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Abstract: Accurate dynamic analysis of beams supported on soil is essential for the safe and economical design of vibration-
resistant and earthquake-resistant structures. Earlier contributions, such as the semi-analytical framework developed by 
Guenfoud, Bosakov, and Laefer (2009), provided reliable predictions for beams on elastic half-spaces with inertial properties. 
However, these formulations are mathematically intensive and often difficult to apply directly in engineering practice. 
Conventional soil models, including Winkler’s subgrade reaction method and continuum-based elastic models, either 
oversimplify soil behaviour or involve complex derivations, further limiting their practical utility. The present study introduces a 
modified version of the semi-analytical method for beams resting on an elastic half-space with inertial properties, reformulated 
to reduce mathematical complexity without compromising accuracy. The approach incorporates soil inertia effects while 
enabling more straightforward evaluation of displacements under vertical loading. To illustrate its effectiveness, the dynamic 
response of a beam measuring 10 m in length, 1 m in width, and 0.5 m in depth is investigated. The corresponding 
Eigenfrequencies and natural shapes of the beam are determined, and the results show close agreement with those obtained 
from established analytical methods. This refinement not only simplifies computational effort but also makes the analysis more 
accessible for engineering applications. The method thus provides a practical and reliable tool for studying beam–soil interaction 
dynamics, with direct relevance for the design of safer and more cost-effective structural systems. 
Keywords: Response function, Inertial soil effects, Flexural element, Natural frequencies, Mode shapes, Vibration response, 
Transient response,  
 

I. INTRODUCTION 
A fundamental solution represents an analytical expression describing how a solid responds at any location due to a static or 
dynamic point load applied elsewhere. Such formulations, often referred to as influence functions, serve as essential building blocks 
for developing more complex solutions. During the 19th and early 20th centuries, mathematicians and engineering scientists laid the 
theoretical foundation and introduced these solutions, commonly known as Green’s functions, which enabled significant progress in 
the field of soil–structure interaction (SSI). 
Several techniques exist for analysing beams supported on elastic soils. Among them, two are particularly significant: the subgrade 
reaction method and the elastic continuum (modulus of elasticity) approach. The Winkler subgrade model idealizes the soil as a 
series of independent springs, where deflection at a point depends solely on the local pressure and is unaffected by adjacent loads. In 
this sense, the beam is considered to rest on discrete, infinitely long springs defined by a subgrade modulus. By contrast, the elastic 
continuum model accounts for the influence of neighbouring soil regions through Boussinesq’s load–displacement relation for a 
homogeneous, isotropic half-space. Here, the soil is represented using material parameters such as elastic modulus and Poisson’s 
ratio. While this model more accurately reflects soil behaviour, solving its governing differential equations can be computationally 
demanding, often requiring approximate solution strategies. Over the years, various methods have been developed for computing the 
dynamic response of soil–foundation systems, which can be broadly grouped into six categories: 
1) Simplified procedures – Based on physical approximations and fundamental principles of dynamics and wave propagation. 

Solutions are often presented in the form of design charts and graphs, making them easily usable by practicing engineers, 
especially for embedded foundations and piles. 

2) Semi-analytical formulations – Applied to surface foundations of varying shapes and stiffness. The contact surface is 
discretized, dynamic impedance functions are determined for unit loads, and complete solutions are constructed using Fast 
Fourier Transform (FFT) schemes. 

3) Analytical methods – Developed under the assumption of no shear or normal tractions at the soil–foundation interface during 
vertical or rocking motion. These methods rely on solving integral transforms of dual wave equations for layered systems or 
half-spaces. 
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4) Dynamic finite element models – Used to capture responses of foundations in multi-layered soils or in the presence of 
inhomogeneities. Unlike static FEM, special boundary conditions such as absorbing or viscous boundaries are introduced to 
prevent spurious wave reflections and to simulate far-field damping. 

5) Boundary element methods – Semi-analytical techniques that transform the problem into a system of algebraic equations 
relating nodal forces and displacements, while satisfying reciprocity and radiation conditions. 

6) Experimental approaches – Laboratory and field studies have been widely conducted to evaluate soil dynamics. These tests not 
only provide direct insight into soil–foundation response but also validate theoretical and numerical predictions. They are 
applicable for both surface and embedded foundations and often require less analytical complexity. 

In this study, a semi-analytical procedure has been employed to derive the required structural response, combining computational 
efficiency with the ability to account for soil inertia effects. 
 

II.  PROBLEM APPROACH 
In this formulation, the natural frequencies, vibration modes, and load-induced response of a beam supported by an elastic medium 
with inertia are evaluated on the basis of Lamb’s problem. The procedure builds upon the method of Zhemochkin and Sinitsyn [17], 
where the beam is discretized into uniform elements of length ci width bi. This line of development was further advanced by 
Guenfoud et al. [3].  
In the present study, the supporting soil is modeled as a homogeneous, isotropic elastic half-space that includes inertial effects. For 
simplicity, surface curvature, damping characteristics, and friction within the beam–soil contact region are not considered. The 
beam itself, with total mass m and flexural rigidity EI, is assumed to rest directly on the half-space and subjected to external vertical 
excitation (Fig. 1).  
 

 
Fig.1. The beam with mass m and flexural rigidity EI rest directly on the half-space and subjected to external vertical excitation 

 
Instead of assuming continuous beam–soil contact, the model idealizes the interaction as discontinuous, with each element 
connected to the half-space through a rigid vertical link at its midpoint. 
 

 
Fig.2. The continuous contact surface of beam is approximated by a series of discrete rigid vertical connectors, each positioned at 

the centre of the corresponding beam element. 
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A detailed force spring rotation diagram of fig.(2) is given in figure (3) 

 
Fig. 3. Discretized representation of the beam–half-space system illustrating the applied forces and unknown parameters of the 

indeterminate model. 
 
The normal equations according to Zhemochkin and Sinitsyn [17] take the form of Eq. (1) 
∑ (୬
୨ୀଵ v୧୨ + y୧୨)X୨(t) − ∑ y୧୨J୨(t) +୬

୨ୀଵ λ୧ɸ଴(t)+u଴(t)+Δ୧୮  =0 ;  i=1,….,n 
∑ [(୬
୨ୀଵ X୨(t)− J୨(t)]λ୨ = I୷ɸ̈0(t)                                                                                           (1)     

∑ [(୬
୨ୀଵ X୨(t)− J୨(t)]  = mü0(t) 

In this equation the unknowns are  Xi(t)   , Φ0(t),  u0(t) 
 Where, 
Xi(t)    - liaison efforts ; Φ0(t) - angle of rotation ; u0(t)  - vertical displacement        vij     - Green’s function  defining the 
displacement of the  surface  of a half-space  at the point i due to  the unitary force  Rj = 1 applied at the point j of the same surface ; 
ΔiP   - a  function characterizing deflection of the beam at the point i due to external loads ; Pp     - external load applied in the point 
p of  the beam  : Jk(t)    - inertia forces. 
 
The free vibrations of the beam are supposed to be in harmonic form, which can be expressed as Eq. (2) 
Xk (t) =Xk eiωt  
Φ0 (t) = Φ0 eiωt  ;       
u0 (t) =u0 eiωt ;                                                                                                                          (2) 
Jk (t) =  Jk eiωt                                          
 
Where Xk, ɸ0, u0, Jk are amplitude values of Xk(t), Φ0(t), u0(t), and  Jk(t), respectively. By substituting these values in eq. (1) we will 
get the following equation                                                                            
∑ (୬
୨ୀଵ v୧୨ + y୧୨)X୨ −∑ y୧୨J୨ +୬

୨ୀଵ λ୧Φ଴+u଴  =0;     i=1,….,n 
∑ [(୬
୨ୀଵ X୨ − J୨]λ୨ = −ωଶI୷Φ଴                                                                                                   (3) 

∑ [(୬
୨ୀଵ ௝ܺ −  ௝]  = −ωଶmu0ܬ

 
 
A. Green’s function for the vertical displacements 
Green’s function defining the vertical displacements of a half- space surface with inertial properties due to the action of external 
harmonic load Peiωt is given by 
 

V=୔ୣ
౟ಡ౪ 

ଶ஠ୋబ
 [Iξ +iπχKJ0(χr)]                                                                                                       (4) 

I ξ =∫
୩మஞ஑
୊(ஞ) J଴

ஶ
଴ (ξr)dξ                                                                              (5) 

K =ଶ୩
మ஑భ(ଶ஧మି୩మ)మ

ି୊ᇲ(஧)୤(஧)
                                                                                   (6) 
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Where 
F(ξ)=(2ξ2-k2)2-4ξ2 αβ     
f(ξ)=(2ξ2-k2)2+4ξ2 αβ       
  χ is the root of equation   f(ξ)=0 
 
According to Guenfoud et al. [3] after simplifications, Eq. (4) becomes 

v= ି୩୔ୣ
౟ಡ౪ 

ଶ஠ୋ଴
 {(I21+I3) +i[ (I1 +I22)  

஠஧୏୎బ(஧୰) 
୩

] }                                                             (7) 
In which 

I1       =         ∫ Φଵ (θ)j଴(kθr)dθଵ/ଶ
଴                                 (8) 

I21       =       ∫ Φଶ (θ)j଴(kθr)dθଵ/ଶ
଴                                  (9) 

I22      =       ∫ Φଷ (θ)j଴(kθr)dθଵ/ଶ
଴             (10) 

I3        =       ∫ Φସ (θ)j଴(kθr)dθଵ/ଶ
଴                          (11) 

 
Where 
kθ =ξ     ;     θ = ඥ(1− −଴)/2(1ݒ2  (଴ݒ

Φ 1(θ) = ஘ඥ଴.ଶହି஘మ

(ଵିଶ஘మ)మାସ஘మඥ଴.ଶହି஘మ  × ඥଵି஘మ 
                  0 ≤θ≤ 0.5 

Φ 2(θ) = ି஘(ଵିଶ஘మ)మඥ஘మି଴.ଶହ
ିସ஘ర(஘మିଵ) ା[ିଵା଼(஘మାଷ஘రାଶ஘ల) ] 

             0.5≤θ≤1       

Φ 3(θ) = ିସ஘య(஘మି଴.ଶହ)ඥଵି஘మ

ିସ஘ర(஘మିଵ) ା[ିଵା଼(஘మାଷ஘రାଶ஘ల) ] 
                 0.5≤θ≤1         

Φ 4(θ) = ି஘ඥ஘మି଴.ଶହ

ସ஘మඥ஘మିଵ×ඥ஘మି଴.ଶହି(ଵିଶ஘మ)మ   
                1≤θ≤∞     

The values of I1, I21, I22 and I3 are determined by using Gaussian quadrature with modification in a way similar to that used by 
Guenfoud et al. [3]. 
Considering the external load, Peiωt =Pcos (ωt) and taking into account only the real part of Eq.(7) then the value of displacement 
becomes equal to Eq. (12) 
   v=  (I21+I3)                                                                                                                          (12) 
For unit external load equation (12) can be written as 
   v=ି୩ୡ୭ୱ (ன୲) 

ଶ஠ீబ
 (I21+I3)                                                                                                           (13) 

For application of the proposed approach, Eq. (5) should be integrated over the area of the loaded element with dimensions 
b and c Therefore, the variable r becomes;     
 r= ඥݔଶ +  ଶ then equation (13) becomesݕ

 V=ି୩ ୡ୭ୱ(ன ୲) 
ଶୠୡ஠ୋబ

∫ ∫ [  Iଶଵ(ඥxଶ + yଶ )ଢ଼మ
ଢ଼భ

ଡ଼మ
ଡ଼భ

+ Iଶଵ(ඥxଶ + yଶ )  ]dxdy                         (14)  

Here the expression is divided into the magnitude bc, as loading is considered uniformly distributed across a rectangular element 
with dimension b and c 

 
Fig.4. Geometry of the loaded element showing the area over which the integration should                      occur 
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In this case as r→ 0, the point i coincide with the point j and thus above equation is integrated over the area of the loaded element 
assuming a uniformly distributed load. This is shown in following equation 
v = ି୩ ୡ୭ୱ(ன )୲ 

ଶୠୡ஠ୋబ
∫ ∫   [ Iଶଵ൫ඥ(x− ξ)ଶ + ηଶ ൯+ Iଷ( ඥ(x− ξ)ଶ + ηଶ )ିୠ/ଶ

ିୠ/ଶ
ୡ/ଶ
ିୡ/ଶ ] dηd ξ              (15)                                           

Certain portions of the integrals I21 and I3 in formula can be evaluated directly, whereas the remaining terms are too complex for 
straightforward computation. To address this difficulty, the method proposed by Johnson [18] is employed, where the Cartesian 
coordinate system is transformed into polar coordinates. This transformation enables the calculation of displacements at a point 
located diagonally with respect to the origin (Fig. 4). Incorporating Johnson’s procedure modifies Eq. (15) into the form presented 
as Eq. (16). 

V=ିଶ୩ ୡ୭ୱ(ன ୲)
ୠୡ஠ୋబ

{∫ ∫ [
ౘ
మୡ୭ୱ஘
଴

ୟ୰ୡ୲ୟ୬ቀౙౘቁ 
଴ ݔ)ଶଵ(ඥܫ  − ଶ(ߦ + −ଶ + Iଷ൫ඥ(xߟ ξ)ଶ + ηଶ ൯ ]}rdrdΦ                                                                                                                             

     +∫ ∫ [
ౘ
మୡ୭ୱ஘
଴

ୟ୰ୡ୲ୟ୬ቀౙౘቁ 
଴  Iଶଵ(ඥ(x− ξ)ଶ + ηଶ ) + Iଷ(ඥ(x− ξ)ଶ + ηଶ  )] } rdrdΦ                (16) 

In this case, r≠0    we divides the loaded element into 16 smaller elements as in figure (5) 
Consequently, the displacement of the half-space surface accounting for inertial effects can be represented by equation (17). 
 
V=ି୩ୡ୭ୱ(ன୲)

ଶ஠ୋ
ቄ ଵ
ଵ଺

 ∑ [Iଶଵ(ଵ଺
୬ୀଵ ඥ(x − ξ୬)ଶ + η୬ଶ  )  + Iଷ൫  ඥ(x− ξ୬)ଶ + η୬ଶ  ൯ቅ             (17)    

                                               
 

 
Fig.5.The loaded element is divided into smaller elements 

 
B. Validation of present approach 
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B                                                      C 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Comparison of results :(A) by present approach, (B) Georgiadis [19].and (C) Zeng [20] 
 
Figure 6 illustrates how displacements on the half-space surface vary with time at an arbitrary point. It can be observed that both 
radial and vertical displacements approach infinity when the Rayleigh wave arrives, corresponding to a specific value of the 
dimensionless time parameter τ. From the present solution, this critical point occurs at θ=χ=1.07236, where the singularity appears. 
This value coincides with those reported in the literature [19, 20], thereby supporting the validity of the current approach. 
 
The graphical plots of functions I1, I21, I22 and I3 are presented below. The results show close agreement with the findings of 
Guenfoud et al. [3] (see Fig. 11). 
 

 
Fig .7. Graphic representation of I1 
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Fig 8. Graphic representation of I21 

 

 
Fig .9. Graphic representation of I22 

 
 

 
Fig .10. Graphic representation of I3 
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Fig .11. Graphic representation of I1, I21, I22 and I3 obtained by Guenfoud et.al [3] 

 
According to Guenfoud et al.[4] the value of I21+I3 can be determined approximately by using equation (18) 
I21+I3= -0.06387/kr+0.13+0.14ln(1.07236k)+0.14ln(r)+ 0.15278kr + [0.15k2-   0.04k2ln(1.07236k)   - 0.04k2 ln(r)]r2  - 0.019k3 r3  + [-
0.00044k4  +  0.0029k4ln(1.07236k) + 0.0029k4 ln(r)]r4                    + 0.000898k5r5 + [0.00012k6 – 0.000094 k6ln(1.07236k) -
0.000094 k6ln(r)] r6 – 0.000021k7r7               +  [-3.035×10-6k8 + 1.69×10-6k8ln(1.07236k)+ 1.69×10-6k8ln(r) ]r8 + 2.99×10-7k9r9 + 
[4.14×10-8k10  – 1.94×10-8k10ln(1.07236k) – 1.94×10-8k10ln(r)]r10                                                                    (18) 
However this equation (Eq. 18) is not valid when r = 0. 
 
C. System Discretization 
Since the displacements of the surface of a half-space are considered equal to the beam deflection (i.e. yk=xk) the inertia force Jk can 
be given by Eq.(19) 

Ji= -Mi
ୢమ୷౟(୲)
ୢ୲మ   = -Mi   

ୢమ୴౟(୲)
ୢ୲మ

 =    Mi ωଶcos(ωt)vi                                                                                        (19)  

Vi= ି୩
ଶ஠ீ଴

 ∑ nX୨F୧୨୬
୨ୀଵ     , here Fij=I21+I3 

 
Taking into account the preceding formulas defining the system parameters (3), the system can now be represented in the following 
matrix form. 
 
 
                                                                                                                         (20)                                                                                                                            
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                                                                                                                                          (21) 
 
 
 
 
 
 
 
 
Here, Aij denotes the matrix terms obtained through the mathematical transformation after substituting the preceding parameter 
expressions into system (3).  
The beam’s Eigenfrequencies are identified by solving the determinant equation of the system matrix (21). To derive the 
corresponding mode shapes of a beam resting on an inertial half-space, the natural shape associated with each Eigenfrequency must 
be determined. For this purpose, the unknown X1 in the system is fixed to a unit value, the first equation is removed, and the 
modified system of n+1 equations with n+1 unknowns is solved. The resulting mode shapes of the beam are then obtained from 
equation (22). 
Vi= ି୩

ଶ஠ீ଴
 ∑ X୨F୧୨୬

୨ୀଵ        ; i=1, 2, 3… n                                                                            (22) 
 

III. ANALYSIS OF BEAM 
Material properties used for present analysis are as follows 
Shear modulus of soil, G0 =1.125×107N/m2 
Poison’s ratio, ν0 = 1/3 
Density of soil, ρ =2000kg/m3 

Young’s modulus of beam, E = 2.1×1010N/m2 

Total length of beam, l = 10m 
Width of beam, b = 1m 
Height of beam, h = 0.5m 
Total mass of beam, m = 12500kg 
Mass of each section of beam, Mi =1250kg  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Beam on the surface of an elastic half-space with inertial properties divided into 10 elements 
 

In the present analysis the beam is divided into 10 equal parts and the point f embedment coincides with the centre of mass (Fig.12). 
Values for the deflections yij of the beam due to the unit force can be determined by the multiplication of the moment diagrams.  
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IV. RESULTS AND DISCUSSIONS 
The natural shapes of beam resting on non inertial soil with Discretely Spaced Elastic Supports obtained by NamGyu Park et al. [24] 
are shown in Fig 13. 

 
Fig. 13. Irregular natural shape of a beam with discretely placed elastic support (a) First mode (b) Second mode (c) Third mode (d) 

Fourth mode 
 
The mode shapes of a beam on non inertial soil with continues elastic support obtained by J C O Nielsen [25] is shown in Fig. 14 
 

 
Fig. 14 Mode shapes of beam on elastic foundation 
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The values of Eigenfrequencies determined by using I21 and I3 values obtained from integration are, 
ω1 =50, ω2 =60, ω3 =123.4455, ω4 =150 , ω5 =216.3, ω6 =248.92 , ω7 =300.174 
The values of Eigenfrequencies obtained by Guenfoud et.al [3] are, 
ω1 =57.5535, ω2 =112.7495, ω3 =229.3025, ω4 =280.8825, ω5 =291.5572, ω6 =303.9353 
The natural shapes of beam corresponding to each Eigenfrequency obtained are shown in Following figures. 
 

 
Fig. 15. Natural shape of beam for ω =50 

 

 
Fig. 16. Natural shape of beam for ω =60 
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Fig. 17. Natural shape of beam for ω =123.4455 

 

 
Fig. 18. Natural shape of beam for ω =150 
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Fig. 19. Natural shape of beam for ω =216.3 

 

 
Fig. 20. Natural shape of beam for ω =248.92 
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Fig. 21. Natural shape of beam for ω =300.174 

 
The values of Eigenfrequencies obtained by using Eq. (14) are  
ω1 =47.7,  ω2 =60.54 ,  ω3 =102.82,  ω4 =141.5, ω5 =232, ω6 =304 , ω7 =350; 
The natural shapes corresponding to each Eigenfrequency are shown in Fig. 11.  
 

 
Fig. 22. Natural shape of beam for ω =47.7 
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Fig. 23. Natural shape of beam for ω =60.54 

 

 
Fig. 24. Natural shape of beam for ω =102.82 
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Fig. 25. Natural shape of beam for ω =141.5 

 
 

 
Fig. 26. Natural shape of beam for ω =232 

-0.000015

-0.00001

-0.000005

0

0.000005

0.00001

0.000015

-5 -4 -3 -2 -1 0 1 2 3 4 5
V 

L 

ω 4=141.5 
 

-0.000006

-0.000004

-0.000002

0

0.000002

0.000004

0.000006

0.000008

-5 -4 -3 -2 -1 0 1 2 3 4 5

V 

L 

ω 5=232 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

114 
 

114 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
Fig. 27. Natural shape of beam for ω =304 

 

 
Fig. 28. Natural shape of beam for ω =350 

 
The natural shapes of beam obtained is similar to that obtained for beam resting on non inertial soil with Discretely Spaced Elastic 
Supports obtained by NamGyu Park et al. [24]. 
   

V. CONCLUSION 
This paper presents a semi-analytical approach for the dynamic analysis of beams resting on an elastic half-space with inertial 
properties. The method is developed to evaluate the Eigenfrequencies, mode shapes, and dynamic response of the beam subjected to 
external excitation.  
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The analysis considers the interaction forces within the contact zone, which are essential for determining other physical parameters. 
The formulation is based on Green’s functions to represent the displacements in the contact region. Incorporating the inertial effects 
of the half-space, also known as Lamb’s problem, introduces mathematical challenges, particularly due to instabilities associated 
with hypergeometric functions. The present work overcomes these limitations and provides stable, reliable expressions for the 
solution. Results show that the computed mode shapes of the beam are irregular, and the proposed semi-analytical method is both 
computationally efficient and practical for engineering applications. Furthermore, the approach can serve as an approximation 
function in numerical models, enabling its application to more complex problems of wave propagation and dynamic soil–structure 
interaction. 
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