

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.76703>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Review on Implementation of a Multi-Functional Vision Assistant for the Visually Impaired

Roshan Roy K¹, Thanmay K Babu², Midhun E S³, Arun A A⁴, Gadha M M⁵

^{1, 2, 3, 4}B.Tech Student, ⁵Assistant Professor, Department of Computer Science and Engineering, Universal Engineering College, Thrissur, Kerala, India

Abstract: The development of intelligent assistive devices is crucial for enhancing the mobility and independence of visually impaired individuals. This review synthesizes recent advancements in electronic travel aids, particularly smart walking sticks and wearable systems, that leverage sensor fusion, microcontrollers, and artificial intelligence. Early systems primarily utilized ultrasonic and moisture sensors with Arduino microcontrollers to provide basic obstacle and water detection through audio and vibrational feedback. Recent research has significantly evolved to incorporate sophisticated technologies such as Raspberry Pi, computer vision, and deep learning. The integration of object detection algorithms like YOLO (You Only Look Once) and Convolutional Neural Networks (CNNs) enables real-time identification and classification of a wide range of obstacles, including people and vehicles. Furthermore, studies explore the use of IoT for emergency communication via GSM/GPS, deep reinforcement learning for autonomous navigation, and 3D point cloud modeling for dynamic path planning in indoor environments. The consistent findings across these studies highlight a paradigm shift from simple hazard detection to providing descriptive environmental awareness. Key challenges remain in optimizing the trade-off between detection accuracy and real-time performance on embedded devices. The future trajectory of this field points towards the increased use of model compression techniques, multi-sensor data fusion, and machine learning to create more affordable, robust, and intuitive navigation systems that significantly improve the safety and autonomy of visually impaired users.

Index Terms: Assistive technology, smart blind stick, computer vision, YOLO, IoT, navigation systems

I. INTRODUCTION

The mobility and independence of visually impaired individuals have long been supported by traditional aids like the white cane. The proliferation of affordable microcontrollers, sensors, and machine learning algorithms over the past decade has catalyzed the development of intelligent Electronic Travel Aids (ETAs) designed to augment these traditional methods. Initial research established the viability of Arduino-based systems using ultrasonic sensors for fundamental obstacle detection [1], [6], [8]. Subsequent work expanded sensory capabilities to include hazard detection for water [1], [6] fire [2], [16], and stairs [2], [19]. A paradigm shift was marked by the integration of powerful single-board computers like the Raspberry Pi [4], [10] and the application of artificial intelligence. Convolutional Neural Networks (CNNs) and object detection algorithms, especially YOLO (You Only Look Once) [3], [4], [10], [15], have enabled these systems to not only detect but also identify and classify objects in the environment, providing users with descriptive auditory feedback [10], [13]. Concurrently, the Internet of Things (IoT) has been leveraged to incorporate vital safety features, such as GPS-based location tracking and GSM-based emergency communication [4], [13], [16]. This introduction surveys the trajectory of these technological advancements, from simple sensor-based sticks to sophisticated AI-powered navigation assistants. It highlights how the convergence of embedded systems, computer vision, and IoT is creating a new generation of assistive devices that promise to provide a comprehensive “secondary sight,” thereby significantly enhancing the safety and autonomy of visually impaired users.

II. LITERATURE SURVEY

A model for assisting visually impaired individuals through obstacle and moisture detection using ultrasonic sensors and an Arduino microcontroller was presented by Dada Emmanuel Gbenga et al. in 2017 [1]. Visual impairment poses a significant challenge to mobility and independence, motivating the development of intelligent assistive devices. The proposed smart walking stick consists of ultrasonic sensors, a water sensor, a buzzer, and an RF transmitter-receiver system controlled by an ATmega328P-based Arduino UNO. The methodology involved integrating ultrasonic and moisture sensors with the Arduino microcontroller to detect obstacles and water within a range of approximately two meters, providing audio alerts via a buzzer.

The system also incorporated an RF transmitter-receiver setup to help locate the stick when misplaced. The authors detailed the system's design, programming in C using the Arduino IDE, hardware interfacing, and testing through simulation and real-world validation. Experimental results demonstrated reliable obstacle and moisture detection with distinct beeping patterns to differentiate hazard types. The proposed system was lightweight, portable, and efficient for indoor and outdoor navigation, offering a significant improvement over conventional white canes and costly assistive technologies. The study demonstrated that the device is affordable, easy to use, and capable of guiding the visually impaired with precision. The paper concluded by suggesting future enhancements, including GPS integration, GSM-based location alerts, and vibration feedback for increased user safety and convenience, thereby advancing the scope of assistive navigation systems for visually impaired persons.

Vidya M. Shinde et al. 2025 study, Smart Assistive Stick for Visually Impaired People [3], introduces an innovative mobility aid integrating real-time object detection and audio feedback to enhance navigation safety for the visually impaired. The system employs the YOLO (You Only Look Once) algorithm to accurately detect nearby obstacles, while an ultrasonic sensor mounted on a servomotor measures object distance. The architecture, powered by an ESP32 microcontroller, processes data from sensors and delivers feedback through vibration motors and audio alerts, enabling users to perceive obstacles intuitively. Evaluation results demonstrate reliable real-time detection and user-friendly interaction across various environments. By combining computer vision, sensor fusion, and machine learning principles, the study highlights the potential of assistive technology to foster independence and improve spatial awareness for visually impaired individuals.

In 2025, Shahzor Memon et al. presented a sophisticated, multi-sensor smart walking stick that enhances navigation and safety for visually impaired individuals by integrating ultrasonic, smoke, water, light, and clap sensors with Arduino and Raspberry Pi platforms [2]. The methodology involved interfacing these sensors with microcontrollers to detect obstacles, stairs, water puddles, and fire, while providing auditory feedback through earphones and buzzers. The ultrasonic sensor (HC-SR04) served as the primary component for detecting objects and floor variations up to a range of 400 cm, while additional sensors such as MQ-2 and HW-482 were used for fire and water detection respectively. A Light Dependent Resistor (LDR) sensor ensured visibility in dark conditions, and a clap sensor allowed the user to locate the stick when misplaced. The system was programmed in C, and its experimental validation demonstrated accurate identification of even surfaces, ascending, and descending stairs using statistical features like mean and standard deviation extracted from smoothed ultrasonic signals. This design produced a lightweight, low-cost, and user-friendly mobility aid capable of distinguishing different walking surfaces and obstacles. The study concluded that the proposed smart stick significantly improves independence and safety for visually impaired users and suggested future enhancements, including real-time data integration, advanced pattern recognition, and machine learning-based surface classification for improved environmental adaptability.

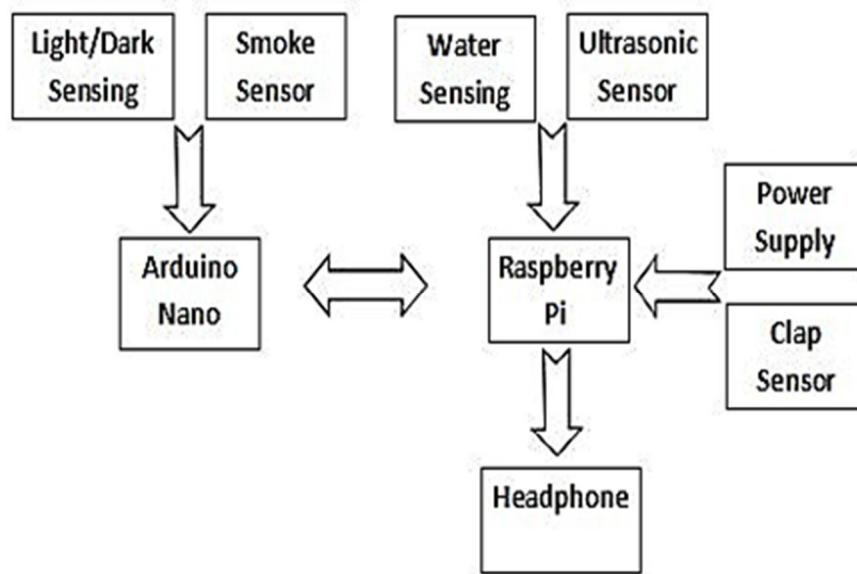


Figure 1: system block diagram [2].

In 2025, Dipta Paul et al. published [4], presents an advanced assistive solution that merges artificial intelligence, embedded systems, and sensor fusion to support independent navigation for visually impaired individuals. The proposed model integrates Arduino Mega as the core processing unit, coordinating five ultrasonic sensors, GPS, GSM, and a water detection module to identify environmental hazards within a 0–30 cm range. The incorporation of a Raspberry Pi module and camera enables AI-powered object detection through a Convolutional Neural Network (CNN)-based YOLO algorithm, allowing real-time recognition of people, vehicles, and other obstacles. Audio and vibration feedback are provided to the user, alongside emergency communication via GSM, ensuring both mobility and safety. Simulation and hardware implementations validated the system's accuracy and responsiveness across multiple terrains. This dual-layered architecture, combining IoT, machine learning, and embedded control, highlights a significant leap toward affordable, intelligent navigation aids for visually impaired individuals, fostering autonomy and situational awareness.

Pruthvi S et al. 2019 study, Smart Blind Stick using Artificial Intelligence [10], presents an electronic travel aid that leverages modern computer vision to assist visually impaired individuals. The system integrates a Raspberry Pi microcomputer with a high-resolution camera and an ultrasonic sensor. It employs the YOLO (You Only Look Once) object detection algorithm, implemented via the Darkflow framework, to identify and classify up to 80 different object categories in the user's environment in real-time. Detected objects and their counts are processed into a text file, which is then converted into audible speech using the eSpeak text-to-speech engine. Simultaneously, an ultrasonic sensor measures the distance to the nearest obstacle, which is also relayed to the user. This combination provides a descriptive understanding of the surroundings, offering a form of "secondary sight". The authors note an average processing time of 1.22 seconds per detection cycle and suggest future enhancements such as integrating facial recognition and optical character recognition to further aid users.

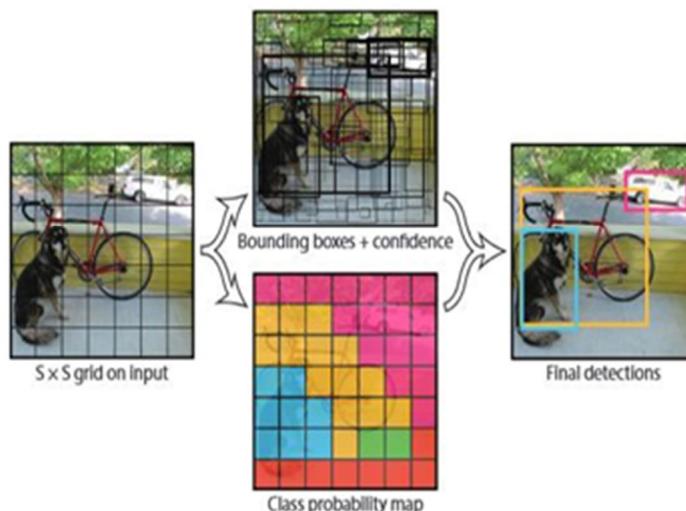


Figure 2: model of YOLO [10].

In 2022, Mrs. K.P.Kamble et al. study, Voice Assisted Smart Blind Stick [13], presents an advanced electronic aid designed to provide artificial vision and real-time assistance for blind individuals. The system is built on an Arduino UNO platform integrated with a Raspberry Pi, which serves as an intelligent hub. It utilizes ultrasonic sensors for real-time obstacle detection within a 3-meter range and a Pi camera with the OpenCV library for facial recognition, achieving an average accuracy of 90%. Auditory feedback is delivered through a dual-alert system: a buzzer provides immediate alerts, while the Google Text-to-Speech (GTTS) library generates natural-sounding voice messages to inform the user about the proximity of obstacles and the identity of recognized individuals. Additionally, the system incorporates GPS and GSM modules for location tracking and emergency communication, allowing users to send their coordinates via SMS to designated contacts. The authors conclude that this integration of cutting-edge hardware and intelligent software offers a user-friendly, cost-effective solution that significantly enhances navigational safety and social interaction for the visually impaired.

In 2016, L. Diaz-Vilarino et al. published the study Indoor Navigation from Point Clouds: 3D Modelling and Obstacle Detection [9], which introduces a methodology for generating navigable indoor models from 3D laser scanner data. The authors utilize point clouds not only to reconstruct semantically rich 3D building models but also to detect real-world obstacles, such as furniture, that are typically absent in as-designed building layouts. The process involves segmenting the point cloud to identify structural elements (walls, floors, ceilings) and potential obstacles, followed by the reconstruction of navigable spaces and openings like doors and windows. A key innovation is the integration of detected obstacles into a navigable network, where a buffer representing a person's space is used to dynamically recalculate the shortest path using Dijkstra's algorithm whenever an obstruction is encountered. This approach provides a more accurate representation of the actual indoor environment, enhancing path planning for applications such as emergency evacuation or assisted navigation for people with disabilities. The methodology was validated in a real case study, demonstrating its capability to adapt routes dynamically based on the presence of obstacles.

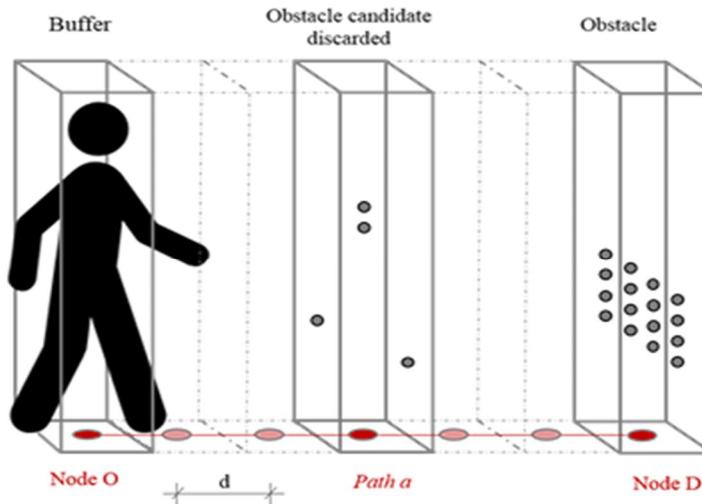


Figure 3: schema of the obstacle detection strategy [9].

In 2014, K. Ramarethinaswamy et al. study, Navigation System for Blind People Using GPS & GSM Techniques [6], presents a comprehensive assistive device designed to improve the independent mobility of blind and visually impaired (BVI) individuals in both familiar and unfamiliar environments. The core of their system integrates GPS for outdoor navigation and GSM for emergency communication. Navigation begins when the user provides a destination as a voice command; the system then uses a GPS receiver and a path detector to find the shortest route, conveying directions via audible messages. A key feature is an emergency button that, when pressed, triggers an SMS containing the user's current GPS coordinates to a pre-set phone number. The system is built around a 32-bit ARM Cortex-M3 embedded controller and features a Braille capacitive touch screen for user-friendly input. Beyond navigation, the device provides a suite of auxiliary functions, including obstacle detection using an ultrasonic SRF02 sonar sensor (with feedback delivered via a vibrating motor), as well as audio information on time, calendar, object color, ambient light, and temperature. The authors conclude that this portable, self-contained system represents a significant tool to enhance the communication ability and mobility of BVI persons, reducing their dependence on others.

In 2020, Shalini Singh et al. study, Intelligent Walking Stick for Elderly and Blind People [7], presents a multi-functional electronic walking stick designed to enhance the safety and independence of blind and elderly users by integrating navigation assistance with health monitoring. The core of their system is a PIC16F877A microcontroller that coordinates a suite of sensors, including an ultrasonic sensor for frontal obstacle detection, a PIR sensor for pit detection, electrodes for water detection, a TCRT1000 sensor for pulse rate measurement, and an NTC thermistor for body temperature monitoring. A key feature is an emergency alert system where pressing a panic button triggers a GSM module to send an SMS containing the user's location, obtained via GPS, to a pre-stored contact. All alerts are communicated to the user through an audio voice alert system using an APR33A3 module. The system was empirically validated with blind users, demonstrating a significant performance improvement over a traditional white cane, increasing walking speed by over 20% on tested routes by providing proactive warnings. The authors conclude that this all-in-one, cost effective solution significantly boosts user confidence and safety, and suggest future enhancements such as integrating diabetes monitoring, cameras for object identification, and neural networks for path planning.

In 2024, Ahmed Ben Attallah et al. study, An effective obstacle detection system using deep learning advantages to aid blind and visually impaired navigation [15], presents a sophisticated obstacle detection system designed to enhance the safety and autonomy of Blind and Visually Impaired (BVI) individuals in both indoor and outdoor environments. The core of their system is a modified and optimized YOLOv5 neural network architecture. To ensure robustness, the model was trained and evaluated on two benchmark datasets: the IODR dataset for indoor objects and the MS COCO dataset for outdoor objects, focusing on 40 landmark object classes critical for BVI navigation. A key contribution of this work is the implementation of several model compression techniques including model width scaling, channel pruning, and post-training quantization to create a lightweight version suitable for deployment on embedded devices with limited resources. The optimized model achieved a competitive mean Average Precision (mAP) of 76.41% and a processing speed of 89 frames per second (FPS), demonstrating an effective trade-off between detection accuracy and real-time performance. The authors conclude that this deep learning-based system represents a significant step forward in creating practical, efficient, and deployable assistive technology that can help BVI persons navigate unfamiliar spaces more safely and independently.

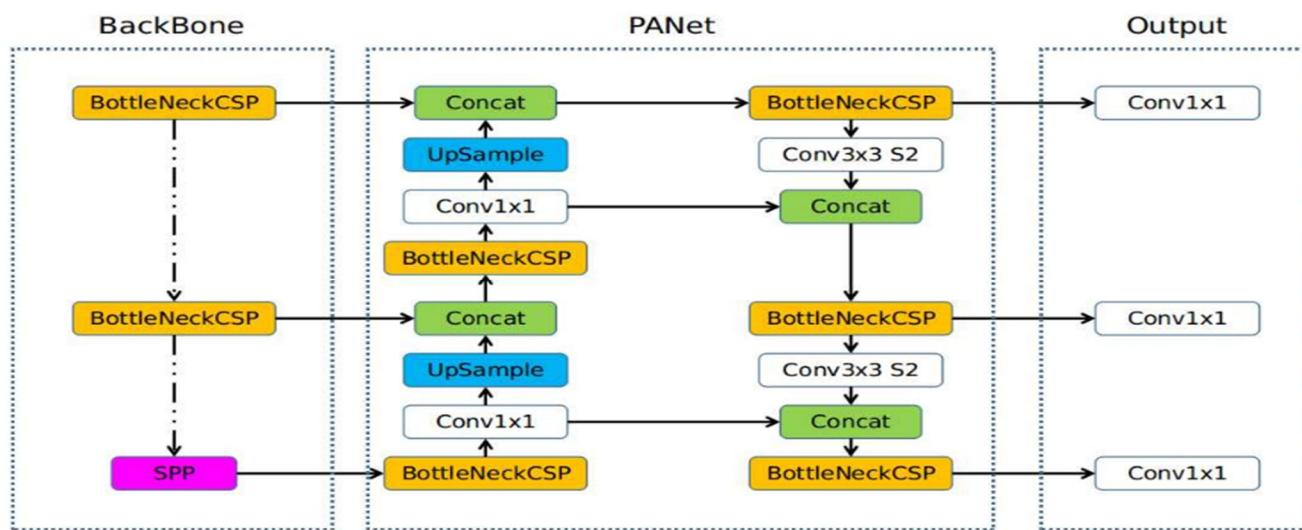


Figure 4: YOLOv5 frameworks [15].

Thayer Corbin's 2023 study, Vision-Based Autonomous Navigation and Obstacle Avoidance in Mobile Robots Using Deep Reinforcement Learning [17], presents a hybrid navigation system that integrates vision-based deep reinforcement learning (DRL) with a visual simultaneous localization and mapping (SLAM) module. The framework employs a convolutional neural network and the Proximal Policy Optimization (PPO) algorithm to learn control policies directly from raw RGB images, enabling end-to-end navigation and obstacle avoidance. To enhance localization accuracy, ORB-SLAM2 is incorporated as a geometric backbone, providing real-time pose feedback to the policy network. Experiments in simulated and real-world environments demonstrate that the combined DRL+SLAM architecture outperforms classical and vision-only navigation baselines in success rate, path efficiency, and collision avoidance. The system highlights the benefits of fusing learned perception with geometric reasoning to achieve robust and generalizable autonomy in complex indoor settings.

Ammar Almomani et al. 2023 study, Smart Shoes Safety System for the Blind People Based on (IoT) Technology [16], introduces a wearable assistive device designed to enhance the mobility and safety of visually impaired individuals. The system incorporates multiple sensors, including three ultrasonic sensors for obstacle detection, a water level sensor, a flame sensor, and a DHT11 temperature and humidity sensor, all managed by an Arduino microcontroller. It utilizes GPS for location tracking and a GSM module for emergency communication and alerts. When obstacles, water, fire, or extreme temperatures are detected, the system provides audio warnings via a BY-8001 MP3 module and vibrations to alert the user. The design aims to offer comprehensive environmental awareness and promote independent navigation. The system was evaluated through a questionnaire administered to 100 participants, with 99.1% indicating that the product meets their needs. The authors highlight the system's potential for future improvements, such as wireless connectivity, enhanced sensor range, and additional features like speed detection of approaching obstacles and integration of cameras for more detailed environment analysis.

Sangam Malla et al. 2023 study, Obstacle Detection and Assistance for Visually Impaired Individuals Using an IoT-Enabled Smart Blind Stick [19], presents an advanced electronic travel aid designed to enhance the mobility and independence of visually impaired users. The system integrates an Arduino UNO microcontroller with ultrasonic sensors, a water sensor, and a camera. It employs the Viola-Jones algorithm for real-time object detection and classification, capable of identifying obstacles such as walls, staircases, and water bodies. The stick provides multi-modal feedback through a voice playback module and vibrations, alerting users to both the presence and type of hazards. Additionally, the design incorporates Bluetooth Low Energy (BLE) for low-power communication and includes self-debugging capabilities to improve distance measurement accuracy. Experimental results demonstrated high detection accuracy across various ranges and conditions, with the system effectively reducing navigation errors and increasing user confidence during mobility.

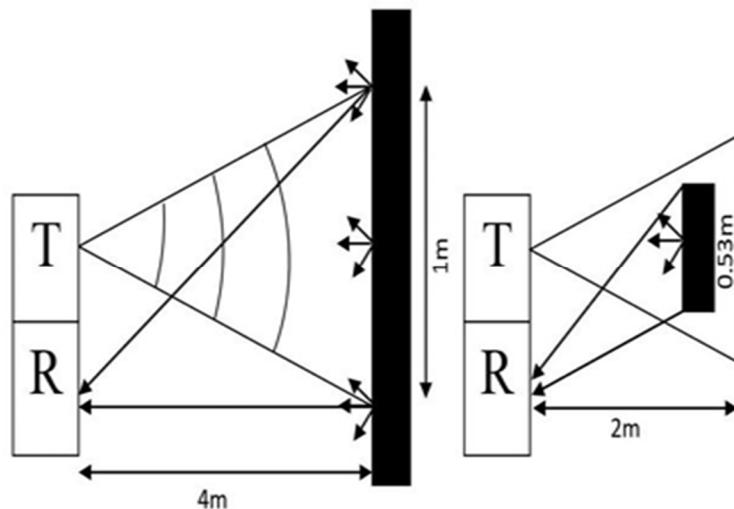


Figure 5: detection of large and small obstacles [19].

In 2024, Laurence Kenneth A. Balomaga et al. study, ProxiSense: IoT Smart Blind Stick with Voice Alerts for Obstacle and Water Hazard Detection [11], presents a sophisticated Arduino-powered assistive device designed to enhance the outdoor navigation and safety of visually impaired individuals. The core of the system integrates multiple sensors: an ultrasonic sensor for obstacle detection, a water sensor for hazard detection, and a TCS3200 color sensor for traffic light recognition with three key algorithms: the Traffic Light Crossing (TLC) algorithm for safe road crossing, the A* algorithm for optimal pathfinding to user-selected Points of Interest (POIs), and a Sliding Window algorithm for real-time weather forecasting. A significant feature is the accompanying mobile application, developed with Android Studio and Firebase, which allows users or caregivers to set destinations, view trip history, and check weather conditions. The system provides multi-modal feedback through voice alerts, sound alarms from a piezo buzzer, and vibrations from a motor. The device was rigorously evaluated against the ISO 25010:2011 software quality standard by 50 respondents (comprising visually impaired users and caregivers), achieving an overall mean score of 3.50, which is classified as "Very High" across all criteria, including Functional Suitability, Reliability, Safety, and Interaction Capability. The authors conclude that ProxiSense is a highly functional and reliable system for everyday navigation and recommend future work on integrating additional hazard detection sensors, iOS compatibility, and alternative power sources like solar-charged batteries.

In 2025, P. Vennila et al. study, Smart IoT Navigation System for Visually Impaired Individuals: Improving Safety and Independence with Advanced Obstacle Detection [20], introduces an IoT-based assistive device that integrates a smart walking stick with a smartphone application to enhance environmental perception for the visually impaired. The system employs an ESP32 microcontroller to process data from an HC-SR04 ultrasonic sensor, which detects both static and dynamic obstacles, as well as pits and uneven surfaces. A key feature is the communication between the hardware and a custom Android application, developed using MIT App Inventor, which delivers real-time, audible navigation instructions to the user via Bluetooth. The prototype demonstrated high-performance accuracy, achieving 99.54% at a distance of 250 cm and 99.03% at 450 cm, with an effective angular detection range of up to 90 degrees. The authors conclude that this system provides precise voice feedback and real-time guidance, significantly improving the confidence, independence, and safety of visually impaired users when navigating unfamiliar indoor and outdoor environments, representing a substantial advancement in accessible and cost-effective assistive technology.

III. ANALYSIS AND DISCUSSION

A. Comparative Analysis of System Architectures

The evolution of assistive technologies for the visually impaired is characterized by distinct architectural paradigms, each leveraging different hardware and software combinations. The table below provides a high-level comparison of these core technological approaches, illustrating the progression from simple reactive systems to intelligent, context-aware platforms. This shift from basic microcontrollers to sophisticated AI processors underscores the field's trajectory towards creating more descriptive and autonomous navigation aids.

Table 1: comparative analysis of system architectures

System	Core Processing Unit	Key Sensors & Technologies
Basic Sensor Based System	Arduino UNO / PIC Microcontroller	Ultrasonic, Water, Flame, Temperature
IoT-Enabled Safety System	Arduino with GSM/GPS Modules	Ultrasonic, Water Sensor, GPS, GSM
AI-Vision Assisted System	Raspberry Pi / ESP32 with Camera	Camera (YOLO/CNN), Ultrasonic
Advanced Navigation & Pathfinding System	High performance Processor	Camera, IMU, Advanced Algorithms (A*, SLAM, DRL)

B. Comparative Analysis of Algorithmic Intelligence

The progression of algorithmic complexity in assistive devices marks the evolution from simple reactive tools to proactive, intelligent guides. Early systems relied on basic threshold logic for fundamental obstacle detection, while modern implementations leverage sophisticated computer vision and pathfinding algorithms to provide descriptive environmental awareness. This shift enables not just hazard avoidance, but true navigational assistance and interaction with the environment, as detailed in the comparison below.

Table 2: comparison of algorithm in assistive system

Algorithm Type	Key Algorithms	Applications & Capabilities
Basic Threshold Logic	Simple if-else conditions	Basic obstacle detection, distance-based alerts
Computer Vision	YOLO, Viola-Jones, CNNs	Object identification, facial recognition, classification
Path Planning	A* Algorithm, Dijkstra	Optimal route calculation, navigation guidance
Advanced AI	Deep Reinforcement Learning, SLAM	Autonomous navigation, environment mapping
Sensor Fusion	Statistical analysis, data fusion	Multi-hazard detection, environmental understanding

C. Communication Frameworks and Connectivity Protocols

Effective communication, both locally and remotely, is a critical component that enhances the safety and functionality of modern assistive systems. Local protocols like Bluetooth enable real-time interaction with a user's smartphone, while cellular and GPS technologies provide a vital lifeline for emergency situations. The integration of these diverse communication layers transforms a standalone navigation aid into a connected, IoT-enabled safety device, as outlined in the following table.

Table 3: communication protocols and connectivity features

Technology	Protocol/Standard	Implementation Purpose
Short-range Wireless	Bluetooth, BLE	Smartphone connectivity, sensor data transfer
Cellular Communication	GSM, GPRS	Emergency SMS, remote communication
Global Positioning	GPS	Location tracking, navigation assistance
Internet of Things	WiFi, Cloud connectivity	Remote monitoring, data logging
Local Communication	RF Transmitter/Receiver	Stick localization, device finding

D. Sensors and the Accuracy-Range-Complexity Trade-off

The choice of sensors is fundamental and involves a constant trade-off between detection accuracy, range, environmental coverage, and system complexity.

- 1) Ubiquity of Ultrasonic Sensors: Nearly every study (Gbenga et al. [1], Memon et al. [2], Paul et al. [4], Pruthvi et al. [10], Kamble et al. [13], Almomani et al. [16], Malla et al. [19]) employs ultrasonic sensors (e.g., HC-SR04) as the primary means for obstacle detection. Their popularity stems from low cost, simplicity, and reliable performance in measuring distance to solid objects within a typical range of 2cm to 4m.
- 2) Multi-Sensor Fusion for Comprehensive Coverage: To address the limitations of a single sensor type, researchers are increasingly adopting multi-sensor frameworks. Memon et al. [2] and Almomani et al. [16] integrate a suite of sensors including moisture/water sensors, smoke/flame sensors, and Light Dependent Resistors (LDRs) to detect a wider array of hazards like puddles, fire, and low-light conditions. Paul et al. [4] use five ultrasonic sensors to provide a wider field of view, mitigating the “cone-of-vision” limitation of a single sensor.
- 3) The Shift to Vision-Based Sensing: A significant advancement is the incorporation of cameras (Shinde et al. [3], Paul et al. [4], Pruthvi et al. [10], Kamble et al. [13], Ben Attallah et al. [15]). While more computationally expensive, cameras provide rich semantic information, enabling the system to not only detect an obstacle but also identify it (e.g., a person, a car, a chair). This moves the technology from simple proximity alerts to descriptive environmental understanding. The trade-off here is high computational cost versus high informational value.

E. Algorithms and Data Fusion

Most robust designs use simple sensor fusion rules (e.g., trust ultrasonic for obstacle distance, use IMU to suppress false positives during quick hand motions). The processing algorithms define the “intelligence” of the assistive device, evolving from basic conditional logic to complex AI models.

- 1) Basic Microcontroller Logic: Early and low-cost systems (Gbenga et al. [1], Almomani et al. [16]) rely on simple, pre-programmed logic on Arduino microcontrollers. They trigger alerts based on threshold values from sensors (e.g., if distance < 30cm, beep). This is effective for basic obstacle avoidance but lacks contextual awareness.
- 2) The Dominance of YOLO for Real-Time Vision: For object detection, the YOLO (You Only Look Once) algorithm has emerged as the de facto standard (Shinde et al. [3], Paul et al. [4], Pruthvi et al. [10], Ben Attallah et al. [15]). Its key advantage is speed, making real-time processing on embedded devices like the Raspberry Pi feasible. Ben Attallah et al. [15] specifically highlight the optimization of YOLOv5 through model compression techniques (pruning, quantization) to achieve a balance of high accuracy (76.41% mAP) and high speed (89 FPS) for embedded deployment.
- 3) Advanced Navigation with SLAM and DRL: Corbin’s work [17] represents the cutting edge, applying Deep Reinforcement Learning (DRL) and Visual SLAM (Simultaneous Localization and Mapping) to navigation. This approach allows a system to not only detect immediate obstacles but also to build a map of the environment and plan an optimal path, a significant leap towards full autonomy. While currently more suited to robotics, this points to the future of highly intelligent navigation aids.
- 4) Data Fusion for Robustness: the most effective systems fuse data from multiple sources. Paul et al. [4] combine ultrasonic sensors for close-range obstacle detection with a YOLO-powered camera for object identification. Memon et al. [2] use statistical features (mean, standard deviation) from ultrasonic data to distinguish between level ground, ascending stairs, and descending stairs, demonstrating how simple data fusion can extract complex environmental features.

F. User Interaction: Audio vs Haptic

The mode of conveying information to the user is critical for usability and safety, with audio and haptic feedback being the primary channels.

- 1) Audio Feedback: Audio alerts range from simple buzzer beeps with distinct patterns (Gbenga et al. [1]) to sophisticated text-to-speech (TTS) systems (Pruthvi et al. [10], Kamble et al. [13]). TTS, using engines like eSpeak or Google TTS, can provide rich, descriptive alerts (“ar ahead”), offering a form of “artificial vision”. However, a major drawback is that continuous audio output can mask important environmental sounds (e.g., traffic noise, conversations), which is a significant safety concern.
- 2) Haptic Feedback: Vibration motors offer a discreet and non-intrusive alternative (Shinde et al. [3], Paul et al. [4], Malla et al. [19]). Haptic feedback does not interfere with the user’s auditory perception of their environment, which is crucial for situational awareness. Many modern systems (Paul et al. [4]) are now adopting a multi-modal approach, using both audio and haptic feedback to convey different levels of urgency or types of information (e.g., vibration for proximity, voice for object identity).

G. Power and Form-factor Constraints

A major challenge in designing these smart aids is balancing power and size. Simpler systems using microcontrollers like Arduino are energy-efficient and compact, but advanced features like camera-based object recognition require more powerful computers like the Raspberry Pi, which consume more battery power. This creates a difficult trade-off, as the final device must remain a lightweight, portable, and easy-to-hold tool, much like a traditional white cane. To solve this, researchers are developing optimized software that reduces the power needed for complex tasks, making it feasible to build a capable yet practical device for all-day use.

H. Evaluation Methodologies

The evaluation of these systems is primarily conducted through technical performance metrics and real-world user testing.

- 1) Technical Validation: Most studies (e.g., [1], [2], [19]) report on the sensor's effective range, detection accuracy, and system responsiveness. AI-based approaches ([3], [4], [15]) emphasize standard computer vision metrics like mean Average Precision (mAP) and processing speed (Frames Per Second- FPS) to benchmark their object detection models.
- 2) User-Centric Validation: Methods vary from controlled environment testing with users to simulated obstacle courses. Some studies ([16]) employed surveys to gauge perceived usefulness, with overwhelmingly positive feedback. A key limitation noted across many papers is the need for more extensive long-term testing with a larger cohort of visually impaired users in diverse, unstructured environments.

I. Research Gaps and Recommendations

- 1) Standardized Benchmarks: The lack of common testing standards makes it impossible to fairly compare different systems. Future work should create open bench marks with shared datasets and metrics.
- 2) Long-term User Studies: Most systems are only tested in short trials. Their real-world impact requires long-term studies with visually impaired users to prove practical usability and adoption.
- 3) Energy-aware Vision: Powerful AI models drain batteries quickly, making devices impractical. Research must focus on ultra-efficient hardware and software to enable all-day use.
- 4) Robust Data Fusion: Relying on a single type of sensor leads to failures. Systems need to intelligently combine multiple sensors (camera, ultrasonic) to work reliably in all conditions.
- 5) Privacy-preserving Designs: Camera-based systems collect sensitive visual data without addressing user privacy. Solutions must process data locally on the device and avoid storing or transmitting personal information.
- 6) Open-source Reference Implementations: Closed designs slow down progress. Publishing open-source code and designs would accelerate innovation and collaboration for the benefit of all.

IV. CONCLUSION

The development of smart assistive devices for the visually impaired has progressed from basic sensor-based systems to sophisticated AI-enhanced platforms. Foundational work demonstrated the effective use of ultrasonic sensors and Arduino microcontrollers for reliable obstacle and hazard detection [1], [8]. The field has since evolved to incorporate multi-sensor data fusion [2], [16], [19], IoT connectivity for safety and tracking [4], [13], [16], and powerful deep learning models for real-time object recognition and classification [3], [4], [15]. These models, including YOLO and CNNs, have transformed assistive devices from simple warning systems into descriptive navigation aids. However, key challenges persist, particularly in achieving real-time performance with complex AI models on resource-constrained hardware [15], [17] and the need for more comprehensive environmental understanding that includes dynamic obstacles and complex terrains [9], [18]. Addressing these limitations requires a focused effort on model optimization through pruning and quantization [15], the development of robust benchmarking frameworks [18], and the exploration of advanced navigation techniques like deep reinforcement learning [17] and visual SLAM [17]. Future research directions should also prioritize the integration of cross-modal applications, such as facial recognition for social interaction [13] and 3D point cloud modeling for indoor path planning [9]. With continued innovation in these areas, the goal of creating fully autonomous, intuitive, and universally accessible navigation systems that grant visually impaired individuals unprecedented independence is steadily becoming an achievable reality.

REFERENCES

- [1] Dada Emmanuel Gbenga, Arhyel Ibrahim Shani, and Adebimpe Lateef Adekunle, "Smart Walking Stick for Visually Impaired People Using Ultrasonic Sensors and Arduino," International Journal of Engineering and Technology (IJET), vol. 9, no. 5, pp. 3435–3447, Oct–Nov 2017.

- [2] Shahzor Memon, Mirza Muhammad Aamir, Sadiq Ur Rehman, Halar Mustafa, and Muhammad Shakir Sheikh, "Enhanced Mobility Aid for the Visually Impaired: An Ultrasonic Sensor and Arduino-Based Smart Walking Stick," *Memoria Investigaciones en Ingenieria*, no. 28, pp. 20 31, 2025.
- [3] Vidya M Shinde, Shivanjali Ninad Pawar, Nandinee Anil Wangane, Sampoorna Sampat Salve, and Swapnali Rajendra Wandhekar, "Smart assistive stick for visually impaired people," *World Journal of Advanced Engineering Technology and Sciences*, vol. 14, no. 2, pp. 110–116, 2025.
- [4] Dipta Paul, S M Aliuzzaman, MD. Meraj Ali, Abatesham Rabbi, Md Fahim Khan, Niamul Alam, MD Tanvir Shakil, Dewan Saiful Islam, and Md Ariful Azad, "AI-Enhanced Multifunctional Smart Assistive Stick for Enhanced Mobility and Safety of the Visually Impaired," *Journal of Computer Science and Technology Studies*, vol. 7, no. 1, pp. 283–301, 2025.
- [5] Ahmet Karagoz and Gokhan Dindis, "Object Recognition and Positioning with Neural Networks: Single Ultrasonic Sensor Scanning Approach," *Sensors*, vol. 25, no. 1086, 2025.
- [6] K. Ramarethnam, Mrs K. Thenkumari, and P. Kalaiselvan, "Navigation System for Blind People Using GPS & GSM Techniques", *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, vol. 3, no. Special Issue 2, pp. 399–405, Apr. 2014.
- [7] S. Singh and Dr. B. Singh, "Intelligent Walking Stick for Elderly and Blind People", *International Journal of Engineering Research & Technology (IJERT)*, vol. 9, no. 03, pp. 19–22, Mar. 2020.
- [8] T. Tirupal, B. Venkata Murali, M. Sandeep, K. Sunil Kumar, and C. Uday Kumar, "Smart Blind Stick Using Ultrasonic Sensor," *Journal of Remote Sensing GIS & Technology*, vol. 7, no. 2, pp. 34–42, May–Aug. 2021.
- [9] L. Diaz-Vilarino, P. Boguslawski, K. Khoshelham, H. Lorenzo, and L. Mahdjoubi, "Indoor Navigation from Point Clouds: 3D Modelling and Obstacle Detection," *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, vol. XL-B4, pp. 275 281, 2016.
- [10] P. S, P. S. Nihal, R. R. Menon, S. S. Kumar, and S. Tiwari, "Smart Blind Stick using Artificial Intelligence," *International Journal of Engineering and Advanced Technology (IJEAT)*, vol. 8, no. SS, pp. 19–22, May 2019.
- [11] Laurence Kenneth A. Balomaga, Dr. Dan Michael A. Cortez, Charmaine Allyson P. Reyes, Criselle J. Centeno, Raymund M. Dioses, and Leisyl M. Mahusay, "ProxiSense: IoT Smart Blind Stick with Voice Alerts for Obstacle and Water Hazard Detection," *2024 IEEE Conference on Innovative Data Communication Systems and Engineering (ICIDCSE)*, pp. 1–7, 2024. DOI: 10.1109/CISES63760.2024.1091035.
- [12] N. Loganathan, K. Lakshmi, N. Chandrasekaran, S. R. Cibisakaravarthi, R. Hari Priyanga, and K. HarshaVarthini, "Smart Stick for Blind People," *2020 6th International Conference on Advanced Computing & Communication Systems (ICACCS)*, pp. 65–67, 2020. DOI: 10.1109/ICACCS48705.2020.9074374.
- [13] Mrs. K.P. Kamble, Shambhavi Shende, Ved Sahu, Karan Bariya, and Gargi Deosthali, "Voice Assisted Smart Blind Stick," *2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC)*, pp. 1565–1569, 2024.
- [14] Romteera Khlaikhayai, Chavana Pavaganun, Benja Mangalabruks, and Preecha Yupapin, "An Intelligent Walking Stick for Elderly and Blind Safety Protection," *Procedia Engineering*, vol. 8, pp. 313–316, 2011. DOI: 10.1016/j.proeng.2011.03.058.
- [15] Ahmed Ben Attallah, Yahia Said, Mohamed Amin Ben Attallah, Mohammed Albekairi, Khaled Kaaniche, and Sahbi Boubaker, "An effective obstacle detection system using deep learning advantages to aid blind and visually impaired navigation," *Ain Shams Engineering Journal*, vol. 15, p. 102387, 2024. DOI: 10.1016/j.asej.2023.102387.
- [16] Ammar Almomani, Mohammad Alauthman, Amal Malkawi, Hadeel Shwaihet, Batool Aldigide, Donia Aldabeck, and Karmen Abu Hamoodeh, "Smart Shoes Safety System for the Blind People Based on (IoT) Technology," *CMC*, vol. 76, no. 1, pp. 415-434, 2023. DOI: 10.32604/cmc.2023.036266.
- [17] Thayer Corbin, "Vision-Based Autonomous Navigation and Obstacle Avoidance in Mobile Robots Using Deep Reinforcement Learning," 2023.
- [18] Mustafa Haider Abidi, Arshad Noor Siddiquee, Hisham Alkhalefah, and Vishwaraj Srivastava, "A comprehensive review of navigation systems for visually impaired individuals," *Heliyon*, vol. 10, no. 10, p. e31825, 2024. DOI: 10.1016/j.heliyon.2024.e31825.
- [19] Sangam Malla, Prabhat Kumar Sahu, Srikanta Patnaik, and Anil Kumar Biswal, "Obstacle Detection and Assistance for Visually Impaired Individuals Using an IoT-Enabled Smart Blind Stick," *Revue d'Intelligence Artificielle*, vol. 37, no. 3, pp. 783-794, 2023. DOI: 10.18280/ria.370327. [20]
- [20] P. Vennila, V. Alamelu Mangayarkarasi, K. Vinayakan, and G. R. Gnana Raja, "Smart IoT Navigation System for Visually Impaired Individuals: Improving Safety and Independence with Advanced Obstacle Detection," *International Journal of Computational Research and Development*, vol. 10, no. 1, pp. 17-23, 2025

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)