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Abstract: Sign language is a vital communication method for individuals with hearing and speech impairments, yet real-time 

recognition remains challenging due to gesture variability, occlusions, and motion tracking issues. This study presents a deep 

learning-based sign language recognition system integrating Mediapipe’s Holistic model for landmark extraction and an LSTM 

network for gesture classification. The system accurately converts hand movements into text in real time, overcoming the 

limitations of CNN-based approaches.  

Advanced preprocessing techniques, including landmark normalization and data augmentation, enhance robustness against 

lighting variations and occlusions. With a dataset of 50 unique gestures recorded in 100 sequences, the model achieves 92.4% 

accuracy while maintaining a real-time inference speed of ~50ms per frame. Comparative analysis highlights its superior 

performance in classification precision and processing speed, making it suitable for assistive applications in education, 

healthcare, and accessibility.  

Future improvements will focus on dataset expansion, multi-modal learning, and optimization for mobile and IoT deployment to 

create a scalable, universal sign language translator. 

Keywords: Sign Language, LSTM, Mediapipe, Gesture Recognition, Deep Learning, Real-Time Processing 

 

I. INTRODUCTION 

Sign language is a structured mode of communication used by millions of people worldwide, particularly by individuals who are 

deaf or mute. Unlike spoken languages, which rely on auditory perception and verbal articulation, sign language is composed of 

hand movements, facial expressions, and body gestures to convey meaning. Despite its importance in accessibility, mainstream 

human-computer interaction (HCI) systems often overlook the integration of sign language translation, leading to communication 

barriers [1].  

Recent advances in computer vision and deep learning have opened possibilities for automated sign language recognition  (SLR), 

yet many systems fail to handle continuous signing, limiting their practical usability [2]. 

Historically, rule-based gesture recognition methods relied on handcrafted features such as edge detection and motion tracking. 

While these techniques provided basic gesture recognition, they lacked the ability to adapt to dynamic gestures and varying hand 

positions. With the emergence of deep learning, researchers began exploring CNN-based models, which demonstrated significant 

improvements in static gesture recognition. However, CNNs operate on independent frames, making them ineffective in capturing 

sequential hand movements, which is essential for sentence-level sign recognition [3]. 

To address these limitations, researchers have explored Recurrent Neural Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) networks, which are designed for sequential data processing. LSTMs have proven to be highly effective in 

gesture-based language translation, as they can retain contextual information over multiple time steps [4]. However, LSTMs require 

high-quality landmark extraction for accurate predictions, making feature engineering a critical component of an effective SLR 

system. This is where Mediapipe’s Holistic model becomes advantageous, as it provides real-time hand, face, and pose detection, 

enhancing the accuracy of gesture tracking. 

Given the current limitations of SLR systems, there is an urgent need for a scalable, real-time solution that can interpret dynamic 

gestures accurately while maintaining low computational overhead. This research integrates Mediapipe’s landmark extraction 

model with an LSTM-based classifier, enabling accurate real-time recognition of both static and dynamic gestures. The ultimate 

objective is to bridge the communication gap for individuals with hearing and speech impairments, allowing them to interact 

seamlessly with technology-driven environments [5]. 
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II. LITERATURE SURVEY 

Several research studies have explored gesture recognition through deep learning models, with most early systems relying on hand-

crafted feature extraction techniques. Traditional approaches used edge detection, skin color segmentation, and contour-based 

analysis to recognize hand gestures, but these methods suffered from low adaptability in varying environmental conditions [6]. With 

the introduction of Convolutional Neural Networks (CNNs), gesture classification improved significantly, as CNNs excel in image-

based feature extraction. However, their frame-wise approach limits their ability to capture motion-dependent sequences, which is 

critical for sign language recognition [7]. 

Researchers have attempted to improve SLR systems by incorporating Recurrent Neural Networks (RNNs), which process 

sequential information rather than independent frames. However, basic RNNs suffer from vanishing gradient issues, making them 

unreliable for long-term dependency modeling. To address this, LSTMs were introduced, offering memory gates that retain context 

over extended time frames, making them ideal for gesture-based applications [8]. Studies show that LSTM-based models 

significantly outperform CNN-based models in recognizing continuous gestures with minimal loss of context [9]. 

Beyond deep learning models, recent advancements include Mediapipe’s Holistic model, which provides real-time detection of 

hands, face, and body landmarks. Unlike traditional hand segmentation algorithms, Mediapipe uses machine learning-based tracking 

to extract 3D coordinates of key hand landmarks, significantly improving gesture classification accuracy. Several studies have 

validated the efficiency of Mediapipe in human-computer interaction (HCI) applications, making it an ideal choice for real-time sign 

language recognition [10]. 

Despite these advancements, challenges remain in handling variations in hand orientation, occlusions, and different signing speeds. 

Many existing SLR systems are trained on limited datasets, leading to poor generalization when exposed to new gestures or 

environmental variations. To overcome these limitations, our research integrates Mediapipe’s real-time feature extraction 

capabilities with LSTM-based sequence modeling, ensuring robust gesture classification while maintaining low latency and high 

recognition accuracy [11]. 

 

III. PROPOSED METHODOLOGY 

A. System Overview 

The proposed sign language recognition system is designed to process real-time hand gestures and convert them into textual 

representations. The system follows a structured pipeline consisting of four key stages: feature extraction, preprocessing, sequence 

formation, and classification. The Mediapipe Holistic model is utilized for real-time landmark detection, extracting hand, face, and 

body keypoints from video frames. This information is then passed through a preprocessing pipeline, which normalizes coordinate 

values, applies noise reduction techniques, and performs data augmentation to enhance generalization [12]. 

 

1) Mediapipe Pipeline for Landmark Detection 

a) Mediapipe is an advanced open-source framework developed by Google that enables real-time, high-performance landmark 

detection for various computer vision applications, including sign language recognition. This framework is particularly useful 

because it efficiently extracts keypoints from human hands, faces, and bodies in video frames, making it highly suitable for gesture-

based applications. Unlike traditional computer vision approaches that rely on computationally expensive models, Mediapipe 

optimizes processing using a graph-based execution model, ensuring minimal latency and lightweight inference. 

 
Figure (a): Hand Landmark Detection Model 
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b) The Mediapipe Holistic model integrates multiple landmark detection pipelines into a single framework, allowing for a 

comprehensive understanding of human movement. The hand tracking module detects 21 key points per hand, mapping the 

position and orientation of each finger joint and palm. The face detection component identifies 468 facial landmarks, which is 

essential for recognizing subtle facial expressions and lip movements that often accompany sign language gestures. Additionally, 

the pose estimation module extracts 33 body landmarks, capturing upper-body movements that contribute to the overall meaning of 

a sign. 

To process video input, the Mediapipe pipeline follows a structured sequence of operations. Initially, video frames are captured and 

passed to the Mediapipe processor, where RGB normalization is applied to standardize color values. Following this, noise 

reduction techniques help in minimizing artifacts and inconsistencies, ensuring that the extracted features remain accurate across 

varying lighting conditions. Once the preprocessing step is complete, the model detects and maps hand, face, and body keypoints. 

These keypoints are then converted into structured feature vectors, forming the primary input for the deep learning model used in 

classification. A final post-processing step normalizes coordinate values and applies filtering techniques to remove anomalies or 

incorrect detections. 

Figure (b): Full-Body Pose Estimation Model 

 

One of the key advantages of using Mediapipe for real-time sign language recognition is its ability to deliver high-speed processing 

without compromising accuracy. The framework is optimized for mobile and embedded platforms, making it feasible for 

applications in assistive technology and wearable devices. By leveraging GPU acceleration and efficient model compression 

techniques, Mediapipe ensures that landmark detection runs seamlessly in real-time, even on low-power devices. Furthermore, its 

cross-platform support allows deployment across Android, iOS, and desktop environments, ensuring accessibility across a wide 

range of applications. Another significant advantage is its ability to integrate multi-modal data fusion, combining hand, face, and 

body keypoints to enhance recognition accuracy. This is particularly beneficial in sign language interpretation, where gestures often 

involve coordinated movements of multiple body parts. 

Once the landmark data is preprocessed, it is converted into sequential input frames, forming structured datasets of 60-frame 

sequences per gesture. This ensures that temporal dependencies in signing movements are preserved, enabling context-aware 

predictions. The LSTM-based deep learning model is responsible for gesture classification, mapping sequential data to 

corresponding sign language labels. Unlike conventional frame-based classifiers, the LSTM network processes continuous gestures, 

making it suitable for sentence-level sign interpretation [13]. 
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2) LSTM-Based Gesture Classification 

Long Short-Term Memory (LSTM) networks are a specialized form of recurrent neural networks (RNNs) that are well-suited for 

processing sequential data. In the context of sign language recognition, LSTMs play a crucial role in classifying hand gestures by 

analyzing motion sequences rather than relying on static frames. Unlike traditional classification models that treat each frame 

independently, LSTMs maintain a temporal memory, enabling them to capture the sequential dependencies inherent in sign 

language gestures. This memory capability is essential for ensuring that the system recognizes gestures in their entirety rather than 

as isolated hand positions. 

The architecture of the LSTM-based classification model follows a structured pipeline designed to extract and process temporal 

features. The input layer receives the preprocessed landmark coordinates extracted from Mediapipe, which are then organized into 

sequential datasets. Each gesture is represented as a structured sequence of 60 frames, ensuring that temporal dependencies are 

preserved. These sequences are then fed into multiple LSTM layers, where the network learns long-range dependencies in hand 

movements over time. By leveraging gated memory units, LSTMs can selectively retain or discard past information, making them 

particularly effective for handling variable-length gestures and different signing speeds. The extracted features are then passed 

through fully connected dense layers that refine the learned representations. Finally, a softmax classifier maps the processed 

sequence to its corresponding sign language label, providing an accurate prediction of the intended gesture. 

Figure 1: LSTM Cell Structure 

One of the key challenges in sign language recognition is handling continuous gestures where the transition between signs must be 

understood in context. Unlike traditional frame-based classifiers that struggle with this problem, LSTMs excel at recognizing 

dynamic movements, making them highly effective for sentence-level interpretation. Additionally, they are robust to variations such 

as changes in hand positioning, signing speed, and occlusions, ensuring reliable recognition across different users. 

To further optimize performance, the system implements several enhancements. Buffered frame processing ensures that outdated 

frames are discarded   before   classification,   reducing unnecessary computational overhead and improving real-time 

responsiveness. Adaptive learning rate scheduling is used during training to prevent overfitting and accelerate model convergence, 

allowing the network to generalize well across different signers. Batch normalization techniques stabilize training by normalizing 

activation distributions, which helps in mitigating internal covariate shifts and improving overall model efficiency. 

LSTM-based models offer a unique advantage in real-time sign language interpretation due to their ability to process sequential data 

effectively. Their capacity to retain context across multiple frames makes them an ideal choice for recognizing complex gestures 

and continuous sign sequences. By integrating LSTMs with the landmark detection capabilities of Mediapipe, the proposed system 

achieves a balance between computational efficiency and high classification accuracy, paving the way for advancements in assistive 

communication technologies. 
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To optimize real-time performance, the system employs buffered frame processing, ensuring that outdated frames are discarded 

before prediction. Additionally, adaptive learning rate scheduling is implemented during model training, preventing overfitting and 

improving convergence speed. The final output is displayed as text, providing instant sign-to-text conversion. This structured 

approach ensures that the system can handle real-world variations, such as different signing speeds, background changes, and hand 

occlusions [14]. One of the primary advantages of this methodology is its scalability. The modular architecture allows for easy 

integration into mobile applications, wearable devices, and assistive technologies. By leveraging Mediapipe’s lightweight feature 

extraction and LSTM’s ability to capture sequential data, the system achieves a balance between computational efficiency and high 

recognition accuracy. This approach sets the foundation for future advancements, including multilingual sign language support and 

speech synthesis for sign-to-speech translation [15]. 

Figure 2: Workflow of the Sign Language Recognition Model 

 

B. Model Architecture 

The deep learning model architecture is designed to process sequential gesture inputs while maintaining computational efficiency. 

The LSTM network consists of three stacked LSTM layers with 64, 128, and 64 units, respectively, each using the tanh activation 

function. These layers are responsible for capturing temporal dependencies in signing sequences, allowing the model to distinguish 

between similar but contextually different gestures [10]. 

To prevent overfitting, the model incorporates Dropout (0.3) layers after each LSTM layer. This technique ensures that the model 

does not memorize specific patterns but instead learns generalizable features. A Layer Normalization step is added between layers 

to stabilize the training process, preventing gradient explosions commonly encountered in deep RNN models. The fully connected 

output layer consists of a softmax activation function, mapping the processed sequences to gesture classes [6]. 

The model is trained using the Adam optimizer with a learning rate of 0.0001, ensuring efficient convergence. Additionally, 

gradient clipping (clipnorm = 1.0) is applied to prevent sudden weight updates, which can destabilize long-term dependencies in 

sequential learning. The loss function used is categorical cross-entropy, which is ideal for multi-class gesture classification [5]. 

A key innovation in this architecture is the integration of cropped hand images alongside landmark sequences. While LSTMs 

process landmark-based features, a secondary CNN-based branch processes cropped hand images, providing additional visual 

context. The outputs of both branches are concatenated before classification, creating a hybrid feature representation that enhances 

recognition performance, particularly for ambiguous gestures [3]. 

 
Figure 3: LSTM Model Architecture and Parameters 
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C. Data Collection and Preprocessing 

The dataset used for training the model consists of 50 unique sign gestures, each recorded with 100 sequences under different 

environmental conditions. Data was collected from multiple signers, ensuring variability in hand shapes, movement speeds, and 

gesture execution styles. To enhance generalization, the dataset was diversified across different lighting conditions, backgrounds, 

and camera angles. This ensures that the model does not become overfitted to specific environments, making it robust to real-world 

variability [4]. 

Preprocessing is a critical step in ensuring data consistency. The raw landmark coordinates extracted from Mediapipe are first 

normalized relative to the shoulder position to standardize hand movement ranges. Temporal alignment techniques are then applied 

to synchronize gesture frames, ensuring that each sign representation maintains a fixed-length sequence of 60 frames. This step is 

essential for LSTM processing, as inconsistent sequence lengths can degrade model performance [7]. 

To improve robustness, data augmentation techniques such as mirroring, random rotation, and temporal stretching are employed. 

Mirroring simulates left-handed and right-handed variations, making the model agnostic to hand dominance. Rotation augmentation 

helps adapt the model to different viewing angles, while temporal stretching ensures adaptability to different signing speeds. 

Additionally, Gaussian noise filtering is applied to smooth variations in landmark tracking, reducing errors due to hand occlusions 

or motion blur [8]. Another key challenge in gesture recognition is handling background complexity. Unlike hand segmentation 

methods, which require explicit background removal, the use of Mediapipe’s holistic tracking allows for automatic differentiation of 

hand movements from the background. This enables the system to function effectively in diverse environments, making it 

deployable in real-world applications without requiring controlled settings [9]. 

 

D. Real-Time Gesture Detection Pipeline 

The real-time implementation of the system follows an optimized gesture detection pipeline. The first step involves frame capture 

using OpenCV’s video streaming module, ensuring smooth input processing. The captured frames are passed through Mediapipe’s 

Holistic model, which extracts 21 hand landmarks per hand, 33 body pose landmarks, and 468 face keypoints. 

These landmarks provide a comprehensive view of hand positioning, making it easier to differentiate between similar gestures [2]. 

Once landmark extraction is complete, the system performs frame buffering, ensuring that outdated frames are discarded before 

prediction. The preprocessed landmark sequences are then fed into the LSTM model, which predicts the most probable gesture class 

in real time. The model is optimized to run at an inference speed of ~50ms per frame, making it suitable for real-time applications 

without noticeable lag [5]. To ensure smooth user experience, the system includes adaptive thresholding, which filters out false 

detections by comparing confidence scores across multiple frames. If a detected gesture maintains a high confidence score over a 

sliding window of frames, it is confirmed as a valid prediction. This prevents misclassification due to transient hand movements or 

accidental gestures [3]. 

Figure 4: Overview of the Hand Landmark Detection Process 

 

Finally, the recognized sign is converted into text and displayed on-screen, allowing seamless communication for users. The 

architecture is designed to be hardware-efficient, allowing deployment on mobile devices and edge computing  platforms.  By  

integrating  buffered processing, adaptive thresholding, and lightweight computation, the system ensures real-time interaction 

without requiring high-end computing resources [4]. 
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IV. EXPERIMENTAL AND EVALUATION SETUP 

A. Dataset and Experimental Setup 

The dataset used for training and evaluation comprises 50 unique sign gestures, each recorded in 100 sequences, resulting in a total 

of 5000 gesture instances. These sequences were captured under varying lighting conditions, hand orientations, and signing speeds, 

ensuring that the model learns from diverse real-world scenarios. Data was collected from multiple signers, incorporating variations 

in hand size, finger positioning, and movement fluidity. This diversity prevents the model from overfitting to a specific signer’s 

motion pattern and improves generalization to unseen users [6]. The experiment was conducted on a system equipped with an Intel 

Core i7-12700H processor, 16GB RAM, and an NVIDIA RTX 3060 GPU, ensuring efficient model training and inference. The 

deep learning framework used was TensorFlow 2.9 with Keras API, allowing optimized computation of LSTM layers and 

sequential dependencies. The Mediapipe library was integrated for landmark extraction, and OpenCV was used for real-time video 

capture and frame preprocessing. The system was tested both in offline mode (pre-recorded videos) and real-time mode (live 

webcam input) to validate its robustness in different environments [9]. During training, 80% of the dataset was used for model 

learning, while the remaining 20% was reserved for validation and testing. The training phase utilized batch size = 32, sequence 

length = 60 frames, and early stopping criteria to prevent overfitting. The Adam optimizer with a learning rate of 0.0001 was used to 

fine-tune the LSTM model. Data augmentation techniques, including mirroring, random rotation, and temporal stretching, were 

applied to artificially expand the dataset and enhance the model’s adaptability to different hand orientations and motion speeds [12]. 

Evaluation metrics included accuracy, precision, recall, F1-score, and inference latency. Accuracy measures overall model 

correctness, while precision and recall indicate true positive rates for each gesture class. The F1-score provides a harmonic mean 

between precision and recall, ensuring that the model’s predictions are balanced across different sign classes. Inference latency was 

measured in milliseconds per frame, ensuring that real-time processing capabilities met the practical usability standards for assistive 

applications [1]. 

 

B. Performance Analysis 

The model achieved a 92.4% overall accuracy on the test dataset, outperforming CNN-based gesture classification models, which 

typically achieve around 85% accuracy due to their lack of temporal awareness. The LSTM-based system significantly improved 

recognition of dynamic gestures, demonstrating its ability to handle continuous signing sequences. Precision and recall scores 

averaged 91.8% and 92.1%, respectively, while the F1-score reached 91.9%, confirming the model’s effectiveness in classifying 

both common and complex gesture [13]. In real-time testing, the system consistently maintained an inference speed of ~50ms per 

frame, enabling seamless interaction with live users. This latency is significantly lower than traditional SLR systems, which often 

experience delays of 150-200ms per frame due to heavy computational requirements. The use of Mediapipe’s lightweight feature 

extraction significantly reduced the computational burden, allowing real-time    deployment    on consumer-grade hardware 

without requiring high-end GPUs [14]. 

A comparative analysis was conducted against CNN-RNN hybrid models, where the proposed LSTM-based approach exhibited 

superior sequence retention and gesture accuracy. The CNN-RNN models showed higher classification errors in similar-looking 

gestures, whereas the LSTM model effectively retained temporal dependencies, reducing misclassification rates. Additionally, 

CNN-only models struggled with overlapping gestures, misidentifying similar hand movements due to their frame-based nature, 

further highlighting the importance of sequential processing [10]. 

However, performance varied slightly depending on lighting conditions and signer motion smoothness. In low-light environments, 

minor reductions in landmark accuracy were observed, leading to misclassifications in 3.2% of cases. Similarly, abrupt hand 

movements introduced occasional errors in tracking finger joint positions, particularly in high-speed signing scenarios. To mitigate 

these issues, future improvements will focus on adaptive brightness normalization and motion-based sequence stabilization 

techniques [15]. 

 

C. Challenges and Limitations 

One of the primary challenges encountered during implementation was gesture variability across different signers. Unlike spoken 

languages, where phonetic structures remain relatively stable, sign language expressions can differ based on regional dialects, 

signing speed, and personal signing styles. This variation makes it difficult to train a model that generalizes well across all users, 

requiring a large, diverse dataset to capture different gesture variations effectively [10]. 
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Another significant challenge was handling hand occlusions and background noise. In some cases, the signer’s hand partially 

obstructed face landmarks, leading to incorrect pose estimations by Mediapipe’s Holistic model. Additionally, complex 

backgrounds occasionally caused false landmark detections, reducing recognition accuracy. While preprocessing techniques such as 

background subtraction and temporal filtering improved performance, real-time adaptive segmentation could further enhance 

robustness in challenging environments [9]. Processing speed and computational efficiency were also key concerns, particularly for 

edge device deployment. While the model achieved a low inference latency (~50ms per frame) on a GPU-powered  system,  

performance  on CPU-based devices was slower (~90ms per frame), affecting real-time usability. To address this, future work will 

explore model compression techniques, such as quantization-aware training and TensorFlow Lite optimizations, to enable mobile-

friendly SLR deployment [10]. Lastly, the model’s limited vocabulary size (50 gestures) restricts its ability to handle complex 

sentence-level sign language translation. While it performs well in single-word recognition, a more robust system should integrate 

natural language processing (NLP) techniques to construct grammatically accurate sign-to-text translations. Future research will 

focus on expanding the vocabulary  dataset  and  incorporating context-aware sentence construction models, allowing more fluid 

and conversational sign recognition [8]. 

 

V. RESULT AND DISCUSSION 

A. Quantitative Performance Analysis 

To evaluate the performance of the proposed LSTM-based sign language recognition system, we conducted extensive testing on a 

50-class gesture dataset. The model was trained on 80% of the dataset, while 20% was reserved for validation and testing. Using 

accuracy, precision, recall, and F1-score as key metrics, the system achieved an overall classification accuracy of 92.4%, 

significantly outperforming traditional CNN-based gesture recognition models, which typically achieve around 85% accuracy. The 

precision and recall scores were 91.8% and 92.1%, respectively, while the F1-score was recorded at 91.9%, ensuring a strong 

balance between correct predictions and false positives. These results confirm that the model effectively distinguishes between 

similar gestures while maintaining high recognition consistency [9]. 

Figure 5: Training Accuracy and Loss of the Proposed Model Over 20 Epochs 

 

The confusion matrix analysis revealed that the system correctly classified simple gestures such as "Hello" and "Thank You" with 

over 95% accuracy, while more complex hand movements, such as "I Love You" and "Help," had slightly lower accuracy (~89%) 

due to subtle finger positioning differences. These errors were mainly attributed to inter-class similarity between gestures that share 

similar motion trajectories. However, by incorporating temporal dependencies through LSTMs, the model successfully reduced 

misclassifications compared to frame-based CNN models, which often struggle with gesture continuity. The mean absolute error 

(MAE) of gesture classification was recorded at 0.07, confirming that the system maintains high prediction stability even with 

motion variations [7]. 

 
Figure 6: Model Evaluation Results on Test Dataset 

In terms of computational efficiency, the model demonstrated  an  average  inference  speed  of ~50ms per frame when tested on an 

NVIDIA RTX 3060 GPU, ensuring real-time responsiveness. This speed was significantly faster than traditional CNN-RNN hybrid 

models, which typically suffer from higher computational overhead (~150ms per frame) due to their complex feature extraction 

layers. The optimized use of Mediapipe’s Holistic model for landmark extraction contributed to faster processing, allowing the 

system to run on mid-range hardware without requiring high-end GPUs. Additionally, inference speed remained below 90ms per 

frame on CPU-based systems, making it suitable for mobile and embedded device deployment [3]. 
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B. Comparative Model Evaluation 

To further validate the effectiveness of the LSTM-based approach, we conducted a comparative analysis against existing gesture 

recognition models, including CNNs, CNN-RNN hybrids, and Transformer-based architectures. CNN models, despite their high 

performance on static gesture datasets, exhibited an accuracy drop of ~10-12% when tested on dynamic, sequential sign language 

gestures. This is primarily due to their lack of temporal awareness, which leads to misclassification of continuous gestures as 

independent frame-wise actions. In contrast, CNN-RNN hybrid models improved sequence retention but suffered from higher 

latency (~150ms per frame), making them less suitable for real-time applications [7]. Transformer-based  models,  such  as BERT-

inspired sequence classifiers, performed competitively,   reaching   93.1%   accuracy. However, they required significantly more 

computational power, leading to inference times of ~250ms per frame, making them impractical for real-time deployment. Our 

LSTM model achieved a balance between accuracy and efficiency, outperforming CNN-based models in gesture sequence retention, 

while maintaining a 2.5x lower inference latency than Transformer-based classifiers. These findings highlight that LSTM networks 

remain the best trade-off between speed and accuracy for real-time sign language translation systems [11]. 

 
Figure 7: Model Predictions vs. Actual Labels for Sign Language Recognition 

 

Additionally, a user study was conducted to assess the real-world usability of the system. A total of 20 participants, including deaf 

individuals and sign language interpreters, tested the system across varied environmental conditions. The system maintained above 

90% accuracy across controlled indoor settings, while outdoor testing showed a slight decrease (~87% accuracy) due to lighting 

variations and background distractions. Users praised the system’s real-time response and accuracy, though some participants noted 

occasional missed detections due to extreme hand angles. This feedback will inform future improvements in pose normalization 

techniques and dataset expansion [13]. 

 

C. Real-World Deployment Challenges 

Despite its strong performance, the system encountered several challenges during real-world deployment. One key limitation was 

gesture variability  across  different  users.  Since  sign language is not universally standardized, variations in gesture speed, hand 

positioning, and motion fluidity introduced inconsistencies in recognition accuracy. For instance, two different users signing the 

word "Help" exhibited slightly different hand motions, leading to misclassifications in 3.6% of cases. Addressing this challenge 

requires dataset expansion to cover regional and personal signing differences, ensuring greater model adaptability [14]. 

Another challenge was handling occlusions and rapid hand movements. If a signer’s hand briefly moved out of the camera frame or 

was partially blocked, the system sometimes misclassified or failed to detect the gesture. While Mediapipe’s pose estimation 

partially compensated for this issue, improvements in gesture re-identification mechanisms (e.g., leveraging optical flow tracking) 

could further enhance robustness. Adaptive landmark smoothing techniques, where adjacent frames interpolate missing data, could 

help reduce occlusion-based recognition failures [15]. Computational efficiency was another factor in deployment. While the system 

performed well on desktop GPUs, performance degraded slightly on CPU-based mobile devices, with latency increasing to ~90ms 

per frame. To enable real-time execution on edge devices, future work will explore model quantization and pruning techniques to 

reduce computational demands while preserving accuracy. Additionally, optimizations such as TensorFlow Lite or ONNX 

deployment could enable smooth execution on smartphones and AR glasses, increasing accessibility for daily sign language users 

[14]. Lastly, sentence-level sign language recognition remains an ongoing challenge. While the system excels at single-word 

recognition, true sign language conversations involve contextual sentence construction and grammatical rules, which  are  absent 

from current datasets. The integration of natural language processing (NLP) models could improve sign-to-text translation by 

predicting missing contextual words, making it possible to convert signed phrases into grammatically structured sentences. Future 

enhancements will explore Transformer-based NLP models to bridge this gap [7]. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue III Mar 2025- Available at www.ijraset.com 

     

 2186 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

D. Key Takeaways & Future Scope 

The proposed LSTM-based sign language recognition  system  successfully  achieves real-time gesture translation with high 

accuracy and efficiency, making it a promising solution for assistive communication technologies. The use of Mediapipe’s landmark 

extraction significantly reduces computational overhead, allowing real-time inference speeds (~50ms per frame) while maintaining 

above 92% classification accuracy. Comparative analysis confirms that LSTM networks outperform CNNs in sequence retention, 

while remaining computationally efficient compared to Transformer-based models. 

However, real-world deployment presents several challenges, including gesture variability across users, background complexity, 

and real-time occlusion handling. Future research should focus on expanding datasets to include more signers, regional variations, 

and additional vocabulary words. Furthermore, integrating multi-modal learning approaches, such as audio-assisted gesture 

recognition or electromyography (EMG) sensors, could enhance accuracy in challenging environments. 

Another future direction involves edge-device optimization for mobile deployment. By implementing model compression 

techniques like pruning and quantization-aware training, the system can be deployed on low-power IoT and wearable devices. 

Additionally, sign-to-speech translation remains a critical next step, where recognized gestures are converted into spoken words 

using real-time speech synthesis. This advancement    would   enable   seamless communication between signers and non-signers, 

making sign language recognition more widely accessible. 

Ultimately, this research lays the foundation for next-generation AI-driven sign language interpreters. By continually refining 

gesture tracking, model optimization, and contextual sign understanding, the system has the potential to become an industry-

standard assistive tool for real-time sign language communication worldwide. 

 

VI. CONCLUSION 

In this research, we developed 'Smaster,' an innovative system designed to bridge the communication gap for deaf and mute 

individuals by recognizing and interpreting sign language gestures. Using a machine learning-based approach, our model 

successfully detects and classifies hand signs with high accuracy, enabling a seamless interaction between users and the system. The 

experimental results highlight the efficiency of our model, demonstrating strong accuracy and reliability in real-time gesture 

recognition. By structuring sign language into well-defined lessons and providing an interactive learning experience, 'Smaster' 

ensures that users can both learn and communicate more effectively. This research contributes to the growing field of assistive 

technology, emphasizing the importance of accessibility and inclusivity for individuals with speech and hearing impairments. 

 

While 'Smaster' has shown promising results, there is significant potential for further enhancement. Future improvements may 

involve expanding the dataset to include a broader range of gestures, incorporating different sign languages to cater to a global 

audience, and optimizing the model for real-time deployment on mobile and wearable devices. Additionally, integrating natural 

language processing (NLP) and speech synthesis could  further  enhance  communication  by translating recognized gestures into 

spoken words. As technology continues to evolve, our work lays the foundation for more advanced assistive communication 

systems, ensuring that individuals with disabilities have equal opportunities to connect and express themselves in society [6]. 

 

VII.     CHALLENGE AND FUTURE SCOPE 

This research presents a real-time sign language recognition system that integrates Mediapipe’s Holistic model for landmark 

extraction with an LSTM-based deep learning framework for gesture classification. The system demonstrates high accuracy 

(92.4%) and low inference latency (~50ms per frame), making it an ideal candidate for assistive applications in education, 

healthcare, and accessibility services. By addressing the limitations of CNN-based models, the proposed approach effectively 

recognizes dynamic gestures, making it more suitable for sentence-level signing [10]. 

Future improvements will focus on expanding the dataset to include more diverse sign languages (e.g., ASL, BSL, ISL) and 

increasing the model’s vocabulary size. Additionally, integrating Transformer-based sequence modeling could further improve 

gesture-to-text translation accuracy, allowing for better sentence formation and real-time sign synthesis. Optimizations for mobile 

and IoT deployment will also be explored, ensuring that the system can run efficiently on low-power devices [11]. 

Another avenue for future research is the development of a sign-to-speech translation system, where recognized gestures are 

converted into spoken language using text-to-speech synthesis. This will enable seamless communication between sign language 

users and non-signers, improving inclusivity in public interactions. The addition of real-time feedback mechanisms, such as haptic 

feedback gloves or augmented reality overlays, could further enhance the user experience, providing more intuitive sign learning 

tools [3]. 
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In conclusion, this study contributes to the field of gesture recognition and assistive AI technology by providing a scalable, real-

time SLR system. With further enhancements, it has the potential to serve as a universal sign language interpreter, bridging 

communication barriers for millions of deaf and mute individuals worldwide [15]. 
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