

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77507>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Comprehensive Research Study on Electromagnetic Suspension (EMS) Based Maglev Transport Systems: Technical, Environmental and Feasibility Analysis for India

Munira Faher¹, Suwaibah Muhammad Akram Ali Khan², Syeda Huzaира³, Anam Fathima⁴, Ashhar Ahmed Shaikh⁵

^{1, 2, 3, 4}Student, Class 8, Ocean - The ABM School, Hyderabad

⁵Director, SkillShark EduTech, Hyderabad

Abstract: Magnetic levitation (maglev) transportation systems represent a significant advancement in modern transport engineering by eliminating mechanical contact between vehicle and guideway. This study presents a comprehensive technical assessment of Electromagnetic Suspension (EMS) based maglev systems, emphasizing scientific foundations, propulsion mechanisms, infrastructure engineering, energy dynamics, environmental implications, and applicability within the Indian context. By critically examining operational systems such as the Shanghai Maglev Train and Japan's JR SCMaglev, the research evaluates performance benchmarks and economic feasibility. The analysis suggests that while EMS maglev technology demonstrates strong operational efficiency and environmental promise, substantial capital investment, precision engineering requirements, and infrastructural transformation pose major implementation challenges in developing economies.

Keywords: Magnetic Levitation, Electromagnetic Suspension, Linear Motor Propulsion, Sustainable Infrastructure, High-Speed Transit, Renewable Integration

I. INTRODUCTION

Transportation infrastructure plays a decisive role in economic development, urban mobility, and environmental sustainability. Traditional railway systems rely on wheel-rail contact, resulting in rolling resistance, mechanical degradation, acoustic noise, and upper speed limits constrained by frictional interaction. Maglev technology introduces a fundamentally different operating principle by suspending vehicles above a guideway using electromagnetic forces. The absence of physical contact substantially reduces frictional losses and mechanical wear. Operational case studies, including the Shanghai Maglev Train and the experimental high-speed record achieved by the JR SCMaglev, confirm the viability of contactless rail systems. This research focuses specifically on Electromagnetic Suspension (EMS) systems, which utilize actively controlled attraction forces and are considered more adaptable for moderate-speed and urban transport corridors.

Figure 1.1. Shanghai Maglev Train (Picture Credit: <https://www.railway-technology.com/>)

II. CONCEPTUAL FOUNDATION OF MAGLEV TECHNOLOGY

EMS systems operate on the principle of magnetic attraction between onboard electromagnets and ferromagnetic rails embedded in the guideway. When electric current passes through coils mounted on the vehicle, a magnetic field is generated. This field creates an attractive force toward the steel guideway structure.

The equilibrium condition for levitation is achieved when: Magnetic lifting force = Gravitational force

Precise regulation is essential because magnetic attraction increases nonlinearly as the air gap decreases. Therefore, real-time electronic feedback systems continuously adjust current intensity to maintain a stable levitation gap typically between 8–15 mm. Unlike passive magnetic systems, EMS requires active stabilization. The levitation gap is monitored through high-frequency sensing systems such as:

- Hall effect sensors
- Optical or ultrasonic gap sensors
- Redundant electronic controllers

The control loop operates at millisecond intervals, correcting deviations before instability can occur. This active regulation differentiates EMS from passive EDS systems.

III. PROPULSION MECHANISMS IN EMS MAGLEV

Linear Motor Technology: Maglev propulsion replaces rotary motors and mechanical transmission with linear electromagnetic systems.

Two dominant configurations are:

- 1) Linear Induction Motors (LIM)
- 2) Linear Synchronous Motors (LSM)

In both cases, propulsion is achieved by generating a traveling magnetic field along the guideway. This moving magnetic wave interacts with conductive or magnetic components of the vehicle, producing forward thrust without physical contact. The absence of drivetrain components eliminates mechanical friction and reduces maintenance complexity.

Braking Systems: Maglev braking utilizes electromagnetic resistance principles rather than friction-based brake pads.

Primary mechanisms include:

- Eddy current braking
- Reverse-phase magnetic thrust
- Mechanical landing wheels (low-speed redundancy)

Eddy current braking functions according to electromagnetic induction laws, where induced currents oppose motion and gradually dissipate kinetic energy.

IV. INFRASTRUCTURE ENGINEERING CONSIDERATIONS

Guideway Architecture: Unlike traditional railways that utilize steel tracks, maglev systems require specially engineered guideways consisting of:

- 1) Reinforced concrete structural base
- 2) Embedded propulsion coils & Ferromagnetic attraction plates
- 3) Insulated power distribution channels
- 4) Communication fiber networks

Precision alignment is critical, with tolerances typically restricted to millimeter-scale deviations

Power Distribution and Stability: Maglev systems are electrically intensive, particularly during acceleration phases. Therefore, infrastructure must include:

- High-capacity substations
- Redundant power feeds
- Voltage stabilization systems
- Thermal management for coils

Reliable power continuity is essential to ensure safe operation.

V. COMPARATIVE ANALYSIS: EMS VS EDS

TABLE I
EMS VS EDS

Parameter	EMS	EDS
Levitation Method	Attractive	Repulsive
Zero-Speed Capability	Yes	No
Control Requirement	Active	Partially Passive
Infrastructure Cost	High	Very High
Urban Suitability	High	Limited

EMS systems are more suitable for applications requiring frequent stops and controlled acceleration.

VI. ENERGY CONSUMPTION AND EFFICIENCY

Energy demand varies across:

- 1) Acceleration
- 2) Cruise
- 3) Deceleration

Although initial acceleration requires substantial electrical input, cruising efficiency improves due to elimination of rolling resistance. At high velocities, aerodynamic drag becomes the dominant opposing force, similar to aircraft behavior.

Renewable Energy Compatibility: Maglev systems are fully electric and therefore compatible with renewable energy sources such as:

- Solar power
- Wind energy
- Hydroelectric systems

Hybrid grid integration and energy storage solutions are necessary to manage load fluctuations.

VII. ENVIRONMENTAL AND ECOLOGICAL IMPLICATIONS

Maglev systems generate non-ionizing electromagnetic fields. According to standards set by the International Commission on Non-Ionizing Radiation Protection and research recognized by the World Health Organization, these fields remain within safe exposure limits. They do not possess sufficient energy to ionize atoms or damage biological tissues. Lifecycle emissions arise from: Concrete and steel production, Coil manufacturing, Electricity consumption. Operational emissions can be significantly reduced when renewable electricity sources are used.

VIII. ECONOMIC EVALUATION

Capital expenditure for maglev construction is substantially higher than conventional rail systems due to:

- 1) Specialized guideway construction
- 2) Advanced power electronics
- 3) Magnetic coil fabrication
- 4) Precision alignment technology

However, operational maintenance costs may decrease due to reduced mechanical wear.

IX. FEASIBILITY ASSESSMENT FOR INDIA

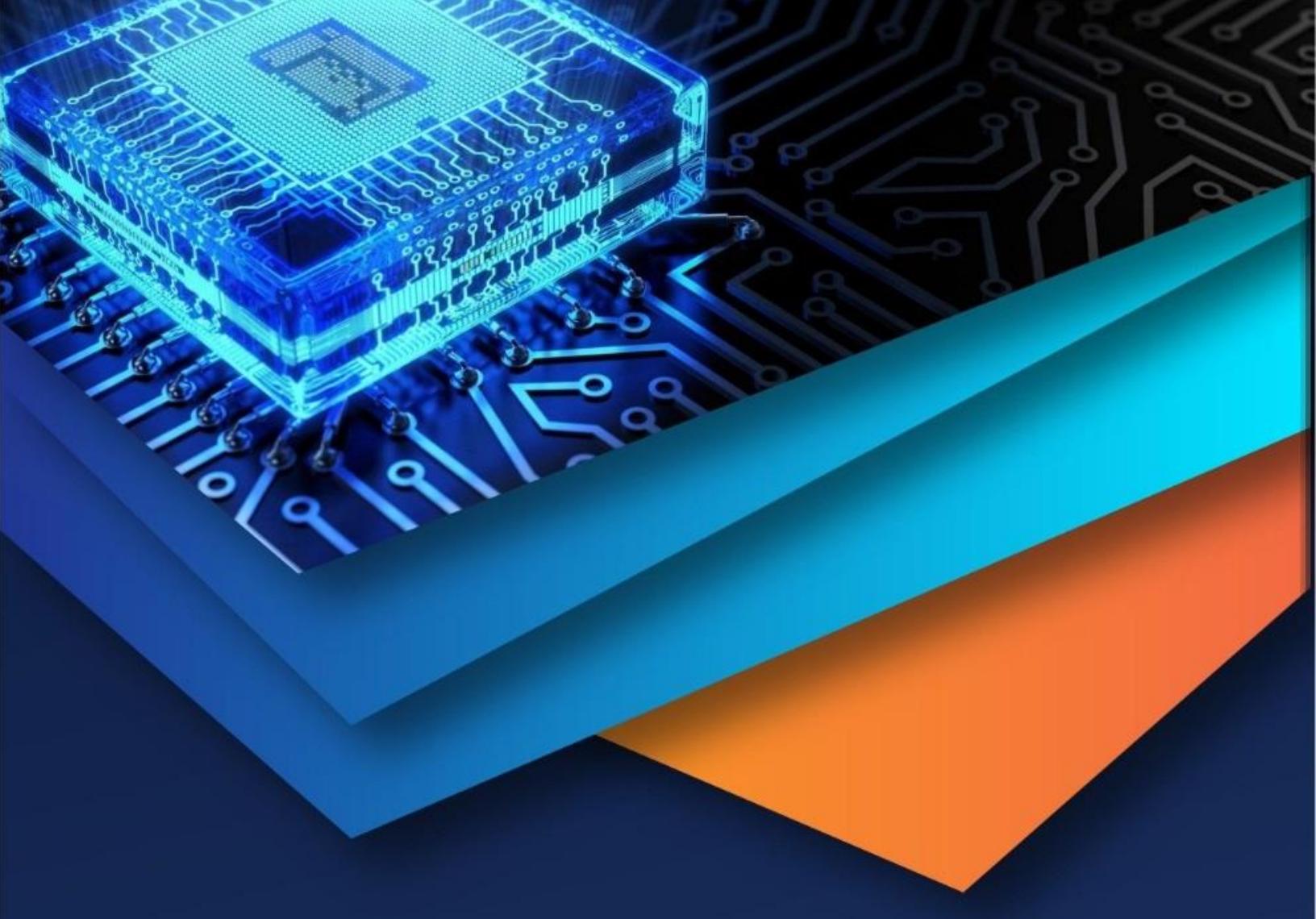
Infrastructure Compatibility: Existing railway corridors cannot support maglev without complete reconstruction.

- 1) Financial Viability: High per-kilometer construction cost presents a major economic barrier.
- 2) Technical Expertise: India possesses strong civil engineering capabilities but limited industrial-scale superconducting magnet production.
- 3) Strategic Recommendation: A phased pilot corridor model may allow gradual technology assimilation and workforce training.

X. CHALLENGES AND LIMITATIONS

Electromagnetic Suspension (EMS) based maglev systems face several significant challenges despite their technological advantages. The most critical limitation is the extremely high construction cost, estimated at ₹300–800 crore per kilometer, which is substantially higher than conventional and high-speed rail systems. Maglev also requires completely new dedicated guideways, making it incompatible with India's existing 68,000+ km railway network. Energy demand is high during acceleration (around 20–30 MW per train), and overall energy consumption can be 10–20% higher than conventional high-speed rail at moderate speeds. Land acquisition, which may account for 20–30% of total project cost, is particularly challenging in densely populated regions. Additionally, precise millimeter-level track alignment, dependence on large quantities of copper and specialized materials, grid reliability issues (India's 15–18% transmission losses), and long financial payback periods of 20–30 years further limit immediate large-scale implementation. Therefore, while EMS maglev is technologically feasible, economic, infrastructural, and operational constraints remain major barriers to widespread adoption.

XI. CONCLUSIONS


Electromagnetic Suspension-based maglev technology represents a transformative advancement in transportation engineering. Its ability to eliminate mechanical friction offers superior speed capability, reduced maintenance, and improved operational smoothness. Despite its technological maturity, large-scale implementation in India faces significant financial and infrastructural challenges. Strategic pilot projects, renewable energy integration, and domestic technological development may pave the way for future adoption. Maglev systems, when supported by sustainable energy and long-term policy commitment, have the potential to redefine high-speed mobility in the 21st century.

XII. ACKNOWLEDGMENT

We would like to acknowledge & thank, Ocean - The ABM School, Hyderabad & SkillShark EduTech Hyderabad for their continuous support & guidance.

REFERENCES

- [1] Shanghai Maglev Train, "Technical and Operational Overview," Shanghai Maglev Transportation Development Co. Ltd., China.
- [2] JR SCMaglev, Central Japan Railway Company, "Superconducting Maglev System Guide," Japan.
- [3] International Commission on Non-Ionizing Radiation Protection, "Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz–100 kHz)," Health Physics Journal.
- [4] World Health Organization, "Electromagnetic Fields and Public Health," WHO Fact Sheets.
- [5] International Electrotechnical Commission, IEC 62236: Railway Applications – Electromagnetic Compatibility Standards.
- [6] Institute of Electrical and Electronics Engineers, IEEE Std C95.1 – Standard for Safety Levels with Respect to Human Exposure to Electric and Magnetic Fields.
- [7] Indian Railways, "Indian Railway Annual Statistical Statement," Ministry of Railways, Government of India.
- [8] International Energy Agency, "Energy Efficiency in Rail Transport," IEA Transport Reports.
- [9] Intergovernmental Panel on Climate Change, "Climate Change Mitigation Report – Transport Sector Emissions," IPCC Assessment Reports.
- [10] Ministry of Railways, Government of India, "High-Speed Rail Project Reports."

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)