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Abstract: Electrocardiogram (ECG) signals play a crucial role in cardiac diagnosis. However, the presence of noise artifacts such
as electromyographic (EMG) noise and powerline interference can severely degrade the quality of ECG recordings, leading to
incorrect clinical interpretations. Among these, EMG noise poses a significant challenge due to its spectral overlap with the vital
QRS complex. The Iterative Regeneration Method (IRM) operates by extracting multiple similar heartbeats using correlation-
based selection and reconstructing the ECG signal while preserving its morphological integrity. Following IRM, Wavelet
Shrinkage is applied to further suppress any remaining high-frequency noise without distorting critical ECG features such as the
PQRST complex. Synthetic ECG signals contaminated with EMG noise and powerline interference are used to validate the
proposed method. The denoising performance is evaluated using segment-wise Signal-to-Noise Ratio (SNR) across iterations. The
results demonstrate that the hybrid IRM-Wavelet approach effectively reduces noise while maintaining the clinical morphology of
the ECG signal, making it suitable for reliable cardiac diagnosis and automated ECG analysis.

Index Terms: Electrocardiogram (ECG), Iterative Regeneration Method (IRM), Wavelet Shrinkage, Signal-to-Noise Ratio (SNR)

I.  INTRODUCTION
The Electrocardiogram (ECG) is a vital diagnostic tool used for monitoring cardiac activity and identifying various heart
abnormalities. The accuracy of ECG interpretation largely depends on the clarity of the recorded signal. However, in practical
scenarios, ECG signals are often contaminated with different types of noise, such as baseline wander, electromyographic (EMG)
noise, and powerline interference. Among these, EMG noise poses the most critical challenge, as its spectral content overlaps with
that of the QRS complex, making it difficult to remove without distorting the essential morphological features of the ECG
waveform.All of the structural elements of a pre-engineered building (PEB), a contemporary steel construction system, are pre-
designed, manufactured under controlled conditions in a factory, and then assembled on the construction site. PEBs are perfect for
commercial, industrial, agricultural, and warehousing applications because of their speed, effectiveness, and affordability
Conventional denoising techniques, including linear filtering and wavelet thresholding, are often limited in preserving the
morphology of ECG signals, particularly in cases where noise is non-stationary or overlaps with diagnostic frequency bands.
Adaptive and data-driven techniques such as Empirical Mode Decomposition (EMD), Independent Component Analysis (ICA), and
deep learning models have been explored; however, they often require high computational complexity or large training datasets,
which restrict their clinical applicability. To address these challenges, this work proposes a hybrid morphology-preserving denoising
framework that combines the Iterative Regeneration Method (IRM) with Wavelet Shrinkage. The IRM reconstructs the ECG signal
by identifying and averaging morphologically similar heartbeats through correlation-based selection, effectively reducing EMG
interference while maintaining the original waveform shape. Subsequently, Wavelet Shrinkage is applied to suppress residual high-
frequency noise components without compromising the diagnostic PQRST morphology.
The proposed hybrid IRM-Wavelet method is validated using synthetic ECG signals contaminated with EMG and powerline noise.
The denoising performance is assessed using the Signal-to-Noise Ratio (SNR) improvement across multiple IRM iterations. The
results demonstrate that the proposed approach achieves superior noise suppression and morphology preservation compared to
individual denoising techniques, making it suitable for reliable cardiac diagnosis and automated ECG analysis.

1. ITERATIVE REGENERATIVE METHOD
The primary goal of the proposed method is to effectively remove Electromyogram (EMG) noise from Electrocardiogram (ECG)
signals while preserving the critical morphological features of the ECG waveform, such as the P-wave, QRS complex, and T-wave.
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Existing techniques often compromise between denoising performance and morphology retention. To overcome these limitations,
the proposed method introduces a Morphology Preserving Algorithm (MPA) that balances noise reduction with waveform integrity.

A. Pre Processing

The core principle involves separating the dominant ECG components, specifically the QRS complex and T wave, from the noisy
signal, which allows the EMG noise to be isolated and suppressed effectively. The method is executed in three main stages:
preprocessing, IRM, and post processing.

In the preprocessing stage, spectral filtering removes frequency components that could degrade IRM performance or are not
essential to the ECG morphology, and QRS complexes are detected. Specifically, a 2nd-order low-pass Butterworth filter with a 100
Hz cutoff eliminates high-frequency EMG noise, a 2nd-order 1IR notch filter at 50 Hz suppresses power line interference, and a 5th-
order high-pass Butterworth filter at 2 Hz enhances similarity between heartbeats. Since high-pass filtering can distort the
morphology of heartbeats, the removed low-frequency components are restored during post processing. All filters are applied
bidirectionally to achieve zero-phase filtering. QRS detection is performed using the Pan-Tompkins algorithm, with heartbeats
defined relative to the R-peaks. Pan-Tompkin’s algorithm is applied to detect QRS complexes and heartbeats. Here, heartbeats are
related to the R points. The start and the end of the i'" heartbeat are defined as:

HB = R' — 0.25 - median (RR) ,

i
start

HB!,, = HBY:.

An ECG signal contaminated by EMG noise can be modelled as:

z(t) = s(t) + nemc(t)
Where:
e  X(t) = Noisy ECG signal
e 5(t) = Clean ECG signal
e nEMG(t) = EMG noise

B. IRM Stage (Iterative Regenration Method)

After QRS detection, the ECG is segmented into individual beats aligned at the QRS positions. These segments are average or
median-combined to form the Initial Block (IB) signal, a rough template that preserves key ECG features while reducing uncorrelated
noise. From the IB signal, an auxiliary signal is generated through smoothing, morphological filtering, or weighted averaging to
approximate the clean ECG and facilitate reliable noise estimation. The EMG noise is then estimated by subtracting the auxiliary
signal from the original or preprocessed ECG, and this noise estimate is removed to produce the Output Block (OB) signal, which is
cleaner and can be used for further IRM iterations if needed.

C. SNR-Based Iteration Control
The Signal-to-Noise Ratio (SNR) is a quantitative measure of signal quality, representing the ratio of the power of the desired signal
to the power of noise present in it. It is expressed in decibels (dB) as:

N s(n)?
SNR = 10log,, (‘\217(")>
> on I8(n) = 3(n)

where:

e s(n)=original (clean) signal sample

e 3§(n)=estimated or reconstructed signal after an iteration

e  N=total number of samples
Once an OB signal is obtained, its quality is assessed using the Signal-to-Noise Ratio (SNR), a metric that quantifies the relative
strength of the signal to the estimated noise. The SNR is computed after each iteration to determine whether further denoising is
necessary. This adaptive strategy avoids over processing and preserves essential ECG features.
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Based on the SNR value (SNR_iter-1), the IRM process determines the intensity and needs for further iterations:

e If SNR <8 dB, the noise is high, so double-pass (2 X) iteration is performed for aggressive denoising.

e If8dB < SNR <16 dB, a single-pass (1X) iteration is performed to refine the output without over processing.

o If SNR > 16 dB, the signal is deemed clean enough, and no further iteration is needed.
This decision-making loop makes IRM dynamic and noise-aware, preventing signal distortion from excessive filtering while ensuring
sufficient cleaning of noisy data.

Power of Signal>

SNR (Signal-to-Noise Ratio): SNR = 10logy, ( Power of Noise
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Fig. 1 (a) Block diagram of the 3-stage IRM method. IB stands for the signal at the input of the IRM block, OB for the signal at the

output of the IRM block. The SNRiter_1 stands for the SNR after first iteration. (b) Signals at different steps of the IRM stage: (1)

IB signal in 1st iteration, (2)EMG noise approximation, (3) OB signal after 1st iteration, (4) signal at the end of the processing stage
(3 iterations)

D. Wavelet Denoising Stage

An independent wavelet-based denoising stage is implemented for comparative purposes. In this approach, the noisy ECG signal is
first decomposed using the discrete wavelet transform (DWT) with Symlet-8 (sym8) basis functions across six decomposition
levels. Universal soft thresholding is then applied to the detail coefficients to suppress noise, using the estimated noise standard
deviation as a reference. Finally, the thresholded coefficients are recombined to reconstruct the denoised ECG signal, providing a
clean version for performance comparison with the IRM method.

o0 Soft thresholding:
Dieroed(t) = sign(Di(t)) - max(|Di(t)| — T:,0)

0 Hard thresholding:

D;(t), |Di(®)|>T;

D(_leuuised )=
S {o, IDit)| < T,
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E. Adaptive LMS Filtering

An adaptive Least Mean Squares (LMS) filter is employed as an alternative denoising approach.

1) The LMS filter utilizes EMG and PLI components as reference inputs.

2) The adaptive filter iteratively minimizes the error between the noisy input and the desired clean output.
3) This method provides continuous tracking of non-stationary noise characteristics.

F. Hybrid IRM+ Wavelet Denoising

To leverage the complementary advantages of IRM (which preserves ECG morphology) and wavelet denoising (which efficiently
suppresses noise), a hybrid denoising strategy is employed. The final IRM-denoised signal is first processed as the input for this
hybrid stage. It then undergoes wavelet decomposition, thresholding, and reconstruction as previously described, enabling further
suppression of residual noise while maintaining waveform integrity. The resulting IRM + Wavelet output represents the final
optimized denoised ECG signal.

G. Post Processing

After completing the iterative IRM process, a final post-processing step is applied to remove any remaining noise or artifacts. This
may involve mild smoothing, beat re-alignment, or adaptive correction techniques to sharpen the ECG waveforms, enhancing both
visual clarity and clinical interpretability. The final output signal represents the clean, denoised ECG, preserving key physiological
features such as P-waves, QRS complexes, and T-waves while minimizing noise. This signal is suitable for clinical diagnosis,
automated classification, or further analyses, including heart rate variability (HRV) assessment and arrhythmia detection.

H. Performance Evaluation

The proposed method is evaluated using standard ECG datasets such as MIT-BIH Arrhythmia Database.
Performance metrics include:

1) Signal-to-Noise Ratio (SNR) Improvement.

2) Morphological similarity index compared to original clean signals.

Iteration | Noise Power Signal Power SNR
1 0.45 1.0 6.5
2 0.27 1.0 9.2
3 0.12 1.0 12.8

Table 1: SNR values obtained by IRM Iterations
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Fig.2 Noisy ECG signal Fig.3 IRM denoising all iteration signal
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e This figure overlays multiple components: e This figure overlays all three IRM iterations:
Green — Original clean ECG. Iteration 1 (blue solid), Iteration 2 (red dashed),
Black — EMG noise. Iteration 3 (green dotted).
Magenta — Power line interference. e The plot demonstrates the progressive refinement of
Red — Final noisy ECG signal (sum of all). the ECG signal across iterations.
e The red trace shows how the ECG becomes heavily e Each step results in less noise and more accurate
distorted after the addition of EMG and power line morphology.
noise. e lteration 3 is the closest to the clean ECG, validating
e The P wave, QRS complex, and T wave are barely the iterative approach.

recognizable due to interference.
e Thisnoisy ECG serves as the input to pre-processing
and denoising algorithms.

SNR Improvement Across IRM Iterations 128
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Fig. 4 SNR improvement across IRM iterations Fig. 5 Adaptive LMS filtered ECG
e The cyan waveform shows the ECG processed using
e This graph illustrates Signal-to-Noise Ratio (SNR) an Adaptive LMS filter.
improvements across IRM iterations. e By using EMG and powerline interference as
e  X-axis shows the beat index, and Y-axis represents the reference inputs, the adaptive filter reduces
iteration number. correlated noise adaptively.
e The graph shows that with successive iterations, the e The filtered ECG is smoother, but some baseline
SNR  consistently  improves,  confirming  the wander and minor distortions may remain.
effectiveness of IRM. e This method is effective but can be less

morphology-preserving compared to IRM.
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Fig. 6 IRM wavelet denoised ECG

The magenta waveform represents the ECG processed
with wavelet thresholding.

Wavelet decomposition successfully suppresses hich-
frequency EMG noise and power line interference.

The result is smoother than the pre-processed signal, but
sometimes wavelet shrinkage may slightly distort sharp
QRS peaks.

This demonstrates the trade-off between noise reduction
and signal fidelitylrRm.

The magenta waveform represents the ECG processed with
wavelet thresholding.

Wavelet decomposition successfully suppresses hich-
frequency EMG noise and power line interference.

The result is smoother than the pre-processed signal, but

[ ]
sometimes wavelet shrinkage may slightly distort sharp QRS

peaks.

[ ]
This demonstrates the trade-off between noise reduction and

signal fidelity.
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Hybrid IRM + Wavelet Denoised ECG
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Fig. 7 Hybrid IRM+ wavelet denoised ECG

The thick red waveform represents the output of the
hybrid approach, which combines IRM with wavelet
denoising.

This technique benefits from
preserving ability and wavelet’s
suppression.

The resulting ECG is very close to the clean reference,
with sharp QRS complexes and smooth P and T waves.

e This demonstrates the trade-off between noise reduction
and signal fidelitylRM.

IRM’s  morphology
strong  noise

This graph illustrates Signal-to-Noise Ratio (SNR)
improvements across IRM iterations.

X-axis shows the beat index, and Y-axis represents the
iteration number.

The graph shows that with successive iterations, the SNR
consistently improves, confirming the effectiveness of
IRM.
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Comparison of All Denoising Techniques

Clean ECG
IRM

Wavelet
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Fig. 8 Comparison of all denoised techniques

e This figure overlays multiple ECG traces for direct visual comparison:
Black — Clean ECG (ground truth).
Blue — IRM Denoised ECG.
Magenta — Wavelet Denoised ECG
Cyan — Adaptive LMS Filtered ECG.
Thick Red — Hybrid IRM + Wavelet ECG.
e  The comparison clearly shows that:
IRM preserves morphology well.
Wavelets reduce noise but can be over smooth.
LMS filtering adapts but may distort morphology.
Hybrid IRM + Wavelet gives the closest match to the clean ECG.
e This validates the hybrid method as the best approach for practical ECG denoising.

[ Step 1: Generate Clean ECG ]

¥

[ Step 2: EMG Noise Simulation J

¥

[Step 3: Powerline Interference Simulation]

!

[ Step 4: Preprocessing ]

i—

[ Step 6: IRM Denoising ]

SNR
valuatio

Yes

[ Step 7: Wavelet Denoising ]

!

[Step 8: Hybrid IRM + Wavelet DenoisingJ

!

[ Step 9: Comparison ]

Fig. 9 Flow Chart
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IV.  CONCLUSION

A hybrid denoising approach combining the Iterative Regeneration Method (IRM) and Wavelet Transform was successfully
developed and implemented for the effective removal of EMG noise, power line interference, and other artifacts from ECG signals.
The proposed method preserves important morphological features of the ECG while enhancing signal quality, which is critical for
accurate clinical interpretation. The iterative nature of IRM enables beat-wise adaptive denoising while the wavelet stage further
suppresses residual noise without distorting the diagnostic features. The performance evaluation using SNR maps and visual
comparisons confirms the robustness and efficiency of the hybrid approach over individual denoising techniques such as pure
wavelet or LMS filtering.
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