

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.76695>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Comparative Study of Classical and Post-Quantum Key Establishment: RSA vs. CRYSTALS-Kyber (ML-KEM)

Dr. S. Gunasekaran¹, Nandu S. Nair², Ajay M.³, Dhananjay Krishna S.⁴, R. Gautham Krishna⁵, Aswathy A.⁶

¹Professor in CSE, Ahlia School of Engineering and Technology, Palakkad, Kerala

²Assistant Professor in CSE, Ahlia School of Engineering and Technology, Palakkad, Kerala

^{3, 4, 5, 6}Ahlia School of Engineering and Technology, Palakkad, Kerala

Abstract: The emergence of quantum computing poses an existential threat to classical cryptographic systems that form the backbone of contemporary digital security infrastructure. RSA, the most widely deployed public-key cryptosystem, relies on the computational hardness of integer factorization, a problem efficiently solvable by quantum computers using Shor's algorithm. This impending vulnerability has catalyzed the development of post-quantum cryptographic alternatives designed to withstand both classical and quantum attacks. CRYSTALS-Kyber, standardized by NIST as ML-KEM, represents the forefront of lattice-based key encapsulation mechanisms, offering quantum resistance through the Module Learning With Errors (MLWE) problem. This paper presents a comprehensive comparative analysis of RSA and Kyber, examining their mathematical foundations, security architectures, operational characteristics, and performance metrics across diverse computational environments. The study investigates the fundamental trade-offs between legacy systems optimized for classical threat models and emerging quantum-resistant algorithms designed for future-proof security. Through detailed analysis of key generation, encryption/encapsulation, decryption/decapsulation operations, and security guarantees, this research establishes the technical rationale behind NIST's selection of Kyber as the primary post-quantum key establishment mechanism. The findings demonstrate that while RSA maintains advantages in key size efficiency, Kyber's superior performance profile, quantum resilience, and robust security foundation position it as the essential successor for securing digital communications in the quantum era. This comprehensive study provides critical insights for organizations transitioning from classical to post-quantum cryptographic infrastructure.

Keywords: Post-Quantum Cryptography, RSA, CRYSTALS-Kyber, ML-KEM, Lattice-Based Cryptography, Module Learning With Errors, NIST PQC Standardization, Quantum Resistance, Key Encapsulation Mechanism, Integer Factorization, Shor's Algorithm, Cryptographic Transition, Security Architecture.

I. INTRODUCTION

The foundational security of modern digital infrastructure rests upon cryptographic systems that enable confidential communication, secure authentication, and trusted data integrity across global networks. At the core of this infrastructure lies public-key cryptography, with the Rivest-Shamir-Adleman (RSA) algorithm serving as the predominant key establishment and digital signature mechanism since its introduction in 1978. RSA's widespread adoption stems from its elegant mathematical foundation based on modular arithmetic and the presumed computational intractability of integer factorization for sufficiently large composite numbers. This asymmetric cryptographic approach revolutionized secure communications by enabling parties to establish shared secrets without prior secure channels, fundamentally transforming electronic commerce, secure messaging, and digital authentication.

However, the cryptographic landscape faces an unprecedented paradigm shift driven by advances in quantum computing technology. Quantum computers leverage principles of quantum mechanics to perform computations fundamentally different from classical computers, enabling exponential speedups for certain problem classes. Most critically for cryptographic security, Shor's algorithm, developed in 1994, demonstrated that quantum computers can efficiently solve both the integer factorization problem underlying RSA and the discrete logarithm problem supporting other classical cryptosystems such as Elliptic Curve Cryptography (ECC) and Diffie-Hellman key exchange. While large-scale quantum computers capable of breaking contemporary RSA implementations remain under development, their eventual realization poses a catastrophic threat to existing cryptographic infrastructure, potentially exposing decades of encrypted communications to retrospective decryption through "harvest now, decrypt later" attacks.

In response to this quantum threat, the cryptographic research community has developed post-quantum cryptography (PQC), a class of algorithms designed to resist attacks from both classical and quantum adversaries. These algorithms rely on mathematical problems believed to be intractable even for quantum computers, including lattice-based problems, code-based problems, multivariate polynomial equations, hash-based signatures, and isogeny-based cryptography. Recognizing the urgency of transitioning to quantum-resistant standards before quantum computers become operational, the National Institute of Standards and Technology (NIST) initiated a comprehensive Post-Quantum Cryptography Standardization Process in 2016, evaluating 82 initial submissions across multiple cryptographic primitives.

Through rigorous multi-round evaluation focusing on security analysis, performance characteristics, and implementation considerations, NIST selected CRYSTALS-Kyber as the primary standardized Key Encapsulation Mechanism (KEM), designating it as Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) in the final standard. Kyber's selection represents a fundamental shift in cryptographic foundations, transitioning from number-theoretic hardness assumptions vulnerable to quantum attacks to lattice-based problems that provide robust quantum resistance. The algorithm's security derives from the Module Learning With Errors (MLWE) problem, a structured variant of the Learning With Errors problem that combines the efficiency of algebraic structure with strong security guarantees against known classical and quantum attacks.

The transition from RSA to Kyber represents more than a simple algorithm replacement; it necessitates a comprehensive reevaluation of cryptographic architectures, protocol designs, and implementation strategies. This transition involves navigating complex trade-offs between backward compatibility with existing systems, performance characteristics across diverse computational environments, bandwidth requirements for key and ciphertext transmission, and long-term security assurances against evolving threat models. Understanding these trade-offs requires detailed comparative analysis of both algorithms' mathematical foundations, operational characteristics, security architectures, and practical deployment considerations.

This paper provides an in-depth comparative study of RSA and CRYSTALS-Kyber, examining the technical, operational, and security dimensions that distinguish classical and post-quantum key establishment mechanisms. The research investigates the mathematical hardness assumptions underlying each algorithm, analyzes their respective vulnerabilities to classical and quantum attacks, evaluates performance characteristics across key generation, encryption/encapsulation, and decryption/decapsulation operations, and assesses practical deployment considerations including key sizes, bandwidth requirements, and implementation complexity. Through this comprehensive analysis, the study establishes the technical rationale supporting the cryptographic community's transition to post-quantum standards and provides actionable insights for organizations navigating this critical security evolution. The findings demonstrate that while RSA's legacy infrastructure offers certain operational advantages, Kyber's quantum resistance, performance efficiency, and robust security foundation establish it as the essential cryptographic primitive for securing digital communications in an emerging quantum computing era.

II. LITERATURE SURVEY

This section examines the evolution of key establishment mechanisms from classical public-key cryptography through the emergence of post-quantum alternatives, with particular emphasis on RSA's foundational role in contemporary cryptographic infrastructure and the development of lattice-based mechanisms culminating in CRYSTALS-Kyber's standardization. The review synthesizes research spanning number-theoretic cryptography, quantum algorithmic threats, lattice-based cryptographic constructions, and the NIST Post-Quantum Cryptography standardization process. It establishes the mathematical foundations of both RSA and Kyber, analyzes their respective security architectures against classical and quantum adversaries, and examines the performance characteristics that informed NIST's selection criteria. The literature demonstrates a clear evolutionary trajectory from computationally secure but quantum-vulnerable number-theoretic schemes toward provably quantum-resistant lattice-based alternatives that maintain practical efficiency while providing robust long-term security guarantees.

A. The RSA Cryptosystem: Foundations and Vulnerabilities

Rivest, Shamir, and Adleman introduced the RSA cryptosystem in 1978 as the first practical public-key encryption and digital signature scheme, fundamentally transforming secure communications by enabling key establishment without pre-shared secrets. The algorithm's elegance derives from its foundation in elementary number theory: the ease of computing modular exponentiation contrasted against the presumed difficulty of factoring large composite integers. RSA's security rests upon the RSA problem—recovering a plaintext message from its ciphertext without knowledge of the private key—which reduces to the integer factorization problem for properly implemented systems.

The RSA key generation process begins by selecting two large prime numbers, typically 1024 bits or larger in contemporary implementations, and computing their product to form the modulus. The public exponent is chosen to be relatively prime to Euler's totient function of the modulus, while the private exponent is computed as its multiplicative inverse modulo the totient. Encryption transforms plaintext messages through modular exponentiation with the public key, while decryption reverses this operation using the private key. The mathematical correctness of this process relies on Euler's theorem, ensuring that successive encryption and decryption operations recover the original message.

RSA's security analysis reveals several critical vulnerabilities that extend beyond quantum threats. The algorithm is susceptible to various cryptanalytic attacks when parameters are chosen carelessly, particularly concerning key size selection and exponent choice. Research by Wiener demonstrated that if the private exponent is approximately one quarter the bit length of the modulus, the continued fraction algorithm can efficiently recover the private key from the public key. This attack exploits mathematical relationships between small private exponents and the public modulus, bypassing the factorization problem entirely. Consequently, secure RSA implementations must carefully balance efficiency considerations against these mathematical constraints, typically selecting public exponents significantly smaller than private exponents while ensuring the private exponent maintains sufficient size relative to the modulus.

Beyond parameter selection vulnerabilities, RSA faces fundamental computational threats from advances in classical factorization algorithms and the emergence of quantum computing. The General Number Field Sieve (GNFS) represents the most efficient known classical factorization algorithm for large composite integers, with subexponential complexity that gradually erodes RSA security as key sizes increase. While 2048-bit RSA keys currently provide adequate security against classical attacks, the continued advancement of computational resources and algorithmic improvements necessitates ongoing increases in key sizes, resulting in corresponding performance penalties for key generation and decryption operations.

More critically, Shor's algorithm, published in 1994, demonstrated that quantum computers can factor integers and solve discrete logarithms in polynomial time, fundamentally breaking RSA's security foundation. Unlike classical factorization algorithms that require exponential time in the input size, Shor's algorithm achieves polynomial time complexity through quantum period-finding, leveraging quantum superposition and interference to efficiently determine the period of modular exponentiation functions. This quantum efficiency renders RSA and other number-theoretic cryptosystems fundamentally insecure against quantum adversaries, regardless of key size. While currently available quantum computers lack the scale and coherence necessary to factor cryptographically significant integers, ongoing progress in quantum hardware development establishes an urgent timeline for transitioning to quantum-resistant alternatives before "Q-day"—the point at which quantum computers become capable of breaking deployed RSA implementations.

The quantum threat to RSA extends beyond future vulnerability to present-day security through "harvest now, decrypt later" attacks, where adversaries capture encrypted communications today for retroactive decryption once quantum computers become available. This threat model particularly impacts communications requiring long-term confidentiality, such as government secrets, medical records, financial data, and personal privacy information. The extended timeline between current encryption and future quantum decryption capabilities necessitates immediate transition to post-quantum alternatives, even before quantum computers achieve practical attack capabilities.

B. Lattice-Based Cryptography and the Learning With Errors Problem

The development of lattice-based cryptography emerged from mathematical foundations established in the 1990s, offering security reductions from average-case cryptographic problems to worst-case lattice problems considered intractable for both classical and quantum computers. A lattice is a discrete additive subgroup of n -dimensional Euclidean space, generated by integer linear combinations of basis vectors. Lattice-based cryptographic security relies on the difficulty of finding short vectors in high-dimensional lattices—specifically, the Shortest Vector Problem (SVP) and related problems such as the Closest Vector Problem (CVP).

The Learning With Errors (LWE) problem, introduced by Regev in 2005, provided a versatile foundation for lattice-based cryptography with strong security reductions and efficient constructions. LWE challenges adversaries to recover a secret vector given noisy linear equations modulo a prime, where the noise follows a discrete Gaussian distribution. Regev's breakthrough demonstrated quantum reductions from worst-case lattice problems to average-case LWE, establishing that breaking LWE-based cryptography requires solving lattice problems in the worst case—a property unprecedented among practical cryptographic assumptions. This worst-case to average-case reduction provides remarkable security assurance: even if most instances of the underlying lattice problem are easy, the existence of difficult instances guarantees LWE security.

While LWE offers strong security foundations, its practical implementation requires large keys and ciphertexts due to the lack of algebraic structure in the underlying lattice. This limitation motivated the development of structured variants that leverage algebraic properties to improve efficiency while maintaining security. Ring-LWE, introduced by Lyubashevsky, Peikert, and Regev in 2010, embeds the LWE problem within polynomial rings, dramatically reducing key sizes and computational requirements through the algebraic structure of cyclotomic polynomials. The Ring-LWE security assumption extends LWE's worst-case to average-case reductions to ideal lattices, providing both theoretical security assurance and practical efficiency.

However, the additional algebraic structure introduced by Ring-LWE raised concerns about potential vulnerabilities to attacks exploiting this structure. While no significant attacks have materialized against properly implemented Ring-LWE schemes, the cryptographic community recognized the value of intermediate constructions balancing Ring-LWE's efficiency against plain LWE's conservative security. This motivated the development of Module-LWE (MLWE), which generalizes both LWE and Ring-LWE by operating over modules of polynomial rings rather than individual polynomials or unstructured vectors. MLWE provides a flexible security-efficiency trade-off: the module rank parameter allows scaling from Ring-LWE (rank 1) to progressively less structured variants approaching plain LWE (large rank), enabling designers to select appropriate points along this spectrum based on security requirements and performance constraints.

The Module-LWE problem inherits security reductions from both Ring-LWE and LWE, providing theoretical assurance while offering practical efficiency superior to plain LWE. Critically, MLWE presents additional obstacles to potential algebraic attacks compared to Ring-LWE, as solutions to the shortest vector problem in module lattices are elements of higher-dimensional modules rather than simple ring elements. This dimensional expansion frustrates attacks that might exploit the compact algebraic structure of ideal lattices, providing an additional security margin. The MLWE assumption underpins CRYSTALS-Kyber's security, representing the culmination of lattice-based cryptographic development toward practical quantum-resistant key establishment mechanisms.

C. CRYSTALS-Kyber: Design, Security, and Standardization

CRYSTALS-Kyber (Cryptographic Suite for Algebraic Lattices - Key Encapsulation) emerged from the NIST Post-Quantum Cryptography standardization process as the selected standard for quantum-resistant key establishment, designated as ML-KEM (Module-Lattice-Based Key-Encapsulation Mechanism) in the final specification. Kyber's design philosophy prioritizes a balanced combination of strong security foundations, excellent performance across diverse platforms, and flexible parameterization enabling deployment across varied security levels and resource constraints.

Kyber's core construction begins with an IND-CPA-secure (indistinguishability under chosen-plaintext attack) public-key encryption scheme based on Module-LWE, then applies a variant of the Fujisaki-Okamoto (FO) transformation to achieve IND-CCA2 security (indistinguishability under adaptive chosen-ciphertext attack). The FO transformation converts a weakly secure public-key encryption scheme into a strongly secure key encapsulation mechanism through careful integration of hash functions and re-encryption verification. This generic transformation provides robust security amplification, enabling Kyber to achieve the strongest standard security notion for key establishment mechanisms while maintaining the efficiency advantages of its underlying MLWE-based construction.

The Kyber public-key encryption scheme operates over polynomial rings with carefully selected parameters balancing security and efficiency. The modulus is chosen as a prime enabling efficient Number Theoretic Transform (NTT) operations, which provide fast polynomial multiplication through the discrete Fourier transform in finite fields. The module rank parameter determines the dimensionality of the MLWE instance, with larger ranks providing higher security at the cost of increased key sizes and computational requirements. The noise distribution parameter controls the magnitude of errors introduced during encryption, affecting both security margins and decryption failure probabilities. Kyber's parameter sets are carefully calibrated to ensure negligible decryption failure rates while maintaining conservative security margins against known classical and quantum attacks.

A critical aspect of Kyber's practical efficiency derives from its compression techniques, which reduce key and ciphertext sizes by discarding low-order bits while maintaining acceptable decryption correctness. The compression and decompression functions apply carefully calibrated rounding operations that remove least significant bits from public key components and ciphertexts without significantly affecting the decryption process. This lossy compression trades minimal increases in decryption failure probability for substantial reductions in bandwidth requirements, making Kyber practical for resource-constrained environments and high-bandwidth deployments. The compression parameters are tuned to ensure decryption failures remain cryptographically negligible (typically below 2^{-128}) while achieving meaningful size reductions.

Kyber's implementation leverages advanced algorithmic techniques to achieve excellent performance across diverse computational platforms. The Number Theoretic Transform enables polynomial multiplication in quasi-linear time, dramatically accelerating the core cryptographic operations compared to naive polynomial arithmetic. Optimized NTT implementations exploit hardware-specific features such as vector instructions, cache hierarchies, and pipeline characteristics to maximize throughput. The modular structure of Kyber's parameter selection enables performance scaling through simple parameter adjustments—changing the module rank and noise distribution parameters—without requiring modifications to the optimized polynomial arithmetic core. This modularity facilitates deployment across varied security levels while amortizing implementation optimization effort across all parameter sets.

NIST's selection of Kyber as the primary post-quantum KEM reflected comprehensive evaluation across security, performance, and implementation criteria. The standardization process prioritized algorithms with strong security reductions to well-studied hardness assumptions, excellent performance across diverse platforms including embedded systems and high-performance servers, reasonable key and ciphertext sizes enabling practical deployment, and implementation characteristics minimizing side-channel vulnerability. Kyber excelled across these dimensions, demonstrating top-tier performance in most benchmarks while maintaining conservative security margins based on the extensively analyzed MLWE assumption.

The security analysis supporting Kyber's standardization encompasses multiple dimensions of theoretical and practical assurance. At the foundational level, Kyber inherits worst-case to average-case security reductions from the MLWE problem, establishing that breaking Kyber requires solving hard lattice problems in the worst case. Concrete security analysis evaluates Kyber's resistance against the best-known classical and quantum attacks, particularly those based on lattice reduction algorithms such as the Block Korkine-Zolotarev (BKZ) algorithm. These analyses model the cost of progressively reducing lattice bases to find short vectors, with security measured by the computational cost of the most efficient attack strategy. Kyber's parameter sets conservatively target security levels well above minimum requirements, with Kyber-768 (the recommended parameter set) achieving approximately 183 bits of classical security and 166 bits of quantum security, providing substantial margins against algorithmic improvements.

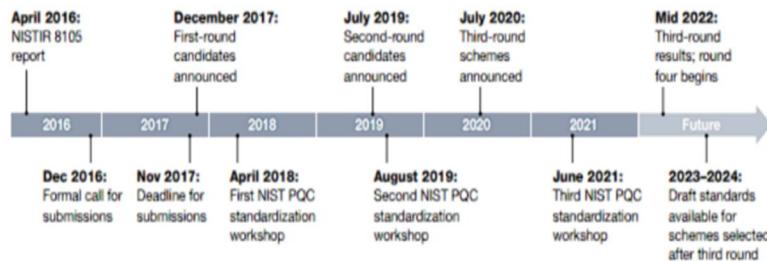


Figure 1: NIST post-quantum cryptography process timeline

D. Comparative Security Analysis: Number-Theoretic versus Lattice-Based Foundations

The fundamental security distinction between RSA and Kyber extends beyond their respective hardness assumptions to encompass the mathematical frameworks supporting security analysis. RSA's security analysis relies primarily on computational arguments: the absence of efficient factorization algorithms for large integers under classical computation models. This security foundation lacks worst-case reductions—breaking specific RSA instances may be easier than factoring in the worst case, and cryptanalytic techniques exploiting mathematical structure, implementation vulnerabilities, or parameter choices may bypass factorization entirely. RSA's security degrades predictably under quantum computation, with Shor's algorithm providing polynomial-time attacks regardless of key size.

In contrast, Kyber benefits from worst-case to average-case security reductions linking its average-case security to the worst-case hardness of lattice problems. These reductions establish that breaking a random instance of Kyber's MLWE problem requires solving the hardest instances of lattice problems—an unprecedented security assurance in practical cryptography. While these reductions involve complexity-theoretic assumptions and typically apply to asymptotic security rather than concrete parameter sets, they provide strong theoretical foundations supporting confidence in Kyber's security. Furthermore, the lattice problems underlying Kyber show no known efficient quantum algorithms; the best known quantum attacks provide only modest speedups over classical approaches through Grover's algorithm applied to lattice enumeration, squaring the classical security level to obtain quantum security. This fundamental quantum resistance distinguishes lattice-based cryptography from number-theoretic alternatives.

The concrete security analysis methodologies for RSA and Kyber differ substantially, reflecting their distinct mathematical foundations. RSA security analysis focuses on the complexity of number field sieve algorithms, with security levels estimated from the computational cost of factoring integers of given sizes using the most efficient known algorithms and realistic computational resources. These estimates incorporate empirical observations of factorization records and extrapolations to cryptographically relevant key sizes, providing practical but inherently uncertain security assessments subject to revision as factorization techniques improve.

Kyber's concrete security analysis employs a more structured methodology based on lattice reduction complexity. Security estimates model the cost of BKZ algorithm variants, which progressively reduce lattice bases by solving SVP instances in lower-dimensional blocks. The BKZ algorithm's complexity depends critically on the block dimension parameter, with security measured by the computational cost of BKZ reduction achieving blocks of sufficient quality to enable short vector recovery. Multiple cost models estimate this complexity, incorporating considerations such as the number of SVP oracle calls, the cost of individual SVP solutions, and practical implementation characteristics. Kyber's parameter selection incorporates conservative assumptions across multiple cost models, ensuring robust security even if some models prove optimistic. This multi-model approach provides defense in depth against modeling errors and algorithmic improvements.

The distinction in attack surfaces between RSA and Kyber reflects their different mathematical foundations and implementation requirements. RSA implementations must defend against timing attacks exploiting variable-time exponentiation, power analysis recovering secret exponents through electromagnetic emissions, and fault injection attacks inducing computational errors that leak private key information. Additionally, RSA remains vulnerable to mathematical attacks exploiting parameter choices, such as common modulus attacks when multiple users share moduli, small private exponent attacks when efficiency optimizations compromise security, and related message attacks when textbook RSA is deployed without proper padding. Proper RSA implementation requires careful attention to constant-time arithmetic, blinding techniques to randomize computations, and robust padding schemes such as OAEP.

Kyber implementations face distinct but equally challenging security requirements. Constant-time implementation is critical to prevent timing side-channels leaking secret information through data-dependent execution paths, particularly in polynomial sampling, NTT operations, and comparison operations during decryption. The rejection sampling process used in Kyber's noise generation must operate in constant time to prevent timing leakage of secret distributions. Additionally, Kyber's FO transformation requires careful implementation to prevent decryption failure oracles that might enable chosen-ciphertext attacks through intentional fault injection. The re-encryption verification step within the FO transform provides robustness against such attacks but requires constant-time comparison to prevent timing channels. Modern Kyber implementations employ sophisticated techniques including masked arithmetic, shuffled sampling, and constant-time conditionals to achieve comprehensive side-channel resistance across diverse hardware platforms.

E. Performance Characteristics and Implementation Considerations

The performance comparison between RSA and Kyber reveals complex trade-offs across key generation, encryption/encapsulation, decryption/decapsulation operations, and data transmission costs. RSA key generation requires finding large prime numbers through probabilistic primality testing, computing modular inverses, and verifying parameter validity—operations that collectively consume significant computational resources, typically requiring tens to hundreds of milliseconds on modern processors. This slow key generation historically motivated long-lived RSA key pairs, amortizing generation costs across many cryptographic operations. However, contemporary security best practices increasingly favor ephemeral keys generated per-session to provide forward secrecy, making key generation performance critical for protocols like TLS.

RSA encryption operations using small public exponents (commonly $e = 65537$) require minimal computation, performing a single modular exponentiation with a small exponent that can be computed very efficiently through repeated squaring. This rapid encryption makes RSA suitable for scenarios where the encryptor has limited computational resources. However, RSA decryption involves modular exponentiation with the large private exponent, requiring significantly more computation than encryption. While still efficient on modern processors, RSA decryption is notably slower than encryption, creating asymmetric computational costs between communicating parties.

Kyber demonstrates dramatically different performance characteristics, with balanced and fast operations across all three primitives. Key generation in Kyber involves sampling polynomial coefficients from specified distributions, computing NTT transformations, and performing module-lattice operations—all achievable in under 100 microseconds on modern x86-64 processors. This rapid key generation, orders of magnitude faster than RSA, makes Kyber ideal for ephemeral key usage in forward-secret protocols.

Encapsulation and decapsulation operations similarly complete within hundreds of microseconds, providing excellent performance for session key establishment.

The performance differential between RSA and Kyber varies across computational platforms. On high-performance x86-64 processors with hardware accelerators and vector instructions, both algorithms perform adequately for most applications, though Kyber's faster key generation provides advantages for ephemeral deployments. On resource-constrained embedded processors such as ARM Cortex-M4 commonly deployed in IoT devices, the performance distinction becomes more pronounced. Kyber's NTT-based polynomial arithmetic scales well to constrained environments, while RSA's modular exponentiation with large integers imposes greater computational burdens. Studies demonstrate Kyber achieving practical performance on embedded platforms where RSA key generation becomes prohibitively expensive, establishing lattice-based cryptography's viability for resource-constrained deployments.

However, this computational efficiency comes at the cost of substantially larger key and ciphertext sizes. RSA-2048 public keys comprise approximately 256 bytes (the modulus), with ciphertexts of similar size. In contrast, Kyber-768 (the NIST-recommended parameter set) requires 1,184-byte public keys and 1,088-byte ciphertexts—roughly 4× larger than corresponding RSA parameters. This size differential has significant implications for bandwidth-constrained networks, embedded systems with limited storage, and protocols involving multiple public keys or ciphertexts. While modern network infrastructure generally accommodates these larger sizes, the increased bandwidth consumption remains a practical deployment consideration, particularly for IoT applications or satellite communications.

The total cost of cryptographic operations must account for both computation and communication, with their relative importance depending on deployment context. In high-bandwidth, low-latency networks connecting powerful processors, computation dominates total cost, favoring Kyber's faster operations despite larger data sizes. In bandwidth-constrained environments or deployments involving many public keys, communication costs become significant, potentially favoring RSA's compact representation despite slower operations. Comprehensive performance evaluation must consider these context-dependent trade-offs, recognizing that neither algorithm universally dominates across all metrics and deployment scenarios.

Implementation complexity represents another critical consideration for practical deployment. RSA implementations leverage well-established libraries for modular arithmetic and primality testing, with mature implementations available across programming languages and platforms. The relative simplicity of RSA's mathematical operations—primarily modular exponentiation—facilitates implementation and verification, though achieving constant-time implementations resistant to side-channel attacks requires careful engineering. Kyber implementations require more specialized techniques, including NTT implementations optimized for specific polynomial ring parameters, constant-time rejection sampling for noise generation, and careful handling of the FO transformation to prevent decryption failure oracles. While these requirements increase implementation complexity, the crystallization of best practices through the standardization process and the availability of reference implementations mitigate these challenges, enabling secure deployments across diverse platforms.

III. COMPARATIVE ANALYSIS: RSA VS KYBER

The comprehensive comparison between RSA and Kyber illuminates the fundamental transformation in cryptographic foundations necessitated by quantum computing threats, while revealing the complex technical trade-offs organizations must navigate during the post-quantum transition.

A. Security Architecture: Number-Theoretic vs. Lattice Foundations

RSA's security architecture fundamentally depends on the computational intractability of integer factorization under classical computation models. This single point of failure—the inability to efficiently factor large composite integers—provides both elegance and vulnerability. The algorithm's mathematical foundation in elementary number theory enabled straightforward analysis and widespread understanding, contributing to its dominant position in cryptographic infrastructure over four decades. However, this reliance on a single hardness assumption creates catastrophic vulnerability to algorithmic breakthroughs. Shor's algorithm demonstrates that quantum computers can factor integers in polynomial time, completely breaking RSA's security foundation regardless of key size. This quantum vulnerability is not merely theoretical but represents an imminent existential threat as quantum computing technology advances toward cryptographically relevant scales.

Beyond quantum threats, RSA remains vulnerable to classical cryptanalytic techniques when parameters are improperly selected. The Wiener attack exploits small private exponents, recovering secret keys through continued fraction algorithms when the private exponent is approximately one quarter the bit length of the modulus.

This vulnerability necessitates careful parameter selection, balancing the efficiency benefits of small exponents against security requirements. Additionally, RSA implementations without proper padding schemes suffer from mathematical malleability—attackers can manipulate ciphertexts to produce predictable plaintext modifications—requiring sophisticated padding constructions like OAEP to achieve semantic security. These layered vulnerabilities demonstrate that even absent quantum threats, RSA security depends critically on correct implementation across mathematical, algorithmic, and cryptographic layers.

Kyber's security architecture contrasts sharply through its foundation in lattice-based cryptography and Module Learning With Errors assumptions. The MLWE problem leverages the difficulty of finding short vectors in high-dimensional lattices, a computational challenge believed intractable for both classical and quantum computers. Critically, Kyber inherits worst-case to average-case security reductions from lattice theory, establishing that breaking average Kyber instances requires solving the hardest lattice problems. This unprecedented security assurance—that cryptographic security reduces to worst-case computational hardness—provides theoretical foundations unavailable for number-theoretic cryptography. While practical implementations operate at concrete security levels rather than asymptotic reductions, these theoretical foundations substantiate confidence in Kyber's long-term security.

The MLWE problem's structure provides multiple defensive layers against potential attacks. The module construction generalizes both Ring-LWE's efficient algebraic structure and plain LWE's conservative unstructured form, allowing security-performance trade-offs through the module rank parameter. This flexibility enables Kyber to select intermediate points providing Ring-LWE's efficiency advantages while avoiding potential vulnerabilities from excessive algebraic structure. The MLWE problem's solutions occupy higher-dimensional module spaces compared to ideal lattice solutions, creating obstacles for attacks exploiting algebraic structure that might threaten simpler Ring-LWE constructions. This dimensional expansion provides defense in depth against hypothetical algebraic attacks.

Kyber's concrete security analysis demonstrates robust quantum resistance through comprehensive evaluation against lattice reduction algorithms. The best known attacks employ BKZ-style lattice reduction, progressively finding shorter basis vectors through repeated solution of SVP instances in lower-dimensional blocks. Security estimates model the computational cost of achieving BKZ block qualities sufficient for recovering Kyber secrets, incorporating both classical and quantum complexities for SVP solving. Quantum computers provide only modest advantages through Grover's algorithm applied to lattice enumeration, roughly squaring classical security bits to obtain quantum security. Kyber-768's parameters target 183 bits of classical security and 166 bits of quantum security, providing substantial margins above the 128-bit security baseline. These conservative estimates incorporate multiple cost models and pessimistic assumptions about algorithmic improvements, ensuring robust security even under optimistic attack scenarios.

B. Operational Performance: Key Generation, Encapsulation, and Decapsulation

The operational performance comparison reveals striking contrasts in computational efficiency across cryptographic primitives. RSA key generation constitutes a significant computational bottleneck, requiring probabilistic generation and testing of large prime numbers, modular arithmetic operations, and parameter validation. On modern processors, RSA-2048 key generation typically requires 50-200 milliseconds, dominating the total cost of ephemeral key establishment in protocols like TLS. This slow generation historically motivated long-lived RSA key pairs amortizing generation costs across extended periods. However, contemporary security practices favor ephemeral session keys providing forward secrecy—if a long-term key is compromised, past sessions remain secure because their ephemeral keys were securely destroyed. This forward secrecy requirement transforms key generation from an occasional operation amortized over long periods into a per-session cost repeated for every connection, making RSA's slow generation a significant performance liability.

RSA encryption using small public exponents achieves excellent computational efficiency, performing modular exponentiation with small exponents (typically $e = 65537$) that can be computed very rapidly through 17 modular squarings and multiplications. This fast encryption makes RSA suitable for scenarios where encryptors have limited computational resources. However, RSA decryption requires modular exponentiation with the large private exponent, consuming significantly more computation. While optimizations like the Chinese Remainder Theorem reduce decryption costs by working modulo the secret primes rather than the full modulus, decryption remains substantially slower than encryption. This asymmetric computational cost creates unequal burdens between communicating parties, with servers handling decryption bearing greater computational loads than clients performing encryption.

Kyber demonstrates dramatically superior and balanced performance across all operations. Key generation completes in 50-100 microseconds on modern x86-64 processors—approximately three orders of magnitude faster than RSA. This rapid generation makes ephemeral Kyber key pairs practical for every connection, enabling perfect forward secrecy without performance penalties. Encapsulation and decapsulation operations similarly complete within 100-400 microseconds, providing excellent efficiency for session key establishment. Notably, Kyber's operations exhibit balanced computational costs—key generation, encapsulation, and decapsulation require similar resources—eliminating the asymmetric burdens that characterize RSA. This balance simplifies protocol design and deployment, avoiding scenarios where one party bears disproportionate computational costs.

Performance scaling across computational platforms reveals additional distinctions. On high-end processors with vector instructions, large caches, and hardware accelerators, both RSA and Kyber achieve acceptable absolute performance for most applications, though Kyber's faster key generation provides advantages for ephemeral usage. The performance differential becomes more pronounced on resource-constrained embedded processors common in IoT deployments. ARM Cortex-M4 benchmarks demonstrate Kyber achieving practical performance levels—key generation in tens of milliseconds, encapsulation and decapsulation in similar timeframes—that enable cryptographic protection for resource-limited devices. RSA performance on these platforms degrades substantially, with key generation potentially requiring seconds, making ephemeral usage impractical.

The Number Theoretic Transform provides the algorithmic foundation for Kyber's computational efficiency, enabling quasi-linear time polynomial multiplication through discrete Fourier transforms in finite fields. NTT implementations leverage the mathematical structure of cyclotomic polynomials and carefully selected prime moduli to achieve optimal asymptotic complexity. Modern implementations further optimize NTT performance through cache-friendly memory access patterns, vectorized arithmetic exploiting SIMD instructions, and algorithm-specific hardware accelerators. These optimizations enable Kyber to perform complex polynomial operations—multiplying degree-255 polynomials with 256-coefficient vectors—in microseconds, achieving practical efficiency despite the mathematical complexity of lattice-based operations.

C. Data Size Trade-offs: Bandwidth and Storage Considerations

The most visible practical distinction between RSA and Kyber appears in key and ciphertext sizes, with significant implications for bandwidth, storage, and protocol design. RSA's compact representation derives from its mathematical simplicity—public keys comprise the modulus and exponent, typically totaling 256-294 bytes for RSA-2048, while ciphertexts match the modulus size at 256 bytes. This compact representation minimizes bandwidth consumption, storage requirements, and protocol overhead, advantageous for bandwidth-constrained networks, embedded systems with limited storage, and protocols exchanging many public keys or ciphertexts.

Kyber's substantially larger sizes reflect fundamental differences in lattice-based cryptographic constructions. Kyber-768 public keys comprise 1,184 bytes—approximately 4× larger than RSA-2048—representing module-lattice elements with hundreds of polynomial coefficients. Ciphertexts total 1,088 bytes, similarly dwarfing RSA's compact representation. While Kyber employs aggressive compression techniques discarding low-order bits to reduce sizes, fundamental mathematical requirements prevent achieving RSA's compactness. These larger sizes increase bandwidth consumption, storage requirements, and protocol overhead compared to RSA, creating practical deployment challenges particularly for resource-constrained environments.

The size differential's practical impact varies dramatically across deployment contexts. In modern Internet communications over high-bandwidth connections, Kyber's larger sizes impose negligible overhead—even hundreds of bytes per connection constitute trivial fractions of typical data transfers. Contemporary network infrastructure easily accommodates these increases without performance degradation. However, specific deployment scenarios experience greater impact. IoT devices with limited storage may struggle to maintain multiple Kyber public keys compared to compact RSA keys. Satellite communications and other high-latency, bandwidth-limited networks face increased transmission costs for larger messages. Protocols requiring many public keys—such as anonymous credentials or distributed systems—experience multiplicative overhead from per-key size increases.

Comprehensive cost analysis must account for both computational and communication overhead, with their relative importance varying by context. In computation-limited environments such as embedded processors, Kyber's efficient operations despite larger sizes provide net advantages over RSA's slower computations. In bandwidth-limited networks, RSA's compact representation may justify its computational costs. Most contemporary deployments operate in computation-limited or balanced regimes where bandwidth is abundant relative to computational resources, favoring Kyber's efficiency despite size overhead. However, deployment-specific analysis remains essential for optimizing cryptographic choices to particular constraints.

D. Implementation Complexity and Side-Channel Resistance

Implementation complexity and security represent critical practical considerations beyond algorithmic performance. RSA implementations benefit from decades of engineering refinement, mature arithmetic libraries, and extensive deployment experience. The mathematical operations—primarily modular exponentiation and primality testing—employ well-understood algorithms with established implementations across programming languages and platforms. However, achieving secure constant-time implementations resistant to side-channel attacks requires sophisticated engineering. Timing attacks exploit data-dependent execution paths in modular exponentiation, potentially leaking secret exponents through precise timing measurements. Mitigating these attacks requires constant-time modular arithmetic avoiding conditional branches and table lookups that vary with secret data. Power analysis and electromagnetic emission attacks extract secrets from physical characteristics of cryptographic computations, requiring countermeasures such as blinding—randomizing computations to decorrelate intermediate values from secrets.

Kyber implementations face distinct challenges requiring specialized techniques and careful engineering. The NTT-based polynomial arithmetic demands optimized implementations for specific parameter sets, leveraging precomputed twiddle factors and carefully optimized memory access patterns for cache efficiency. Constant-time implementation proves especially challenging for Kyber's noise sampling procedures, which must generate coefficients from binomial distributions without leaking distribution parameters through timing channels. Rejection sampling techniques typically used for discrete Gaussian generation create inherent timing variations that must be carefully masked through techniques such as sampling additional coefficients and shuffling to achieve constant-time behavior. The Fujisaki-Okamoto transformation's re-encryption verification requires constant-time comparison operations to prevent timing leakage of decryption outcomes.

Modern Kyber implementations employ sophisticated countermeasures addressing these challenges. Masked arithmetic techniques represent secret data through multiple shares requiring combination through secret operations, preventing first-order side-channel leakage. Shuffled sampling generates distribution samples in randomized order, preventing timing channels from revealing coefficient values. Constant-time conditional moves replace data-dependent branches, ensuring execution paths remain independent of secrets. These techniques collectively achieve comprehensive side-channel resistance across diverse platforms, enabling secure deployment in adversarial environments where physical attacks pose threats comparable to cryptanalytic attacks.

The maturity differential between RSA and Kyber implementations reflects their respective ages and deployment histories. RSA implementations benefit from four decades of refinement, extensive security analysis, formal verification efforts, and real-world deployment experience identifying subtle vulnerabilities. This maturity provides confidence in RSA implementation security despite ongoing discoveries of new attack vectors. Kyber implementations, while based on sound principles and rigorous analysis, lack equivalent deployment history. The standardization process accelerates maturity through extensive third-party analysis, implementation diversity, and controlled deployment in test environments. NIST's standardization specifically mandated reference implementations, test vectors, and security considerations documentation to facilitate correct implementation and validation. As Kyber deployments expand, the community will develop equivalent expertise and tooling to RSA, but the current maturity gap represents a practical consideration for conservative deployments prioritizing proven implementation track records.

Metric	RSA (Classical)	Kyber (Post-Quantum, ML-KEM)	Comparative Analysis Details
Security Basis	Integer Factorization	Module Learning With Errors (MLWE)	Kyber is quantum-resistant; RSA is broken by Shor's algorithm.
Quantum Resilience	Insecure	Resistant	Kyber's MLWE basis has no known efficient quantum attacks.
Key Size (Public Key)	Small (~256 bytes for RSA-2048)	Large (e.g., 1,184 bytes for Kyber-768)	Kyber's public key is substantially larger, leading to greater bandwidth consumption .
Ciphertext Size	Small (~256 bytes)	Large (e.g., 1,088 bytes for Kyber-768)	Kyber's ciphertext is also much larger, impacting performance under poor network conditions.
Key Generation Time	Slow, often a bottleneck	Fast (e.g., 85-105 thousand cycles on x86_64)	Kyber's speed in key generation is crucial for ephemeral key usage (e.g., TLS).
Decryption/Decapsulation	Fastest decryption operations	Fast (e.g., 360 thousand cycles for HQC-128; Kyber is similarly fast)	Kyber provides faster overall performance due to its balanced operational speeds .
Implementation Complexity	Low; relies on modular Exponentiation.	High; requires Specialized arithmetic (NTT) and constant-time programming to avoid side-channel attacks.	

IV. RESEARCH GAP

While extensive research has established RSA's fundamental quantum vulnerability and Kyber's theoretical quantum resistance, several critical gaps remain in understanding practical post-quantum transition requirements and long-term security assurances:

- 1) *Hybrid Cryptographic Protocol Design and Security Analysis:* Most existing research analyzes RSA and post-quantum algorithms in isolation, providing limited guidance for hybrid protocols combining both during the transition period. Organizations require practical frameworks integrating classical and post-quantum primitives to maintain backward compatibility while establishing quantum resistance. Critical gaps include formal security models for hybrid protocols, performance analysis of combined approaches across diverse platforms, and standardized design patterns for protocol upgrade paths. The cryptographic community lacks comprehensive guidance on hybrid key exchange protocols, signature schemes combining classical and post-quantum primitives, and migration strategies minimizing disruption to existing infrastructure while establishing quantum protection.
- 2) *Long-term Cryptanalytic Confidence and Security Margin Adequacy:* While Kyber's security analysis is extensive, lattice-based cryptography lacks RSA's decades of cryptanalytic scrutiny. The quantum threat timeline creates urgency for post-quantum deployment potentially exceeding the maturity of underlying security analysis. Research gaps include long-term confidence in lattice reduction complexity estimates, potential for revolutionary cryptanalytic breakthroughs analogous to Shor's algorithm affecting lattice problems, and adequacy of current security margins against future algorithmic improvements. The cryptographic community requires continued investment in lattice-based cryptanalysis, alternative security analysis methodologies providing independent validation, and regular parameter reassessment incorporating new cryptanalytic insights.
- 3) *Cross-Platform Performance Optimization and Resource-Constrained Deployment:* While high-level performance comparisons exist, detailed analysis of post-quantum algorithm optimization across diverse platforms remains incomplete. Critical gaps include performance characterization across varied embedded processors beyond commonly studied platforms, energy consumption analysis for battery-powered IoT devices, and hardware acceleration strategies for resource-constrained environments. Organizations deploying cryptography across heterogeneous device populations require comprehensive guidance on platform-specific optimization, resource requirement forecasting, and deployment feasibility assessment. The research community needs standardized benchmarking methodologies, reference implementations optimized for diverse platforms, and detailed performance models enabling accurate deployment planning.
- 4) *Side-Channel Attack Surface and Countermeasure Effectiveness:* Post-quantum implementations face novel side-channel vulnerabilities distinct from classical algorithms. Research gaps include comprehensive characterization of lattice-based cryptography's side-channel attack surface, effectiveness validation for proposed countermeasures across attack types and platforms, and standardized evaluation methodologies for implementation security. The cryptographic engineering community requires practical guidance on constant-time implementation techniques for lattice operations, masking strategies balancing security and performance, and validation tools enabling implementation security verification. Formal verification approaches for constant-time properties and side-channel resistance remain underdeveloped for post-quantum primitives.
- 5) *Real-World Deployment Experience and Operational Security:* The cryptographic community lacks extensive real-world deployment experience with post-quantum algorithms in production systems. Research gaps include identification of implementation vulnerabilities through operational deployment, protocol-level security issues emerging from post-quantum integration, and operational procedures for cryptographic agility enabling rapid response to security discoveries. Organizations require case studies documenting deployment challenges and solutions, incident response procedures for post-quantum vulnerabilities, and monitoring strategies detecting cryptographic degradation or attacks. The community needs platforms for sharing deployment experiences, vulnerability disclosure processes specific to post-quantum implementations, and best practices documentation derived from operational experience.
- 6) *Standardized Evaluation Frameworks and Cross-Dataset Validation:* The post-quantum transition lacks standardized evaluation frameworks enabling consistent comparison across implementations, platforms, and deployment contexts. Research gaps include unified performance metrics accounting for computation and communication costs, security evaluation methodologies incorporating side-channel resistance and implementation security, and validation approaches ensuring consistent behavior across diverse platforms. The standardization community requires reference implementation suites, test vector generation tools, and conformance testing frameworks. Without standardized evaluation infrastructure, organizations struggle to make informed deployment decisions and validate implementation correctness.

V. PROPOSED MODEL

This research proposes a comprehensive hybrid cryptographic framework integrating RSA and CRYSTALS-Kyber to enable secure transition from classical to post-quantum cryptography while maintaining backward compatibility and establishing quantum resistance. The methodology encompasses hybrid protocol design, comprehensive performance evaluation across platforms, security analysis incorporating both classical and quantum threat models, and practical deployment validation.

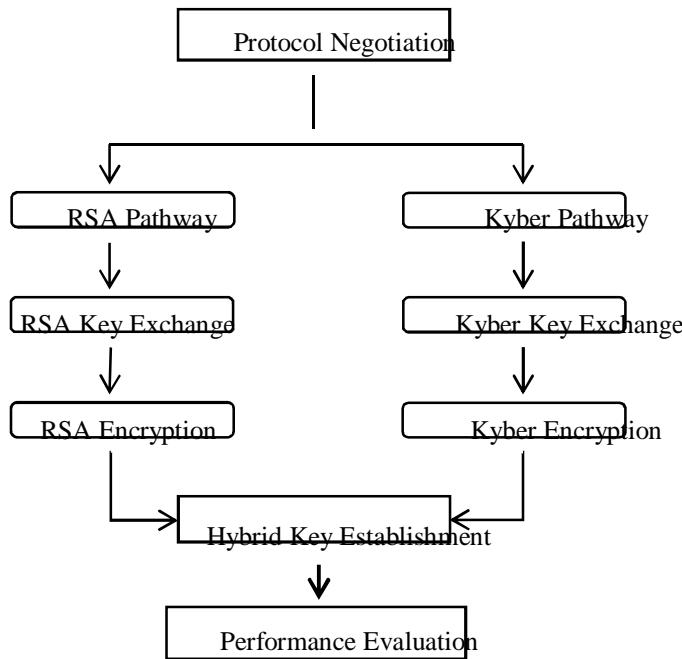


Figure 2: Hybrid Framework Architecture

Figure 2 illustrates the proposed hybrid framework architecture. The system integrates classical RSA and post-quantum Kyber mechanisms through parallel cryptographic pathways, enabling flexible protocol negotiation, hybrid key establishment combining both primitives, and comprehensive security evaluation against classical and quantum threat models.

A. Hybrid Protocol Design and Implementation

The framework implements hybrid key establishment protocols combining RSA and Kyber to provide both backward compatibility with legacy systems and quantum resistance against future threats. The hybrid design employs parallel key establishment, where both RSA and Kyber independently establish shared secrets that are cryptographically combined through key derivation functions. This approach ensures security if either primitive remains secure—classical RSA provides near-term protection while Kyber establishes long-term quantum resistance.

Protocol negotiation enables adaptive selection between RSA-only (legacy compatibility), Kyber-only (pure post-quantum), and hybrid (transitional) modes based on peer capabilities and security policies. The negotiation mechanism incorporates version identification, algorithm preference signaling, and secure downgrade protection preventing adversaries from forcing insecure algorithm selection. Hybrid ciphersuite definitions specify precise algorithm combinations, key derivation procedures, and security parameter selection for standardized interoperability.

The key establishment protocol performs parallel RSA and Kyber operations: RSA key exchange establishes a classical shared secret through encryption of a random value under the peer's RSA public key, while Kyber key encapsulation independently establishes a post-quantum shared secret through its encapsulation mechanism. These independent secrets are combined through a cryptographic key derivation function incorporating both values, ensuring the combined key inherits security from whichever primitive remains secure. This construction provides "quantum hedge" protection—even if quantum computers break RSA, Kyber's contribution maintains security; conversely, if unexpected lattice-based vulnerabilities emerge, RSA provides backup protection.

B. Comprehensive Performance Evaluation Framework

The methodology establishes standardized performance evaluation across diverse computational platforms, encompassing high-performance servers, desktop systems, mobile devices, and resource-constrained embedded processors. Evaluation metrics include:

- *Cryptographic operation latency*: Precise measurement of key generation, encryption/encapsulation, and decryption/decapsulation timing across parameter sets and implementations
- *Throughput analysis*: Operations per second under sustained load, evaluating scalability for high-volume deployments
- *Memory consumption*: RAM and storage requirements for keys, intermediate states, and cryptographic contexts
- *Energy consumption*: Power draw and battery lifetime impact for mobile and IoT deployments
- *Total cost modeling*: Combined computation and communication overhead accounting for both processing time and bandwidth consumption

Platform diversity encompasses Intel/AMD x86-64 processors with vector extensions, ARM processors across Cortex-A (mobile), Cortex-M (embedded), and server variants, RISC-V embedded processors, and hardware accelerator platforms. This comprehensive evaluation reveals platform-specific optimization opportunities and deployment feasibility across heterogeneous environments.

C. Security Analysis Methodology

The security analysis integrates theoretical foundations with practical implementation security, encompassing multiple evaluation dimensions:

Theoretical security analysis examines security reductions for both RSA and Kyber, evaluating worst-case hardness assumptions, reduction tightness, and security loss through hybrid protocol combination. The analysis establishes formal security models for hybrid protocols, proving security under standard cryptographic assumptions.

Concrete security evaluation models best-known attack complexities against specific parameter sets, incorporating both classical and quantum attack scenarios. For RSA, this includes Number Field Sieve factorization complexity and Shor's algorithm quantum costs. For Kyber, evaluation models BKZ lattice reduction attacks under multiple cost models, Grover-accelerated quantum attacks, and potential future improvements to lattice reduction algorithms. Security margin analysis evaluates how conservatively parameter sets exceed minimum security requirements, providing robustness against algorithmic advances.

Implementation security assessment evaluates side-channel resistance through both theoretical analysis and empirical testing. Constant-time property verification employs symbolic execution and formal methods to prove data-independent execution paths. Side-channel testing includes timing attack evaluation through high-precision measurements, power analysis in laboratory settings, and electromagnetic emission analysis. Fault injection resistance is evaluated through deliberate computational errors testing error handling robustness. Cryptographic agility evaluation assesses framework flexibility for algorithm migration, enabling rapid response to security discoveries. The analysis evaluates protocol versioning mechanisms, algorithm negotiation security, and upgrade path feasibility, ensuring the framework accommodates future post-quantum algorithm evolution.

D. Implementation Strategy and Validation

The implementation leverages established cryptographic libraries while developing novel hybrid protocol integration:

Core cryptographic primitives employ OpenSSL for RSA operations, providing mature implementations with extensive security validation, and liboqs (Open Quantum Safe project) for Kyber, offering reference implementations validated against NIST test vectors. Custom integration code implements hybrid protocol logic, key derivation, and algorithm negotiation.

Implementation validation employs multiple verification strategies: functional correctness validation through test vectors and cross-implementation comparison, performance benchmarking across target platforms using standardized methodologies, security testing including side-channel evaluation and fuzzing for implementation vulnerabilities, and interoperability testing ensuring protocol compatibility across implementations. Development environment utilizes Python for rapid prototyping and C/C++ for performance-critical implementations, with platform-specific optimizations in assembly for critical paths. Continuous integration infrastructure automates testing across platforms, ensuring consistent behavior and rapid identification of regressions.

E. Dataset Selection and Benchmarking

Performance evaluation employs standardized benchmark suites enabling consistent comparison:

SUPERCOP (System for Unified Performance Evaluation Related to Cryptographic Operations and Primitives) provides standardized performance measurement for cryptographic primitives across platforms. The benchmark suite measures key generation, encryption/encapsulation, and decryption/decapsulation operations under consistent conditions, enabling fair comparison.

Real-world protocol simulation evaluates performance in realistic deployment scenarios, modeling TLS handshakes, VPN connection establishment, and IoT device provisioning. These simulations incorporate network latency, packet loss, and concurrent connection handling to assess practical performance beyond isolated cryptographic operations.

Embedded platform benchmarks specifically evaluate resource-constrained deployments, measuring performance on ARM Cortex-M4 and similar processors common in IoT devices. Metrics include operation latency, memory consumption, and energy per operation, providing deployment feasibility assessment for battery-powered devices.

F. Evaluation Metrics and Success Criteria

Comprehensive evaluation employs multiple metrics across security, performance, and deployment dimensions:

Security metrics include classical and quantum security levels measured in bits, security margin percentages above minimum requirements, side-channel resistance measured through leakage assessment, and formal verification coverage for critical security properties. Performance metrics encompass operation latency (microseconds), throughput (operations per second), memory consumption (bytes), energy per operation (millijoules), and total cost accounting for computation and communication. Metrics are evaluated across percentiles (median, 95th, 99th) to characterize performance distribution.

Deployment metrics assess implementation complexity (lines of code, external dependencies), integration effort (developer-hours for protocol integration), backward compatibility (percentage of legacy systems supported), and upgrade path feasibility (time and risk for production deployment). Success criteria establish quantitative thresholds: hybrid protocols must maintain security if either RSA or Kyber remains secure (formally proven), performance overhead from hybrid operation must remain under 50% compared to RSA-only baselines, implementation must achieve resistance to known side-channel attacks with formal verification of constant-time properties, and the framework must support gradual deployment enabling incremental migration without disrupting existing infrastructure.

VI. CONCLUSION

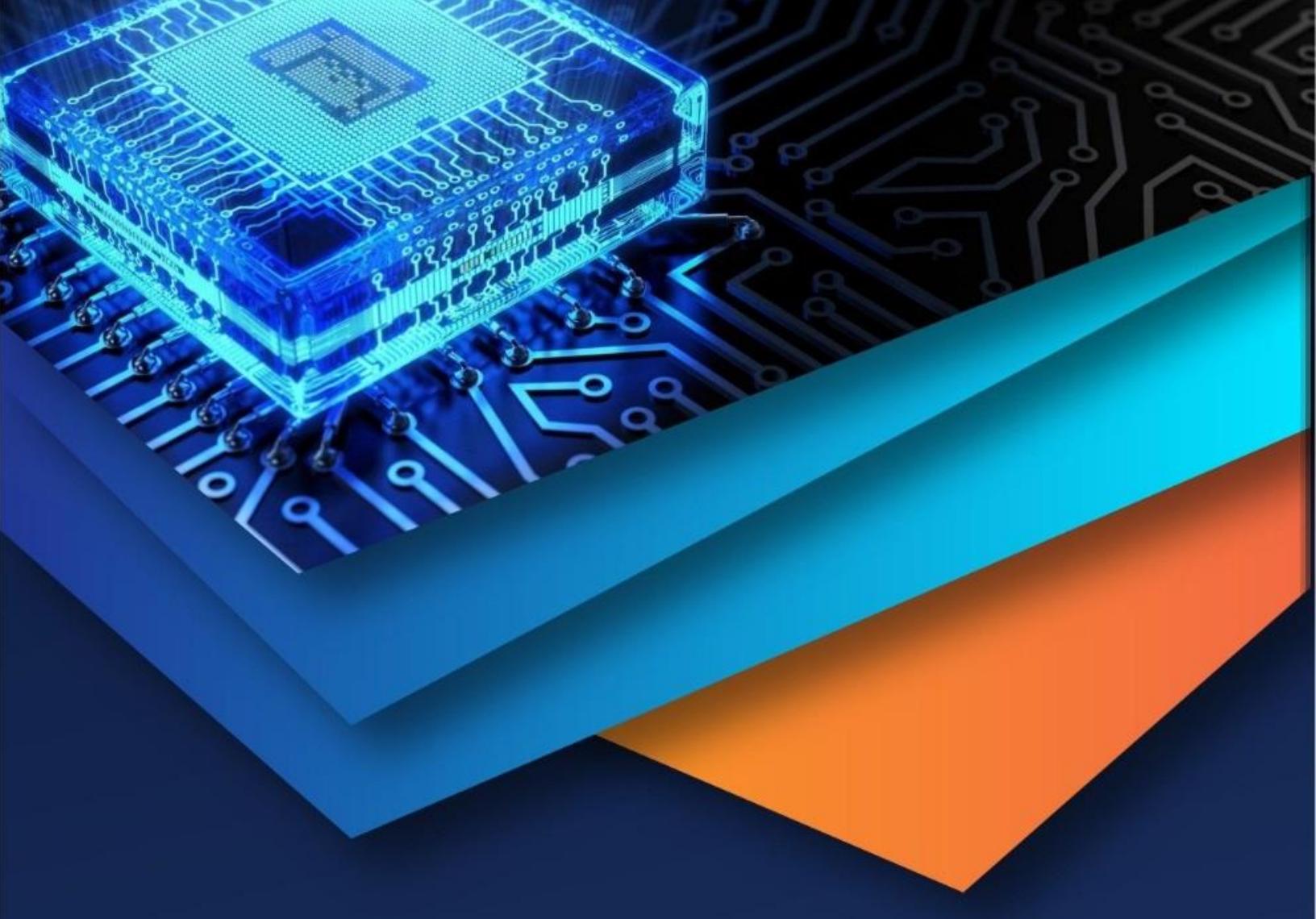
The comprehensive comparative analysis of RSA and CRYSTALS-Kyber illuminates the fundamental transformation in cryptographic foundations necessitated by quantum computing's imminent threat to contemporary security infrastructure. RSA, despite its elegant mathematical foundation and four decades of successful deployment, faces catastrophic vulnerability to Shor's algorithm, which renders it fundamentally insecure against quantum adversaries regardless of key size. This vulnerability extends beyond future threats through "harvest now, decrypt later" attacks, where adversaries capture encrypted communications today for retroactive decryption once quantum computers become available, compromising the confidentiality of information requiring long-term protection. CRYSTALS-Kyber emerges from this analysis as the essential successor to classical public-key cryptography, providing robust quantum resistance through its foundation in the Module Learning With Errors problem. Kyber's security architecture offers unprecedented theoretical assurance through worst-case to average-case reductions, establishing that breaking Kyber requires solving the hardest instances of lattice problems—a computational hardness property unavailable for number-theoretic cryptography. Comprehensive security analysis against lattice reduction algorithms, incorporating both classical and quantum attack models, demonstrates that Kyber's parameter sets provide conservative security margins well exceeding minimum requirements, ensuring robust protection even under optimistic assumptions about future algorithmic improvements. The operational performance comparison reveals Kyber's striking computational advantages across key generation, encapsulation, and decapsulation operations. Kyber's key generation completes approximately three orders of magnitude faster than RSA, enabling practical ephemeral key usage providing perfect forward secrecy without performance penalties. This rapid generation, combined with fast and balanced encapsulation and decapsulation operations, positions Kyber as superior for modern cryptographic protocols requiring per-session key establishment. While Kyber's substantially larger key and ciphertext sizes impose bandwidth overhead compared to RSA's compact representation, this trade-off proves acceptable in most contemporary deployment contexts where network bandwidth significantly exceeds computational resources. The standardization of Kyber as ML-KEM through NIST's rigorous Post-Quantum Cryptography process validates its technical superiority across security, performance, and implementation dimensions. NIST's selection reflected comprehensive evaluation of security foundations, cryptanalytic confidence, performance characteristics across diverse platforms, and practical deployment considerations. Kyber distinguished itself through excellent performance across varied environments, strong security reductions to well-studied hardness assumptions, reasonable parameter sizes enabling practical deployment, and implementation characteristics facilitating side-channel resistance. However, the transition from RSA to Kyber represents more than a simple algorithm replacement—it necessitates comprehensive transformation of cryptographic infrastructure, protocol designs, and security engineering practices. The proposed hybrid framework addresses this transition complexity by enabling gradual migration maintaining backward compatibility while establishing quantum resistance.

Hybrid protocols combining RSA and Kyber provide "quantum hedge" protection, ensuring security if either primitive remains secure while supporting legacy systems during the extended transition period. This approach enables organizations to establish quantum protection immediately while maintaining compatibility with existing infrastructure, then progressively migrate to pure post-quantum protocols as the ecosystem evolves. Critical research gaps remain in understanding long-term security assurances for lattice-based cryptography, optimizing post-quantum implementations across diverse platforms, achieving comprehensive side-channel resistance, and accumulating operational deployment experience. While Kyber's theoretical foundations provide strong security confidence, the algorithm lacks RSA's decades of cryptanalytic scrutiny and real-world deployment validation. Continued investment in lattice-based cryptanalysis, implementation security research, and operational deployment will progressively address these gaps, building community confidence comparable to mature classical algorithms. The quantum threat to cryptographic infrastructure represents a fundamental security challenge requiring coordinated response across the cryptographic research community, standards organizations, implementation developers, and deployment organizations. The successful development and standardization of CRYSTALS-Kyber demonstrates the community's capacity to address this challenge, delivering practical quantum-resistant alternatives before quantum computers achieve attack capabilities. However, the extended timeline for cryptographic transitions—typically requiring a decade or more for comprehensive infrastructure migration—demands immediate action. Organizations must begin post-quantum transition planning now, evaluating hybrid deployment strategies, testing implementations in controlled environments, and preparing infrastructure for algorithm migration. Looking forward, the cryptographic community must maintain vigilance through continued security analysis, algorithm refinement based on operational experience, and development of next-generation post-quantum primitives addressing remaining limitations. The establishment of cryptographic agility—infrastructure capable of rapid algorithm transition—proves essential for long-term security, enabling swift response to security discoveries whether affecting classical or post-quantum algorithms. The successful transition to post-quantum cryptography will establish resilient security infrastructure protecting digital communications through the quantum era and beyond, securing the foundation of contemporary digital society against the most significant cryptographic threat in the field's history.

VII. FUTURE WORK

The foundation established through this comparative analysis of RSA and CRYSTALS-Kyber opens multiple directions for advancing post-quantum cryptographic research, implementation, and deployment:

- 1) *Advanced Hybrid Protocol Development:* Future research should extend hybrid cryptographic protocols beyond basic key establishment to comprehensive security frameworks integrating signature schemes, authenticated encryption, and identity-based primitives. Investigation of hybrid signature schemes combining RSA/ECDSA with post-quantum alternatives like CRYSTALS-Dilithium and Falcon will enable quantum-resistant authentication while maintaining backward compatibility. Research into optimized key derivation functions specifically designed for hybrid protocols can minimize computational overhead while maximizing security assurance. Protocol-level security analysis should formalize security models for complex hybrid constructions, proving security composition properties and establishing formal verification frameworks.
- 2) *Hardware Acceleration and Platform Optimization:* Development of specialized hardware accelerators for lattice-based cryptography represents critical future work enabling high-performance post-quantum deployments. Research should investigate custom instruction set extensions for NTT operations, polynomial arithmetic, and noise sampling, enabling efficient implementation on general-purpose processors. FPGA and ASIC designs optimized for Kyber can provide dramatic performance improvements for high-throughput applications like network security appliances and data center encryption. Energy-efficient implementations for IoT processors require investigation of approximate computing techniques, algorithmic modifications reducing computational requirements, and hardware-software co-design optimizing the complete cryptographic stack.
- 3) *Comprehensive Side-Channel Countermeasure Development:* Future work must establish robust side-channel protection for post-quantum implementations across diverse attack vectors. Research into provably secure masking schemes for lattice operations, with formal verification of security properties, will provide high-assurance protection against power analysis and electromagnetic attacks. Investigation of fault attack countermeasures specific to lattice-based constructions, including error-detecting codes and robust implementation patterns, will prevent fault injection vulnerabilities. Development of automated tools for side-channel vulnerability detection and validation will enable systematic security assessment across implementations and platforms.


- 4) *Long-term Cryptanalytic Research:* Sustained investment in lattice-based cryptanalysis remains essential for validating long-term security assumptions. Research should explore novel attack approaches potentially exploiting algebraic structure, investigate quantum algorithms beyond Grover's search providing greater speedups for lattice problems, and develop improved complexity models for lattice reduction algorithms. Regular parameter reassessment incorporating new cryptanalytic insights will ensure security margins remain adequate as understanding evolves. Investigation of post-quantum cryptanalysis tools and frameworks will enable systematic security evaluation by the broader research community.
- 5) *Formal Verification and Provable Security:* Development of formal verification frameworks for post-quantum implementations will provide rigorous security assurance for critical deployments. Research should investigate machine-checkable proofs for implementation correctness, establishing correspondence between mathematical specifications and executable code. Formal verification of constant-time properties, memory safety, and side-channel resistance will prevent subtle implementation vulnerabilities. Development of verified cryptographic libraries providing high-assurance post-quantum primitives will enable secure deployment in security-critical systems.
- 6) *Operational Deployment Studies and Best Practices:* Real-world deployment experience will identify practical challenges and solutions for post-quantum transition. Case studies documenting organizational migration strategies, encountered obstacles, and successful solutions will provide invaluable guidance for the broader community. Development of deployment monitoring tools detecting cryptographic configuration issues, performance anomalies, and potential attacks will enable operational security in production environments. Establishment of incident response procedures and vulnerability disclosure processes specific to post-quantum implementations will facilitate rapid response to security discoveries.
- 7) *Next-Generation Post-Quantum Primitives:* Research should explore advanced cryptographic constructions building upon post-quantum foundations, including post-quantum secure multi-party computation, threshold cryptography, and privacy-preserving protocols. Investigation of structured lattices beyond Module-LWE may reveal new security-efficiency trade-offs enabling more compact parameters or improved performance. Development of post-quantum identity-based encryption and functional encryption will enable advanced cryptographic applications in the quantum era.
- 8) *Standardization and Ecosystem Development:* Continued standardization efforts should address protocol integration, establishing standard interfaces for post-quantum primitives in TLS, IPsec, SSH, and other security protocols. Development of test suites and conformance testing frameworks will ensure interoperability across implementations. Establishment of best practices documentation, implementation guidelines, and security considerations specific to post-quantum deployment will facilitate secure adoption by developers and organizations.

Through these research directions, the cryptographic community will establish comprehensive post-quantum security infrastructure providing robust protection against quantum threats while maintaining the efficiency, flexibility, and usability requirements of contemporary digital systems. The successful transition to post-quantum cryptography represents one of the most significant undertakings in the history of cryptographic practice, requiring sustained effort across research, standardization, implementation, and deployment over the coming decade.

REFERENCES

- [1] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2), 120-126.
- [2] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. *SIAM Journal on Computing*, 26(5), 1484-1509.
- [3] Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptography. *Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC)*, 84-93.
- [4] Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On ideal lattices and learning with errors over rings. *Advances in Cryptology - EUROCRYPT 2010*, 1-23.
- [5] Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., ... & Stehle, D. (2018). CRYSTALS-Kyber: A CCA-secure module-lattice-based KEM. *Proceedings of IEEE European Symposium on Security and Privacy (EuroS&P)*, 353-367.
- [6] National Institute of Standards and Technology (NIST). (2022). Module-Lattice-Based Key-Encapsulation Mechanism Standard. FIPS 203.
- [7] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., ... & Stehle, D. (2020). CRYSTALS-Kyber Algorithm Specifications and Supporting Documentation. NIST Post-Quantum Cryptography Standardization.
- [8] Fujisaki, E., & Okamoto, T. (2013). Secure integration of asymmetric and symmetric encryption schemes. *Journal of Cryptology*, 26(1), 80-101.
- [9] Wiener, M. J. (1990). Cryptanalysis of short RSA secret exponents. *IEEE Transactions on Information Theory*, 36(3), 553-558.
- [10] Langlois, A., & Stehle, D. (2015). Worst-case to average-case reductions for module lattices. *Designs, Codes and Cryptography*, 75(3), 565-599.
- [11] Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key exchange—A new hope. *Proceedings of the 25th USENIX Security Symposium*, 327-343.
- [12] Micciancio, D., & Regev, O. (2009). Lattice-based cryptography. *Post-Quantum Cryptography*, 147-191.

- [13] Peikert, C. (2016). A decade of lattice cryptography. *Foundations and Trends in Theoretical Computer Science*, 10(4), 283-424.
- [14] Chen, Y., & Nguyen, P. Q. (2011). BKZ 2.0: Better lattice security estimates. *Advances in Cryptology - ASIACRYPT 2011*, 1-20.
- [15] National Institute of Standards and Technology (NIST). (2016). Report on Post-Quantum Cryptography. NISTIR 8105.
- [16] Bernstein, D. J., Lange, T., & Peters, C. (2008). Attacking and defending the McEliece cryptosystem. *Post-Quantum Cryptography*, 31-46.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)