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Abstract: In the ever-evolving landscape of machine learning and deep neural networks, the demand for training large models 

on massive datasets has driven research into innovative approaches for efficient distributed optimization. These approaches aim 

to simultaneously improve model accuracy and generalization while mitigating the communication overhead challenges inherent 

to distributed training. Reduced communication complexity is highly desirable, as communication overhead often poses a 

performance bottleneck in distributed systems. This literature review explores the progression of communication-efficient 

techniques, culminating in the introduction of the Slow Momentum (SLOWMO) framework. It traces the trajectory of 

distributed optimization, addresses decentralization strategies, and highlights the role of Local Stochastic Gradient Descent 

(Local SGD) and momentum in communication-efficient algorithms. It delves into Block-Wise Model Update Filtering (BMUF) 

and introduces SLOWMO, a framework consistently enhancing optimization and generalization performance across various 

base algorithms. This review unveils the evolving field of communication-efficient distributed optimization, offering theoretical 

guarantees and practical insights for improving large-scale model training. 

Keywords: Communication efficiency, Decentralized Algorithms, Distributed Learning, Distributed Optimization, Momentum 
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I. INTRODUCTION  

In the realm of machine learning, the remarkable progress achieved in deep learning is unquestionably the result of continuous 

innovations in the field [1]. These innovations have allowed us to train models of unprecedented scale and complexity, which have 

proven instrumental in tasks ranging from image recognition to language translation [2, 3]. Yet, the promise of these large models is 

counterbalanced by a significant challenge: the efficient training of these colossal neural networks on extensive datasets. To meet 

this challenge head-on, researchers have turned their attention to the development of distributed optimization techniques. Distributed 

optimization refers to the practice of training large machine learning models using a distributed system, where multiple machines or 

nodes collaborate to improve the model's accuracy and capabilities collectively. The core objective of distributed optimization is to 

train large models efficiently on extensive datasets while simultaneously elevating their accuracy and generalization capabilities. 

Distributed optimization techniques aim to ensure that this can be achieved within a reasonable time frame without overwhelming 

computational demands. These techniques address the challenges of coordinating and communicating between multiple machines, 

ensuring that they work in harmony to collectively improve the model's performance [4, 5]. This is essential for handling the 

increased complexity of large models and the demands of extensive datasets. 

The concept of communication-efficient distributed optimization is central to this pursuit. This term encapsulates strategies and 

methodologies designed to reduce the communication overhead inherent in distributed systems. Efforts to minimize the 

communication complexity of distributed optimization have become a central focus of machine learning research. Reducing the 

frequency and volume of communication between distributed components is of paramount importance, as this communication 

overhead often acts as a significant bottleneck, impacting both the pace and quality of model training [6]. The advantages of 

communication-efficient distributed optimization are evident. Firstly, it allows us to train large models that can handle complex 

tasks with high precision. Secondly, it enables the training process to be scaled efficiently, accommodating larger datasets and 

models. Moreover, these advancements can lead to considerable savings in both computation time and resource utilization. 

This literature review embarks on an extensive journey through the timeline of these advancements, with a particular focus on the 

introduction of the Slow Momentum (SLOWMO) framework [7]. Our exploration begins by retracing the trajectory of distributed 

optimization, recognizing seminal works that laid the foundation for the field's progress. We delve into strategies that have been 

developed to confront communication overhead challenges and decentralization strategies that have reshaped the landscape of 

distributed machine learning. In this context, we highlight the significance of Local Stochastic Gradient Descent (Local SGD) and 

the innovative integration of momentum in communication-efficient algorithms [8].  
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Additionally, we navigate through the intricacies of Block-Wise Model Update Filtering (BMUF), emphasizing the trade-off it 

strikes between model accuracy and communication overhead. BMUF, though instrumental in the training of speech models, has 

long grappled with the absence of theoretical convergence guarantees and widespread applicability. Inspired by the principles of 

BMUF, the literature introduces the SLOWMO framework, which aims to consistently elevate optimization and generalization 

performance across a spectrum of base algorithms. SLOWMO not only bolsters the efficiency of communication but also provides 

theoretical guarantees, enhancing its significance within the field. This literature review, therefore, provides a critical synthesis of 

the evolving field of communication-efficient distributed optimization, offering both theoretical and practical insights. It aims to 

shed light on the path of progress and offer directions for further research, encapsulating the spirit of innovation and efficiency that 

drives machine learning forward. 

II. DISTRIBUTED OPTIMIZATION ADVANCES 

A. Synchronous Optimization 

Synchronous optimization refers to a class of optimization methods where all participating agents or nodes in a distributed system 

coordinate and update their models or variables simultaneously, typically in a lockstep fashion. This synchronization can occur at 

regular intervals or steps, ensuring that all nodes in the system update their information concurrently. In the realm of distributed 

optimization, synchronous optimization techniques have been pivotal in coordinating large-scale machine learning tasks. These 

approaches employ mini-batch versions of stochastic gradient descent (SGD) and other stochastic optimization algorithms like 

AdaGrad, RMSProp, and ADAM. Stochastic gradient descent (SGD) is one of the foundational optimization algorithms used in 

machine learning. It updates model parameters based on the gradients of the loss function with respect to those parameters. By 

employing mini-batches, the stochasticity in SGD is reduced, leading to more stable and quicker convergence. Additionally, other 

stochastic optimization algorithms like AdaGrad, RMSProp, and ADAM introduce adaptive learning rates. They dynamically adjust 

the learning rates for each model parameter based on the historical gradient information. This adaptation allows for faster 

convergence in many cases and is especially effective when dealing with non-convex optimization problems. While these 

synchronous optimization techniques using mini-batches are highly effective in training large machine learning models, they do face 

challenges, particularly in terms of synchronization delays. The need to ensure that all workers complete their tasks within a batch 

introduces dependencies on the slowest worker. The computational workload and communication times of the workers can vary, 

leading to synchronization bottlenecks.  

 

B. Asynchronous Optimization 

To overcome synchronization delays and accelerate the training process, asynchronous optimization techniques emerged as a 

promising alternative. These methods prioritize speed, allowing workers to operate independently and potentially use stale 

information for computation. Stale information refers to gradient information that may not be the most up-to-date or accurate due to 

the inherent asynchrony of the system. In a distributed machine learning environment, there are multiple workers operating 

independently and asynchronously. Each worker processes its own mini-batch of data and computes gradients based on the model 

parameters it has at that moment. The staleness arises because these model parameters might not be the most current. As workers 

operate independently, they fetch the model parameters from a shared set of servers, but these parameters may be updated by other 

workers while computation is ongoing. This means that when a worker starts processing a mini-batch, the model parameters it is 

using might not be the latest ones, as other workers could have already made updates. The decision to use potentially stale 

information is deliberate in asynchronous optimization because it allows for faster computation. Workers do not need to wait for the 

most up-to-date model parameters, and they can proceed with their computations immediately. While asynchronous approaches 

offer faster training, they often lead to convergence issues and require careful tuning to balance speed and accuracy.  

 

C. Revisiting Distributed Synchronous SGD 

In recent years, significant advancements have shaped the landscape of distributed optimization. To address the challenges posed by 

Asynchronous Stochastic Gradient Descent (Async-SGD), Synchronous Stochastic Gradient Descent (Sync-SGD) was revisited and 

introduced the concept of backup workers [9]. These additional workers work in tandem with the primary workers and play a pivotal 

role in addressing stragglers. When parameter servers receive gradients from enough primary workers, they do not wait for 

stragglers but proceed with updating the model parameters. While the gradients from the slowest workers are eventually dropped, 

this strategy significantly improves the efficiency of synchronous mini-batch SGD. It ensures that the effective batch size remains 

consistent and is equal to the sum of all mini-batch sizes across workers. By doing so, this advancement helps maintain the 

synchronization of the distributed system while mitigating the impact of slower machines. 
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D. Large Minibatch SGD 

The introduction of large minibatch stochastic gradient descent (SGD) marked a pivotal advancement in the efficient training of 

deep neural networks, especially in the context of large-scale tasks like ImageNet [10]. This approach sought to overcome the 

optimization challenges associated with larger mini-batches, which had the potential to hinder the training process. One key 

innovation was the introduction of a hyperparameter-free linear scaling rule designed to adjust learning rates based on the mini-

batch size. This rule ensures that as mini-batch sizes grow, the learning rate adapts accordingly, preventing potential obstacles to 

efficient training. This adjustment turns the larger mini-batches into an advantage rather than a hindrance, contributing to improved 

generalization. Additionally, a novel warmup scheme was introduced to tackle early optimization challenges during the training 

process. This warmup scheme effectively addresses issues that can arise at the outset of training, ensuring that the optimization 

process gets off to a strong start. The combination of these techniques showcased the possibility of training deep neural networks 

with large mini-batches efficiently. This advancement strikes a balance between speed and accuracy and has been instrumental in 

addressing the challenges associated with training large models on extensive datasets. 

 

E. ALLREDUCE-Based Methods 

At present, the prevailing approaches in the field involve a parallelized process where individual workers perform computations on 

small mini-batch gradients locally. Subsequently, these local computations are aggregated using a blocking communication 

technique known as ALLREDUCE before proceeding to take an optimizer step. This process allows for the efficient utilization of 

multiple workers, making parallel processing of mini-batch gradients a common practice in distributed optimization. The use of 

ALLREDUCE helps synchronize these gradient updates, ensuring that the model's parameters are updated collectively across all 

workers. This approach is foundational to many distributed optimization methods and has played a crucial role in coordinating 

large-scale machine learning tasks. 

 

III. DECENTRALIZED TRAINING  

The most widely used approaches involve workers computing mini-batch gradients locally and then aggregating these gradients 

using the ALLREDUCE communication primitive. However, communication overhead poses a significant challenge to the 

scalability of these methods.  

This issue has been investigated by researchers, who explored strategies to deal with stragglers and improve distributed SGD. 

Multiple complementary approaches have recently been investigated to reduce or hide communication overhead. To reduce idling 

due to blocking and stragglers, decentralized training [11,12,13] methods have been proposed. These approaches employ 

approximate gradient aggregation techniques, such as gossip algorithms or distributed averaging, which allow for efficient 

collaboration among distributed components while mitigating the challenges associated with synchronization. Decentralized 

methods fundamentally redefine the way in which gradients are aggregated in a distributed setting. Instead of relying on centralized 

aggregation through mechanisms like ALLREDUCE, decentralized approaches distribute the responsibility of gradient computation 

and updates across the network's nodes, promoting a more distributed and asynchronous framework. This shift in approach 

significantly reduces communication overhead and synchronization delays, contributing to the overall efficiency of the distributed 

optimization process. 

 

IV. COMBINING DECENTRALIZED ALGORITHMS WITH LOCAL SGD 

A. Limitations of Mini-Batch SGD and Introduction to Local SGD 

Mini-batch stochastic gradient descent (SGD) is the state of the art in large-scale distributed training. However, this method can 

often encounter challenges in practice.  

While it theoretically offers linear speedup with respect to the number of workers, this speedup is rarely realized in real-world 

applications. One primary reason is the presence of significant network delays and bandwidth constraints, which can lead to 

substantial communication bottlenecks [14]. To address these communication bottlenecks, recent research has proposed techniques 

that reduce the frequency of communication. Local SGD, an algorithm of this type, tackles these challenges by running independent 

SGD processes in parallel on different workers. It ensures that sequences are only averaged periodically rather than after every mini-

batch, significantly reducing the communication overhead. The Local SGD scheme has shown promising results theoretically and in 

practice. [14]. 

 

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XI Nov 2023- Available at www.ijraset.com 

     

 
1613 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

B. Combining Local SGD with Decentralized Training 

Combining the principles of Local SGD with decentralized training offers a promising approach to addressing the limitations of 

traditional mini-batch SGD. By integrating Local SGD with decentralized training, researchers aim to strike a balance between 

communication efficiency and model quality. Local SGD brings the advantage of fewer communication rounds by allowing workers 

to perform multiple updates before synchronization. Decentralized training leverages the benefits of distributed and asynchronous 

gradient computation, further reducing communication bottlenecks [15,16]. The advantages of this combination are two-fold. 

Firstly, it allows for a reduction in communication overhead, making distributed training more efficient. Secondly, the integration of 

Local SGD with decentralized training provides a pathway to achieving high-quality model updates without the burden of frequent 

synchronization. This approach reduces communication overhead while injecting additional noise into the optimization process. 

Consequently, although it runs faster than large minibatch methods, the resulting model may not achieve the same quality in terms 

of training loss or generalization accuracy after the same number of iterations. In essence, it introduces additional noise into the 

training process, which can lead to more robust convergence in practice. The challenge is to maintain communication efficiency 

while achieving high-quality model updates. 

 

V. INCORPORATING MOMENTUM 

Momentum is a key component in training deep neural networks, and it has been empirically demonstrated to improve both 

optimization and generalization [17]. In essence, momentum introduces a sense of inertia to the training process, allowing the model 

to maintain direction and velocity, which helps navigate through optimization landscapes and accelerate convergence. It acts as a 

moving average of gradients, which helps smooth out the optimization trajectory and escape local minima more effectively. By 

doing so, momentum improves both the speed of convergence and the final quality of the trained model. The concept of momentum 

is not new; it has been widely adopted in traditional stochastic gradient descent (SGD) to improve training performance. However, 

in the context of communication-efficient distributed training algorithms, there is no one-size-fits-all approach to incorporating 

momentum. The challenge lies in balancing the benefits of momentum with the added complexities introduced by distributed and 

decentralized training methods. Typically, momentum is incorporated into communication-efficient training algorithms by having 

workers maintain separate momentum buffers that are not synchronized [18, 19, 20, 21]. This approach allows each worker to 

calculate and update their momentum values independently. These separate momentum buffers contribute to the noisiness of the 

optimization process, which can be advantageous in certain scenarios. This additional noise can help the optimization algorithm 

escape local minima more effectively and improve the robustness of the training process. 

A more recent study [22] introduced an alternative perspective focusing on the linear speedup analysis of communication-efficient 

momentum SGD for distributed non-convex optimization. This study examined whether distributed momentum SGD possesses the 

same linear speedup property as distributed SGD and whether it can reduce communication complexity. The research considered a 

distributed communication-efficient momentum SGD method and provided evidence of its linear speedup property. The linear 

speedup property is a significant advantage in distributed machine learning as it allows the system to scale out computing capability 

effectively by adding more computing nodes. This property, combined with the benefits of momentum in optimization, can lead to 

faster convergence and improved generalization. However, it's worth noting that while this synchronization of the momentum buffer 

enhances accuracy, it comes at the cost of doubling the communication overhead. 

 

VI. SYNCHRONIZATION OF MOMENTUM BUFFERS IN BMUF 

In BMUF, the traditional approach to optimizing deep learning models is reimagined, offering unique advantages while also 

introducing a set of challenges [23]. BMUF introduces a decentralized paradigm in which nodes within a distributed system perform 

multiple local optimization steps between communication rounds, similar to the principles of local SGD. However, what sets BMUF 

apart is the incorporation of a momentum buffer, a critical component in the optimization of deep neural networks. This buffer, 

unlike the frequent update mechanism employed by traditional optimization techniques, is refreshed only after each communication 

round. The synchronization of the momentum buffer at this specific juncture is central to BMUF's operation. 

The motivation behind this approach is the amalgamation of two fundamental principles: the benefits of momentum in optimization 

and the alleviation of communication overhead. The momentum buffer enhances the optimization process by allowing the network 

to retain and build upon past gradients, which can significantly expedite convergence and enhance generalization [23]. It provides a 

memory of the network's previous state, aiding in navigating through complex loss landscapes. However, this advantageous feature 

is not without its drawbacks. 
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The synchronization of the momentum buffer, while undeniably valuable in terms of improving optimization accuracy, comes at the 

cost of increased communication overhead. This trade-off is a critical consideration when assessing the applicability of BMUF to 

various machine learning tasks. For instance, BMUF has seen substantial use in training speech models, demonstrating notable 

improvements in convergence and recognition accuracy for tasks such as large vocabulary continuous speech recognition [23]. 

However, its utilization in other domains, such as computer vision or natural language processing, remains limited. The primary 

impediment to its wider adoption is the absence of theoretical convergence guarantees. The lack of such guarantees raises questions 

regarding the reliability and consistency of BMUF when applied to diverse tasks and models. 

 

VII. SLOWMO FRAMEWORK 

The Slow Momentum (SLOWMO) framework, introduced as a novel approach to improving communication-efficient distributed 

training, is inspired by the Block-Wise Model Update Filtering (BMUF) technique [7]. SLOWMO operates on top of a base 

algorithm, such as Local Stochastic Gradient Descent (Local SGD) or a decentralized method like stochastic gradient push (SGP) 

[24,25]. Periodically, workers average their parameters using ALLREDUCE and perform a momentum update. Its primary goal is to 

enhance the accuracy of communication-efficient distributed training methods. 

 

A. Structure of the SLOWMO Framework. Refer to Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  SlowMo Algorithm 

 

SLOWMO is structured with a nested loop and operates in the following manner: 

1) Initialization: Each worker maintains a local copy of the parameters, x(i)
t,k at worker i after the kth inner step of the tth outer 

iteration. Each worker begins with an initial set of parameters, represented as x0,0, and a slow momentum buffer u0, which is 

initially set to zero. 

2) Outer Iteration Loop: The framework conducts a series of outer iterations, denoted by 't'. In parallel, all workers participate in 

these iterations. 

3) Base Algorithm Steps: Within each outer iteration, workers perform τ steps of the chosen base optimizer. This base optimizer 
can be one that involves no communication (e.g., SGD) or a decentralized algorithm with limited communication (e.g., SGP). 

The parameters are updated locally at each worker using the specified learning rate and update direction. 

4) Exact-Average and Slow Momentum Update: After τ base optimizer steps, workers calculate the average of their parameters, 

denoted as xt,τ by employing the ALLREDUCE communication mechanism. Subsequently, a slow momentum update is 

performed using the computed average. The update of the slow momentum buffer ut+1 and the outer iterate xt+1,0 is conducted in 

parallel across all workers. 

● The slow momentum buffer ut+1 is updated using the previous buffer ut, the learning rate γt, and the difference between xt,0 and 

xt,τ. This update is designed to ensure invariance to the fast-learning rate γt, which may vary throughout training due to learning 

rate schedules. 

● The outer iterate xt+1,0 is updated by adjusting xt,0 based on the slow momentum buffer ut+1 and the product αγt of the slow and 

fast learning rates. 

The nested structure of the framework, with base algorithm steps, exact-averaging, and momentum updates, allows SLOWMO to 

adapt to a variety of scenarios and improve training efficiency without significantly sacrificing model accuracy. 
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B. Empirical Results 

Empirical results from the research paper [7] demonstrate that SLOWMO consistently enhances optimization and generalization 

performance across various base algorithms, including training ResNets on CIFAR-10 and ImageNet and training a transformer on 

WMT'16 En-De. It achieves the goals of speeding up the training process and improving the scaling performance of 

communication-efficient distributed methods, all while maintaining high levels of accuracy. A graph comparing the training time 

and training loss of the original algorithm versus algorithm with using SlowMo shown below (Fig. 2 and Fig. 3).  

 

Fig. 2  Training Time SlowMo vs Original) 

 

 

 

Fig. 3  Training Loss (SlowMo vs Original) 

 

C. Theoretical Convergence Bounds 

The research provides theoretical guarantees that SLOWMO converges to a stationary point of smooth non-convex functions at a 

rate of O(1/√(mTτ)) after Tτ total inner optimization steps and T SLOWMO updates, with m worker nodes. These convergence 
results demonstrate that SLOWMO is, in terms of convergence speed, at least as fast as stochastic gradient descent (SGD). This 

makes it a promising approach for a wide range of applications where SGD is commonly used. 
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D. Future Directions 

The introduction of the SLOWMO framework opens up various avenues for future research and development: 

1) Hyperparameter Optimization: Further exploration of hyperparameter settings within the SLOWMO framework to understand 

how different parameter choices impact the performance of the algorithm. 

2) Integration with Compression Techniques: Investigating the integration of SLOWMO with gradient compression techniques to 

reduce communication overhead further while maintaining or improving accuracy. 

3) Theoretical Analysis: Expanding the theoretical analysis to encompass additional scenarios, such as non-convex optimization in 

the presence of noise and other real-world factors. 

4) Applications Beyond Image Classification and Machine Translation: Extending the use of SLOWMO to other domains and 

tasks to assess its broad applicability in various fields of machine learning and deep learning. 

5) Benchmarking and Scalability Studies: Conducting benchmark studies and scalability assessments of the SLOWMO framework 

to understand its potential in large-scale distributed systems and cloud computing environments. 

6) Integration into Popular Deep Learning Frameworks: Implementing SLOWMO in popular deep learning frameworks to make it 

accessible and convenient for the broader machine learning community. 

 

VIII. CONCLUSION 

In this comprehensive review, we've traced the evolution of communication-efficient distributed optimization in machine learning, 

addressing the challenges of training large models on extensive datasets. We explored various strategies, from synchronous and 

asynchronous optimization methods to decentralized training, integrating momentum to enhance convergence and generalization. 

The innovative Slow Momentum (SLOWMO) framework, inspired by Block-Wise Model Update Filtering (BMUF), introduces a 

nested structure that seamlessly blends base algorithms with exact-averaging and momentum updates. Empirical results and 

theoretical guarantees demonstrate SLOWMO's consistent enhancement of optimization and generalization across multiple base 

algorithms. The journey through communication-efficient distributed optimization presents a promising path forward, with 

opportunities for further exploration in hyperparameter optimization, compression techniques, theoretical analysis, broadened 

applications, benchmarking, scalability, and integration into popular deep learning frameworks. In the quest for efficiency and 

innovation, we are poised on the threshold of an era of more effective machine learning and deep neural network training. 
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