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Abstract: Cloud computing is now ubiquitous and provides convenient access to computing resources on demand. Cloud 
environments are complex and prone to faults, which can have a negative impact on service quality. Cloud providers must be 
able to detect issues in a proactive manner using unsupervised anomaly detection. This does not require labeled data. This paper 
presents a comparison of deep neural networks and support vector machine (SVMs), both used for unsupervised anomaly 
identification in cloud environments. On benchmark datasets provided by cloud providers, we evaluate the performance 
Autoencoders with LSTM models, One Class SVMs, and Isolation Forests. Our results show that shallow Autoencoders do not 
capture workload patterns well, but LSTMs or Convolutional Autoencoders can. SVMs are as good or better than Autoencoders. 
One-Class SVMs show robust performance in all workloads. Isolation Forests perform poorly on cloud data that is seasonal. 
One-Class SVMs are the most accurate and low latency option for anomaly detection. Our findings offer cloud providers 
guidance on how to select suitable unsupervised models based upon their performance, interpretability, and computational 
overhead. The results and comparative methodology will be used to inform future research into adapting unsupervised-learning 
for cloud anomaly detection. 
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I. INTRODUCTION 
Cloud computing is a widely used technology that allows users to access vast computing resources on demand. Cloud services offer 
enterprises and users low-maintenance, scalable infrastructure, platforms, and software that can be paid-as you-go. However, due to 
their complexity, large-scale, distributed cloud environments are prone to faults and performance anomalies. Cloud providers must 
identify and resolve issues before they become major outages. Anomaly-detection techniques are broadly classified as either 
supervised or unsupervised. 
Techniques that do not require labeled data Classification techniques, for example, are highly accurate but require large quantities of 
data pre-annotated [1]. Labelling enough anomalies can be difficult due to the scarcity of data. Unsupervised anomaly identification 
aims to detect statistically significant deviations in patterns from the norm, which makes it a good fit for cloud providers who have a 
lot of unlabeled monitoring information [2]. 
Anomaly detection in cloud environments has been gaining interest, not only with traditional methods like clustering, nearest 
neighbor, and statistical models but also more advanced machine-learning techniques such as Autoencoders, Isolation Forests, and 
other similar technologies. These methods can be used to identify anomalies more efficiently and effectively. There is a dearth of 
comparative analyses to determine their effectiveness and suitability in various types of cloud workloads, with different statistical 
properties [3]. It is important to understand the strengths and weaknesses of each technique in order to ensure robust anomaly 
detection, especially when dealing with cloud environments where data complexity and size present unique challenges. It will take 
more research and experiments to develop best practices and guidelines on how to implement these techniques in cloud scenarios. 
This paper presents a comparison of the state-of-the art deep neural networks (DNNs), and support vector machines for 
unsupervised anomaly identification in cloud environments. DNNs, such as Autoencoders, can learn nonlinear features with little 
feature engineering. SVMs offer efficient nonlinear separation while having theoretical guarantees for outlier detection. Analyzing 
the performance of these models can help in selecting and tuning appropriate models.  
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This paper's main contributions are: 
1) Comparison of DNNs for anomaly detection in cloud workloads. Includes Autoencoders and LSTM models. 
2) Analysis of One Class SVM (OCSVM), Isolation Forest, and density-based local outlier Alternatives to DNNs include factor 

(LOF), a type of algorithm. 
3) Benchmarking performance using publicly available datasets from major cloud service providers Google and Alibaba, as well 

as the synthetic cloud workloads. 
4) Guideline for selecting models that are suitable based on accuracy of detection, computational overhead and interpretability. 
This paper is organized in the following way. The second section surveys related research. The section 3 gives background 
information on the models of learning examined. The experimental setup is described in Section 4. The comparative results are 
discussed in Section 5. The section 6 discusses the practical implications and conclusion. 

 
II. RELATED WORK 

Many studies have focused on the application traditional statistical and machine-learning models for anomaly identification in cloud 
environments. Each study offers unique insights and solutions to this critical problem. For instance, Guan et al. Researchers at 
Google conducted research using principal component analysis (PCA), and reconstruction-based methods to detect anomalies within 
Google cluster workload traces. Their work illustrates the use of dimensionality-reduction methods combined with reconstruction 
error analyses to identify deviations in behavior within cloud environments. Similarly, Meng et al. A Hidden Markov Model 
combined with PCA was proposed to model the timeseries network data from Alibaba's data centres [4]. Integrating probabilistic 
modeling and their approach, which is based on dimensionality reduction, aims to capture underlying network traffic patterns and 
enhance anomaly detection abilities. Furthermore, Fadlisyah et al. The application of K means clustering to outlier detection was 
explored in the resource usage metrics obtained by private cloud clusters. Their study highlights the effectiveness of clustering in 
identifying anomalous patterns of resource consumption within cloud infrastructure. These studies collectively contribute to the 
growing body research that aims to leverage traditional statistical and machine-learning methods to enhance anomaly identification 
in cloud environments. They offer valuable insights and methodologies to future investigations in this area. Recent work has used 
newer techniques such as Autoencoders, Isolation Forests, and others. Malhotra et al. Design a stacked Autoencoder to detect 
anomalies in Google cluster traces that outperforms PCA. Le et al. Autoencoders and One-Class SVMs are compared on the Yahoo 
Webscope S5 dataset. The latter is found to be more robust and effective. Guan et al. Showcase LSTM models on Google Cluster 
Data and find that they outperform Autoencoders. Su et al. Use Isolation Forests to identify anomalies in Alibaba Cluster Metrics 
[7]. Most existing studies, while insightful, experiment with a limited or single dataset. This is often taken from Google or 
Alibaba. Comparative analysis is limited to two or three techniques. There is a lack of systematic benchmarking for multiple 
anomaly detection models. This gap is filled by our work, which evaluates a variety of SVM and deep learning models on public 
cloud datasets that are standardized as well as synthetic data. Based on extensive experimentation, we provide a set 
recommendations for cloud providers on the selection of models. 
 

III. BACKGROUND 
This  section  provides  background  on  the  unsupervised  learning  models  examined  in  our comparative study. 
1) Autoencoders: Autoencoders are neural networks that aim to reconstruct their inputs, forcing the model  to  learn  useful  

feature  representations  in  the  hidden  layers  They  are  composed  of  an encoder  network  that  maps  the  input  to  a  
hidden  representation,  and  a  decoder  network  that reconstructs  the  input.  By  constraining  the  size  of  the  hidden  layer  
dimensionality  via regularization techniques, Autoencoders can learn the most salient features [9]. Once trained, anomalies can 
be detected by thresholding the reconstruction error between the input and decoded output. Inputs that are poorly reconstructed 
likely contain anomalies. Variants like   Denoising   and   Convolutional   Autoencoders   also   exist   [10].   Autoencoders   
require appropriate network architecture and training hyperparameters but minimal feature engineering [11]. 

2) LSTM Neural Networks: Long Short-Term Memory (LSTM) networks are a type of recurrent neural network well-suited for 
timeseries data LSTMs contain memory cells with internal states that can retain information over long sequences [12]. Input, 
output and forget gates modulate the cell  states  [13].  Coupled  with  deep  stacked  layers,  LSTMs  can  effectively  model  
complex temporal patterns in workloads like periodicity, trends and seasonality. For anomaly detection, LSTMs are trained to 
predict the next timestep value. Reconstruction error on test data can identify outliers. A related approach is to use Sequence-to-
Sequence models to reconstruct the entire input sequence. LSTMs require more training data than Autoencoders but can 
naturally model timeseries data [14]. 
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3) One-Class SVMs: One-Class SVMs (Support Vector Machines) offer a variant known as OC- SVM, which addresses the 
sensitivity to outliers commonly associated with traditional SVMs. OC-SVM  aims  to  explicitly  identify  anomalies  by  
constructing  a  hypersphere  boundary  that encapsulates most of the training data while excluding outliers. This is achieved by 
solving the optimization problem: 
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Here, ( ϕ(��) maps (  ) to a higher dimensional space. Slack variables (ρ��) allow some training points  to  lie  outside  the  
boundary  to  improve  generalization.  The  parameter  ( ν) trades  off between the volume of the hypersphere and the allowed 
errors. During test time, points lying outside the hypersphere are classified as anomalies based on their relative position. OC-SVM 
requires  minimal  parameters  and  offers  theoretical  guarantees  on  anomaly  detection  [15]. However, its computational cost is 
relatively high, which can be a limiting factor in large-scale or real-time applications. Despite this drawback, OC-SVM remains a 
valuable tool for anomaly detection tasks where theoretical robustness is paramount.3.4 Isolation Forests 
Isolation  Forests  (iForest)  create  random  decision  trees  to  isolate  every  instance  anomalies require fewer splits to isolate and 
have shorter average path lengths. Given a dataset of size n, iForest builds trees by recursively partitioning the data into subsets 
[16]. At each split, it randomly selects a feature and a split value between the minimum and maximum value. Partitioning stops after 
meeting criteria like minimum subset size. The number of splits required to isolate a sample is  used  to  calculate  an  anomaly  
score. While  simple,  iForest  has  low  memory  overhead  and constructs ensembles efficiently [17]. But it can be sensitive to 
parameter settings. 

 
 
4) Local Outlier Factor: The Local Outlier Factor (LOF) algorithm detects anomalies based on local  density  It  measures  the  

local  reachability  density  of  each  point  based  on  its  k-nearest neighbors.  Points  that  have  significantly  lower  density  
than  their  neighbors  are  identified  as outliers. LOF is simple, intuitive and interprets anomalies. 

 
Table 1. Detection performance on Google cluster dataset 
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IV. EXPERIMENTAL METHODOLOGY 
This  section  describes  the  datasets,  learning  models  and  evaluation  metrics  used  in  our comparative study. 
1) Datasets 
We use real-world cloud workload traces as well as synthetic datasets with known anomalies for our experiments.  
a) Google Cluster Data: The Google Cluster dataset contains timeseries usage information from Google's  production  cluster  

monitoring  It  has  12  performance  metrics  like  CPU  utilization, memory usage and scheduler delays aggregated every 5 
minutes for a month. 1% of the data is annotated as anomalous by domain experts. The data exhibits daily and weekly seasonal 
patterns. 

b) Alibaba Cluster Data: The Alibaba Cluster dataset provides resource utilization and performance metrics from Alibaba's 
datacenter clusters It contains 13 metrics like memory used, disk I/O rate collected every minute for 12 days. Real anomalies 
due to machine failures are labelled. The periodicity is less pronounced than the Google data. 

c) Synthetic Cloud Data: To complement the real-world data, we generate synthetic timeseries data exhibiting typical cloud 
workload patterns: 

 Normal: Random walk noise with daily/weekly seasonality 
 Anomaly: Abrupt changes, spikes and noise injected into seasonal component 
 
We populate 12 timeseries of length 5000 with 1% anomalies positioned randomly. The synthetic data allows us to evaluate 
detection performance with full ground truth. 

 
2) Compared Models 
We evaluate the following unsupervised anomaly detection models in our experiments: 
a) Autoencoders (AE): Fully-connected neural network with bottle-neck layer for reconstruction. Adam optimization, MSE loss. 
b) Denoising Autoencoder (DAE): AE trained to reconstruct artificially corrupted inputs. Added robustness to anomalies. 
c) Convolutional  Autoencoder  (CAE):  AE  with  convolutional  layers  to  learn  local  patterns  in timeseries. 
d) LSTM Encoder-Decoder: Sequence-to-sequence model to reconstruct input timeseries. 
e) One Class SVM (OC-SVM): Radial basis kernel, ν=0.01, scaled to 0-1. Isolation Forest (iForest): 100 estimators, contamination 

fraction 0.01. Local Outlier Factor (LOF): Neighbors k=5, scaled to 0-1. Hyperparameters are tuned via grid search for optimal 
performance. The models are implemented in Tensorflow and Scikit-Learn. 

 
Table 2. Detection performance on Alibaba cluster dataset 

 
 

3) Evaluation  Metrics 
We  use  standard  classification  metrics  to  evaluate  anomaly  detection performance: 
a) Precision: Fraction of detected anomalies that are true anomalies. 
b) Recall: Fraction of true anomalies that are detected. 
c) F1 Score: Harmonic mean of precision and recall. 
d) ROC AUC: Area under the Receiver Operating Characteristic curve. 
 
As unsupervised models may detect more or fewer anomalies than labelled, we threshold scores to sweep detection tradeoff between 
precision and recall. We report the maximum F1 achieved. The  models  are  evaluated  in  a  unified  manner  with  standardized  
data  preprocessing  and hyperparameters. 
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V. RESULTS AND ANALYSIS 
This section analyzes the experimental results and compares the performance of the different learning models. 
 
A. Detection  Performance 
Tables  1-3  show  the  maximum F1  score  and  AUC  achieved  by  the models  on  the  Google,  Alibaba  and  Synthetic  datasets  
respectively.  Figures  1-3  plot  the corresponding precision-recall curves. 

 
 
On  the  Google  data,  the  OC-SVM  performs  best  with  0.91  F1  followed  by  LSTM.  The Autoencoders achieve reasonable 
but lower F1 around 0.81. Isolation Forest is comparable to DAE but less robust across metrics. On Alibaba, OC-SVM and LSTM 
again top at 0.89 F1 while CAE  lags  at  0.76.  LOF  is  ineffective  for  this  data.  On  the  synthetic  data  with  more  defined 
anomalies, the CAE matches OC-SVM with 0.94 F1 versus 0.9 for LSTM. The general trends are consistent across datasets - OC-
SVM and LSTM models perform well, basic AE is limited, while CAE improves on AE. Isolation Forests are not effective on 
seasonal data. The  AUC  scores  also  show  a  similar  relative  ranking,  indicating  the  overall  separability  of anomalies  is  best  
achieved  by  OC-SVM  and  LSTM  approaches.  The  precision-recall  curves demonstrate that OC-SVM and LSTM provide 
strong precision across range of recall. The CAE curve has a different shape, reflecting lower precision but higher recall. 
 
B. Diagnostic Analysis 
We  conduct  further  analysis  to  diagnose  the  model  behaviors  and  gain additional insights. 
 

Table 3. Detection performance on synthetic cloud dataset 
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C. Reconstruction Error Distributions 
Figure 4 plots the distributions of reconstruction errors on normal data versus anomalies for Autoencoder and LSTM models. For 
Autoencoders, the normal and  anomaly  errors  largely  overlap  making  discrimination  challenging.  The  LSTM  model 
distributions  have  better  separation.  This  indicates  LSTMs  are  intrinsically  more  capable  of capturing temporal patterns. 
Regularization in AEs is not as effective. 
 

Table 4: Model time and memory complexity 

 
 

D. Anomaly Localization 
Figure  5  shows  example  timeseries  with  the  localization  of  detected anomalies  highlighted. The  OC-SVM  identifies  the  
spikes  well  with  minimal  false  positives. LSTM also performs reasonable localization. But CAE has more diffuse anomaly 
regions and false detections [18]. This demonstrates the challenge of thresholds needed for Autoencoders to balance over-detection 
and missed anomalies [19]. 
 
E. Time and Memory Complexity 
Table 4 compares the average training time and model size. The Autoencoder variants have low overhead given their simplicity. 
OC-SVM is relatively expensive to train due to kernel SVM optimizations [20]. LSTM has high memory requirements due to 
sequence processing. Isolation Forest and LOF have fast training with minimal overhead suitable for real-time usage. Overall there 
are tradeoffs between detection quality and resources required. 

 
VI. DISCUSSION AND CONCLUSION 

The comparison study on multiple datasets from public clouds and synthetic data provided valuable insights for selecting 
unsupervised learning models to detect cloud anomalies. Our observations highlight both the strengths and weakness of different 
models. 
First, it was found that shallow dense Autoencoders lacked the necessary capacity to model complex cloud workloads. This led to an 
insufficient robustness when detecting anomalies on the basis of reconstruction error. Convolutional Autoencoders on the other had 
better performance than basic Autoencoders because they incorporated temporal convolutions before dimension reduction. The 
model was able to capture more relevant workload patterns. LSTMs showed effective modeling of data timeseries with low 
reconstruction errors even in the presence anomalies. This was due to their embedded memory [21]. Their high computational 
overhead can limit their usefulness in certain scenarios. One-Class SVMs performed well across a variety of cloud datasets. This is 
due to their ability define a spherical border that maximizes separation between normal instances [22]. OC-SVM achieved 
consistently top results, with good localization. Isolation Forests, on the other hand, were effective with non-seasonal data, but they 
struggled to detect daily or weekly patterns because of their inherent randomness. One-Class SVMs are a good choice for anomaly 
identification in cloud environments. They offer a combination of high detection accuracy, theoretical support and computational 
efficiency. They are especially well-suited to unsupervised anomaly identification on unlabeled data from cloud monitoring [23]. 
We recommend, based on our findings, that cloud providers use OC-SVM architectures as a primary model for anomaly 
identification, and LSTM as a second choice, where detection latency is not limiting. Convolutional Autoencoders are a simple 
alternative to deep learning-based detection. Isolation Forests, however, are less suitable for metrics that exhibit seasonal 
patterns. The integrated framework developed by this study can help in selecting models based on statistical properties of cloud 
workloads. 
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There are many avenues of future research. The models can be applied to other cloud datasets, and metrics like logs are also 
incorporated. Further improvements in detection accuracy could be achieved by exploring advanced neural architectures, and by 
investigating hierarchical combinations of models or ensemble combinations. Semi-supervised and transfer learning techniques, 
which leverage limited labeled datasets, can also be used to enhance detection performance. 
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