarily the InceptionNeXt hybrid, Lung-RetinaNet, and STBi-YOLO showed the highest specificity,
reflecting their robustness in distinguishing subtle lesions and nodules. Histopathology models, notably LCSCNet and ResNet50+,
achieved some of the highest accuracies overall due to the fine-grained tissue information present in microscopic patches, while
MI2A remained the top performer in multimodal PET/CT settings by leveraging fused metabolic—structural features. Overall, the
performance trends indicate that architecture type and data modality jointly influence diagnostic reliability more strongly than
model depth alone.

B. Architecture-Level Comparison

Architectural behavior varied substantially across studies. Attention-based models consistently achieved the best feature refinement
due to their ability to suppress irrelevant regions andamplify diagnostically significant cues, resulting in superior sensitivity on both
CXR and CT tasks. CNN-O-ELMNet offered the most computationally lightweight configuration, demonstrating that hybrid CNN-
ELM  approaches can achieve  competitive  accuracy  with  significantly  reduced trainingcost.Detection-
orientedframeworkssuchasYOLOandRetinaNet excelled at lesion localization and exhibited strong performance for nodule
identification, particularly in CT imaging. Dual-branchnetworksincorporatingglobalandlocalfeaturestreams provided distinct
advantages for multi-label CXR tasks by capturing both holistic thoracic patterns and region-specific abnormalities. Transformer-
based hybrids, including ViT-enhanced InceptionNeXt models, offered the most effective global context modeling, improving
classificationconsistencyinsettingswithcomplexspatialdependencies.Segmentation-plus-classification pipelines remained essential
for CT-based lesion analysis, where accurate spatial delineation directly translated into improved downstream performance.
Ensemble and fusion architectures demonstrated the highest robustness across modalities by combining complementary feature
representations.

C. Modality-Based Comparison

Model performance varied markedly by imaging modality.ForCXR,thetop-performingmodels F-RNN-LSTM, CNN-O-ELMNet,
and the Transfer-Learning Fusion architecture excelled at identifying pneumonia, tuberculosis, COVID-19, and other thoracic
conditions despitechallenges posed by overlapping structures and projection artifacts. In CT imaging, advanced architectures such
as the InceptionNeXt hybrid, Lung-RetinaNet, and STBi-YOLO achieved superior performance due to their capacity for multi-scale
feature extraction, enhanced spatial reasoning, and robust lesion detection. Histopathology models, particularly LCSCNet and
ResNet50+, consistently produced the highest classification accuracy across all modalities because of the rich morphological detail
available at microscopic scale. In PET/CT multimodal imaging, MI2A outperformed all other models by integrating metabolic
information from PET withstructural CTfeaturesthroughcross-attentionandmodality-alignmentmechanisms.These findings emphasize
that modality selection inherently determines the most appropriate architectural strategy.

D. Disease-BasedComparison

Disease-level analysis revealed distinct model capabilities. For pneumonia, the strongest performance came from the F-RNN-
LSTMandTransfer-LearningFusionmodels,bothofwhich captured key inflammatory patternsinCXR.COVID-
19detectionfavoredCNN-O-ELMNetand similar transfer-learning pipelines for CXR, while DeCoVNet remained the leading CT-
based model due to its volumetric analysis andlesion-awarerepresentation. Tuberculosisclassification achieved its best results with
CNN-O-ELMNet, reflecting the effectiveness of lightweightmodels when trained on well-structured TB datasets. For lung nodules,
detection-focused architectures such as Lung-RetinaNet and STBi-YOLO delivered the highest sensitivity, particularly in
identifying tiny lesions that traditional CNN classifiers often miss. Lung cancer subtyping was dominated by histopathology
models, with LCSCNet and ResNet50+ demonstrating excellent discrimination of adenocarcinoma, squamous-cell carcinoma,
andsmall-cell carcinoma, attributable totheirmulti-branchandattention-enhancedfeatureextraction designs. Collectively, these results
illustrate that model suitability is tightly coupled with the visual complexity and anatomical expression of each disease.

E. StrengthsandWeaknessesAcrossStudies

A unified assessment of strengths indicates that most models achieved high accuracy on structured datasets and that detection
architectures provided strong lesion localization capabilities. Attention modules significantly improved sensitivity to faint
abnormalities, hybrid ELM-based systems reduced computational overhead, and transformer-based architectures offered superior
global context modeling. Multimodal fusion approaches demonstrated strong diagnostic depth, particularly for complex cancer-
related tasks.
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However, weaknesses persisted across studies. Generalizability remained limited due to heavy reliance on single-center datasets,
and computational demands remained high for transformer models, 3D CNNs, and ensemble architectures. Classical CNN models
frequently missed small nodules,whileclassimbalanceadverselyaffectedsensitivityinmulti-classCXRtasks.In CT-based segmentation
pipelines, performance was highly contingent on mask quality, amplifying error propagation. PET/CT models occasionally
misclassified lesions with atypical SUV behavior, highlighting the difficulty of metabolic-structural alignment. These observations
underscore the necessity of improved dataset diversity, lightweight yet expressive architectures, and robust pre-processing pipelines.

F. UnifiedComparisonTable
Aconsolidatedperformancetablesummarizingaccuracy,sensitivity,specificity,andkeyremarks for all twelve models is provided. This

table presents a unified quantitative reference for evaluating model trends across modalities and diseases.

Table6:ComparativePerformanceAnalysisofdifferentmethodologies

Sr. Model / ArchitecturejgeType Used Accuracy |ensitivity Specificity rformance Remarks
No. (Recall)
1 F-RNN-LSTM CXR 95.04% | Veryhighrecall: 94.21% Outperforms CNN
(C19RD), 96.78% (C19RD), baselines; ~50%
94.31% (C19RD), 98.69% lowercomputational
(CXIP) [95.41% (CXIP) | (CXIP) — | time; robust against
— detects excellent dataset imbalance;
positivecases [abilityto reject stable on large
strongly negatives samples.
2 | Dual-BranchNetwork CXR Mean Mean RECc: MeanSPEc: Achieves highest
(AlexNet + Residual IACCc: 84.13%—very [74.31% — mean AUC = 0.842
GRU + R-1 UNet) 76.7% strong at good at| among all compared
mTable VII) detecting  [filtering models.Outperforms
positives negatives LLAGnet, CRAL,

CheXGCN in 9/14
diseases.Fusesglobal
+ local features
effectively. Some
diseasesreachvery

high AUC (e.g.,
Hernia 0.957,
Emphysema 0.946).
3 |ResNet50+ (CBAM + CXR 87.98% 85%(strongat | Notexplicitly |  Best performing
ResNet-D) detecting listed, but variant for CXR

pneumonia) | implied high | amongtestedmodels;
fromPrecision improved AUC
89.58% (0.960); attention
helps highlight lung
regions.
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CNN-O-ELMNet CXR BvsN: TB: 97.79%, COVID Strong generalization
98.2% Pneumothorax: severity across very different
PVSNP: 96.3%, COVID | specificity: | CXR disease types;
84.69% severity: 96.3% 96.9% lightweight model
COVID outperforms DL
everity: baselines; ICA
96.2% optimization
significantlyimproves
ELM performance;
high TB accuracy
(685/700 correctly
classified).
Transfer Learning CXR ~ 95% High recall High Fusion approach
Fusion Model overall across all four |specificity due|significantlyimproves
(VGG16/AlexNet/Res accuracy classes; to class separability;
Net50 + Textural (fusion  |especiallystrong |discriminativ e reduces
Features) model for COVID-19 |fusion features| misclassification
outperforms | &Pneumonia betweenpneumonia&
individual lung opacity;
CNNs) outperformsstandalone
deep CNNs.
DeCoVNet (3D CNN) CT 90.01% at Up to 0.907 Upto94.6— HighAUC(ROC
eshold 0.5  |(high-sensitivity 91.1% 0.959, PR 0.975).
operating point) | dependingon | VeryhighNPV/(0.982
threshold —excellentatruling
out COVID).
Performs lesion
localization without
annotations;
outperforms2DCIfNet
and traditional ML
methods.
Attention-Enhanced CT 99.54% (1Q- Veryhigh High OutperformsallCNN
InceptionNeXtHybrid OTH), sensitivity specificity and ViT baselines;
(CNN + ViT + 98.41% (99.60% 1Q- (impliedby [ lightweight;excellent
Attention) (Chest CT) OTH,; high precision:| multi-class cancer
98.35% Chest | 99.67% & discrimination.
CT) — model | 98.61%) —
rarely misses | veryfewfalse
malignantcases. | positives.

Lung-RetinaNet CT 99.8% 99.3% - 99.1-98.8%  |OutperformsFaster R-
(modified RetinaNet (LIDC-IDR extremely (high true- | CNN and Mask R-
withfusion+context 1) sensitive to smallfnegative CNN; best

blocks) lesions performance) | tiny-tumordetection;
andmalignant fastestinference(=9s

nodules for CT batch).
Cross-validationon

Simba: 99.3%
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accuracy
9 STBi-YOLO CT 96.1% 93.3% recall - Specificity Outperforms
(YOLO-v5simproved accuracy highly sensitive| notexplicitly [YOLO-v3,YOLO-v4,
with SPP-Stochastic, to small nodules | stated, but [YOLO-v5s, SSD; 4x
BiFPN, EloU) highprecision | smaller model size;
implied  [real-time performance;
throughmAP best
and combinationofspeed
comparisons +accuracyforCT
nodule detection.
10 [AdaDenseNet + Prox- CT 98.28% Lung cancer: | Lungcancer | Strong performance
SMOTE (lung (lung very high recall | specificity across both tasks;
cancer)&VGG-16+ cancer), | (=95%timplied | impliedhigh | Prox-SMOTEgreatly
SVM (CVD) 91.62% from training |from low loss;| improves minority
(CvD curves). CVD: CVvD class recognition;
prediction) 87.1% specificity VGG-16 + SVM
sensitivity. 95.8%. outperforms logistic
regression,RF,KNN,
decision tree; high
AUC (91.5%) for
CVD module.
11 ResNet50+ CT 99.25% 99.07% —very | Veryhigh [ Best-performing CT
high ability to (due to model;improvedover
detectmalignant | extremelylow | ResNet50;attention+
& benign cases | FP rate from | ResNet-D improves
confusion discriminative CT
matrixtrends) features.
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12 | LCSCNet(Enhanced |[Histopathology| 96.55% [ Highsensitivity High Strong on well-
CNN) for subtype overall for Benign & specificity [represented
classification accuracy | ADC (=99%); | impliedby [classes; segmentation-

(percross- | lowersensitivity | strong class- | aided preprocessing
validation) [for SCC &SCLC|wise accuracy,| improves nuclear

(~86-89%) especially regionrecognition;
based on per-| ADC/Benign; model struggles
class accuracies. moderate slightly on harder
specificityfor subtypes.
SCC/SCLC.
13 [ResNet50+ (ResNet-D [ Histopathology | 98.14% | 98.14%(Highly | Notexplicitly | Performs consistently
+ CBAM) sensitive to | given;implied across all
LUAD/LUSC |very high due [histopathologyclasses;
detection) to balanced strong attention-
precision/reca drivenfeature
Il extraction enhances
tumor vs
benigndiscrimination.
14 PA(PCIE+ CAME) PET/CT 91.79% 0.8937-highly | 93.35% — |Best overall
sensitive to | strongability [multimodal
malignant toreject  |performance;
nodules benign cases | cross-attention fusion

> concatenation /
addition/ voting; PET-
onlyperformswell but
PET+CT
achieveshighestF1=
0.8954.

VII. RESEARCH GAPS AND OPEN CHALLENGES
Despite the strong performance demonstrated across the reviewed machine learning and deep learning models, several persistent
gaps and challenges limit their reliability, scalability, and clinical applicability. These limitations arise from dataset constraints,
architectural weaknesses, modality-specific issues, and insufficient clinical validation, collectively highlighting the needfor more
robust and generalizable diagnostic pipelines.
A major limitation across nearly allstudiesisthelackofdemographicdiversityandmulti-center representation, which restricts model
generalizability beyond the original training population. Many datasets also exhibit severe class imbalance, particularly in multi-
disease CXR tasks and early cancerCTdetection,whichbiasesmodelstowardmajorityclassesanddecreasessensitivity for rare but
clinically significant conditions. Furthermore, the absence of standardized imaging protocols across hospitals and scanners
introduces domain shift, making it difficult for models trained on one dataset to perform reliably on others. These dataset constraints
are further exacerbatedbylimitedhigh-qualitypixel-levelannotations,whichimpair segmentation-dependent pipelines and contribute to
inconsistent mask performance in CT-based approaches.
Algorithmically, several challenges remain unresolved. The majority of models displayed poor cross-dataset generalization, even
when achieving strong in-distribution accuracy.Segmentation-dependent CT frameworks suffered from inconsistent mask quality,
making their downstream performance highly sensitive to preprocessing reliability. Models focusing on detection, particularly
classical CNN-based detectors, continued to struggle with small-nodule detection, a task critical for early cancer identification.
CXR-based methods also demonstrated vulnerability to noise, projection artifacts, and
overlappinganatomicalstructures,whichobscure subtle pathological cues and reduce classification robustness. Collectively, these
algorithmicgaps indicate the need for architectures that are both more resilient to real-world variabilityand less dependent on perfect
segmentation or noise-free imaging.
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Clinical adoption challenges further limit practical deployment. Almost none of the reviewed studies incorporatedclinician-in-the-
loopevaluation,clinicalworkflowsimulation,orcalibration for real-world decision thresholds. Model interpretability remained weak
across modalities, offering limited explanation of decision mechanisms for radiologists, which reduces trust and impedes integration
into high-stakes diagnostic settings. Equally absent were robustness assessments against degraded inputs, such as low-dose CT, low-
quality radiographs, or imaging artifacts, all of which occur routinely in hospital environments.

Evaluation practices also varied widely across studies. Reporting of performance metrics was inconsistent, with several works
relying primarily on accuracy without providing sensitivity, specificity, or AUC values that are essential for clinical interpretability.
Few studies reported computational cost, training time, or resource requirements, making it difficult to assess scalability in real-
world deployments. Benchmarking between models was additionally limited by the lack of unified protocols, scarce ablation
studies, and absence of statistical significance testing, reducing the reliability of cross-study comparisons.

Modality-specific challenges also remain prominent. CXR models continue to face the inherent limitations of low contrast,
overlapping structures, and high noise sensitivity. CT-based models areoftentightlycoupledto segmentationquality
andheavilybiasedtowardcancer-focusedtasks, limiting their general-purpose applicability. PET/CT models must contend with
metabolic ambiguities—such as benign lesions exhibiting high SUV values—and suffer from dataset scarcity due to the difficulty of
collecting large, paired PET/CT cohorts. Their reliance on attention-stacked multimodal fusion also increases architectural
complexity and computational demand.

Looking forward, several broader challenges must be addressed to advance the field. There is a growing need for self-supervised
pretraining on large-scalemedicalimagingdatasets,whichcan mitigate data scarcity and improve generalization. The community also
lacks standardized multimodalrepositoriesthatintegrateCXR,CT histopathology,andPET/CTinaharmonized form, restricting the
development of unified diagnostic models. Explainability and trustworthyAl remain essential for clinical acceptance,
requiringinterpretabilitymechanismsthatalignwith radiological reasoning. Furthermore, many high-performing models are
computationally intensive, underscoring the need for lightweight architectures suitable for real hospitals, particularly in resource-
constrained regions.Finally,scalingalgorithmstoreal-worldclinicaluse cases, including diverse patient populations, imaging
protocols, and unpredictable noise conditions, remains an open challenge that current studies have only partially addressed.

VIIl.  FUTURE RESEARCH DIRECTIONS
Although machine learning for lung disease analysis has advanced considerably in recentyears, severalpromisingr
esearchdirectionsremainunderexplored.Emergingtrendssuchas self-supervised learning, transformer-based CAD systems, federated
multi-hospital training, explainable Al, multimodal fusion, and efficient edge-deployable models hold the potential to
substantiallyimprovegeneralizability,clinicaladoption,andreal-worldfeasibility. Thefollowing subsections outline key avenues for
future work derivedfromthelimitationsidentifiedearlierin this review.

A. Self-SupervisedandSemi-SupervisedLearning

The persistence of limited annotations and domain variability, especially across CXR and CT imaging, highlights the need for self-
supervised and semi-supervised approaches that can leverage large quantities of wunlabeled data. Future
CADsystemsshouldprioritizerepresentation learning frameworks capable of capturing invariant features across hospitals, scanner
types,and patient demographics. Pretraining on large-scale unlabeled repositories could mitigate dataset bias and improve robustness
to noisy CXR images that often exhibit low contrast oranatomical overlap. Such strategies are particularly relevant for CT and
PET/CT domains, where obtaining pixel-level annotations is costly and time-consuming.Self-supervisedlearningthereforeremains an
essential pathway toward scalable and generalizable diagnostic models.

B. Transformer-BasedCADSystems

Transformers represent a promising frontier for medical image analysis due to their ability to model long-range dependencies and
capture both global and local cues effectively. Their high accuracy and architectural flexibility make them well-
suitedforcomplexmulti-label CXRtasks, nuanced histopathology patterns, and enhanced CT-based disease characterization. Vision
Transformers  (ViT) and  hybrid  CNN-VIiT  architectures  show  potential  for  robust  multi-disease
prediction,thoughtheirgeneralizabilityremainslimitedwhentrainedonregion-specificdatasets. Future research should explore domain-
adaptive transformer variants with reduced parameter counts and improved pretraining strategies, enabling unified models
capableofhandlingdiverse modalities without prohibitive computational cost.
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C. FederatedLearningforMulti-HospitalData

Federated learning offers an attractive solution todatasetbiasandlimiteddemographicdiversity by enabling collaborative model
trainingacrossinstitutionswithoutsharingrawmedicalimages. Byincorporatingprivacy-preservingprotocols and domainhar
monizationmechanisms, federated frameworks can enhance robustness to variations in imaging protocols while addressing
regulatory constraints surrounding patient data. Future work should focus ondesigningadaptive federated architectures capable of
handling heterogeneous CXR, CT, and PET/CT data while mitigating model drift. Such approaches would significantly advance the
development of lung disease classifiers that perform consistently across multi-hospital environments.

D. ExplainableAlToolsforClinicalUse

For CAD systems to achieve widespread clinical acceptance, they must offer transparent and interpretable decision-making. Future
research should therefore emphasize explainable Al frameworks that provide meaningful visual and quantitative explanations
aligned with radiological reasoning. Heatmap-based interpretations, such as Grad-CAM and attention-driven saliency maps, should
be supplemented with quantitative explanation quality metrics to ensure reliability and interpretive consistency across cases.
Furthermore, improving model decision traceability is essential for radiologists who require clear justification of automated
predictions, especially in high-stakes diagnostic scenarios. Integrating these interpretability tools into PACS and clinical reporting
systems remains a critical step toward real-world deployment.

E. MultimodalFusionFrameworks

As single-modality models often fail to capture the full clinical picture, multimodal fusion represents a pivotal direction for future
CAD research. Combining CXR and CT imaging may enhance triage workflows, while CT-histopathology fusion could enable
more accurate cancer staging and subtype prediction. PET/CT models could be further strengthened by incorporating radiogenomic
features, enabling deeper characterization of tumor behavior. However, such advancements require standardized multimodal
datasets and unified annotation protocols,which are currently lacking. Future work should prioritize developing flexible fusion
architectures capable of integrating heterogeneous data streams without excessive computational overhead.

F. EfficientEdge-DeployableModels

Deployabilityremainsamajorbarriertoclinicaltranslation,particularlyinruraland resource-limited healthcare environments. Future
research should focus on lightweight CNN architectures, model compression techniques such as quantization and pruning, and
knowledge distillation pipelines that transferperformancefromlargetransformermodelstocompactstudent networks. Additionally,
achieving  small-memory  footprints and  real-time inference  capability is  essentialforintegrationin  tool
derradiologyworkstationsandportableimagingdevices.

Edge-deployable CAD systems represent not onlyatechnologicalchallengebutalsoanecessary advancement for equitable global
access to Al-assisted lung disease diagnosis.

IX. CONCLUSION
This review presented a comprehensive comparative analysis of twelve recent machinelearning and deep learning—based studies
(2021-2025) addressing lung disease prediction and classification using image data. By organizing existing work through a clear
algorithmic taxonomy and evaluating models across CXR, CT, histopathology, and PET/CT modalities, the study highlights that no
singlemodelisuniversallyoptimalforalldiseasesandimagingsettings. Instead, performance is strongly influenced by the choice
ofarchitecture,imagingmodality,and diagnostic task.
Attention-enhanced CNNs and hybrid architectures demonstrated consistently strong performance by refining discriminative
features, while detection-oriented models suchas YOLO and RetinaNet proved particularly effective for lesion localization tasks.
CT- and histopathology-based systems achieved the highest reported accuracies overall, benefiting from
richerspatialandmorphologicalinformation,whereasPET/CT fusionmodelsshowedpromisein capturing complementary metabolic and
structural cues.
Despite these advances, the analysis also reveals critical challenges that must be addressedbefore widespread clinical adoption is
feasible. Many studies rely on limited, single-center datasets, leading to generalization and dataset bias issues that restrict real-world
applicability. Disease-level insights indicate that while current models perform well for common conditions such as pneumonia and
COVID-19, detecting small nodules and rare cancer subtypes remains challenging.
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Furthermore, clinical deployment requires greater robustness, interpretability, and validation, as most modelslackclinician-in-the-
loopevaluationandtransparentdecision-making mechanisms. Moving forward, the development of standardized datasets, explainable
and trustworthy Al systems, and computationally efficient models suitable for real hospital environments will be essential. By
consolidating state-of-the-art methodologies, performance trends, and open challenges, this review provides a structured foundation
for future research aimed at building scalable, reliable, and clinically meaningful Al-driven lungdiseasediagnostic systems.
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