

13 X October 2025

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1095 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

A Smart Shopping Assistant with ML Based Price
Prediction, Alerts and Deal Predictions

P. Keerthika1, K. Padma2, T.T.R. Ranganayagi3, G. Rajeswari4

1, 2, 3UG Scholar, 4Assistant Professor/CSE, Department of Computer Science and Engineering, K.L.N. College of Engineering,
Pottapalayam, Sivagangai

Abstract: Prediction is an advanced and intelligent system created to help online customers make informed purchases and save
money. The core purpose of this system is to predict future product prices, seasonal discounts, and potential deals using machine
learning techniques to provide customers the timely information needed to buy at the right time. The system uses advanced
model systems such as Long Short-Term Memory (LSTM) networks, that are very effective in the analysis of the previous price
patterns and ability to predict or forecast future patterns more accurately.The system collects real-time data using the
BeautifulSoup and Requests libraries for web scraping in order to gather data, including product name, price, discounts, and
availability, from various e-commerce selling platforms. The collected real-time data is then stored and managed into the
MongoDB system. MongoDB is a NoSQL database, which allows for flexible data and effective management of large amounts
of ongoing real-time data updates. Automated personalized recommendations and smart alerts provided by the assistant is built
on the user's preferences, browsing history, and purchasing history, to make the user aware of changing prices, current deals,
or the best time to make a purchase.To further add to the shopping experience, the system includes predictive analytics forms of
automation and recommendations. Using predictive analytics, the system learns from user interaction with the site and the
market.
Keywords: Predictive analytics, web scraping, machine learning, price prediction, smart alerts, recommendation systems, and e-
commerce optimization.

I. INTRODUCTION
In the present digital era, the nature of consumer purchasing has shifted towards online shopping. Consumers are very frequently
active on e- commerce platforms—such as Amazon, Flipkart, and many more—for the purchase of daily or regular items, including
electronics and food products. Online shopping is now an integral part of day-to-day life due to ease of access, convenience, and
availability of many choices. Nonetheless, one major hurdle for consumers is predicting the price of a product or an item as it varies
significantly due to changing consumer demand, competitive pricing from retailers, promotional or seasonal sales, and other
unpredictable pricing factors, which make it difficult to assess the optimal time to buy.
Existing online shopping services offer price listings or comparisons of products and items but do not include the capability of
future pricing or product discounts notification. Ultimately, users miss out on potential savings or overspend on item pricing. Thus,
there is a large opportunity to create a more intelligent product price comparison application that will analyze previous and current
prices, predict prices in the future and alert consumers of a better time to buy.The proposed system, A Smart Shopping Assistant
with Machine Learning-Based Price Prediction, Alerts, and Deal Prediction, addresses these issues. It integrates predictive analysis,
automation, and personalization. Using machine learning algorithms, it analyzes large amounts of historical price data to predict
discounts or price drops.
Within the framework of the system are time-series forecasting models, namely LSTM. These models can extract short-term
fluctuations and long-term seasonal price trends. By leveraging the time-series forecasting models with the available historic
product datasets, the system can more accurately anticipate future price trends.
Data is key to reliable predictions. The assistant is designed to automatically scrape real-time product data containing price, review
and rating information using various web scraping libraries such as BeautifulSoup and Requests. Then, the various datasets are
manipulated with various other libraries like Pandas and NumPy to remove duplicate variables, handle null values, and standardize
variables. The final cleaned datasets are compiled into a structured format into a database, typically MongoDB, to enable a fast and
efficient way to query and analyze the data for continual model training and predictive analysis.
In addition to predictive analytics, the system enhances user engagement through personalized recommendations and intelligent
alerts. The system leverages content-based filtering to recommend products that are comparable to products the user has purchased
or previously viewed on the platform.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1096 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

This alert module pushes real-time alerts through email, SMS, or in-app notifications when a predicted price drop or new deal is
available. This way, users receive an alert when there is a current deal, instead of receiving an alert for a deal that has already
expired.
The Smart Shopping Assistant is designed for scalability and efficiency with multiple components for data collection, preprocessing,
applying machine learning model, alert generation, and data visualization. The dashboard interface uses visualization libraries such
as Matplotlib and Plotly to display real-time price information, predicted trends, and information about deals in simple and
understandable forms. Using this dashboard, users will be able to track price changes over time, compare platforms, and make
informed purchase decisions.
Moreover, the system utilizes ongoing learning, in which prediction models are retrained frequently with updated data. This allows
for improved accuracy in the forecasts and maintains the effectiveness of the model as the market evolves. The automated systems
used in combination with machine learning reduce the need for manual monitoring while providing intelligent assistance for the
online shopper.

II. METHODOLOGY

The proposed Smart Shopping Assistant with Machine Learning-Based Price Prediction, Alerts, and Deal Prediction takes
advantage of multiple steps, such as data collection, data preprocessing, predictive modeling, recommendations, and alert generation.
The original workflow is building an automated working environment for real-time price detection, prediction, and notification to
consumers, ensuring that it is accurate and functioning as designed.
The Smart Shopping Assistant will initially crawl product data from e-commerce websites, such as Amazon and Flipkart, consisting
of relevant information (e.g. name, category, price, ratings, availability). The web scraping packages, BeautifulSoup and Requests,
will be utilized to automatically crawl product data over a predetermined time, following scheduling routine to allow the dataset to
be as current as possible to capture any changes to pricing. After crawling the data set, the data set will require pre-processing to
account for duplicity and missing values to contain either complete missing data or removed to normalise the standard format of
numerical data and text. Following prep processing state, transformation and normalisation will take place to determine if the
training set is useful. Once cleaned, the data will be properly stored in the MongoDB database to efficiently run the Smart Shopping
Assistant and easily access and analysis of data.
Upon data preprocessing steps, machine learning models are trained to forecast price fluctuations based on recurring price patterns
from historical data. The models utilize statistical and deep learning approaches such as Long Short Term Memory (LSTM) to
analyze time-series data. LSTM has the advantage of capturing complex, non-linear price fluctuations of a product. To improve the
forecasting performance and stability of the machine learning models, a hybrid and ensemble model is used to combine the ARIMA
and Prophet models. The models are used to make predictions, which inform the users regarding the best time to purchase products,
helping them prepare for upcoming discounts and deals before they happen.
After the predictions are generated, the system applies a recommendation and alerting mechanism to better facilitate user
engagement. The recommendation module utilizes content-based filtering using TF-IDF and cosine similarity to recommend
products that are similar to products previously browsed by users and their preferences. Meanwhile, the alert system continuously
monitors the predicted data and automatically alerts the user through an email, sms or app, when there is a deal or price decline
price drops over the user's threshold for significant savings. This allows users to benefit from offers proactively instead of
reactively.
Finally, an interactive dashboard displays all essential outputs, including live prices, forecasted trends, and personalized product
recommendations. Visualization tools such as Matplotlib and Plotly are used to present this information clearly and intuitively. The
system also incorporates a continuous learning mechanism that retrains the models with newly collected data, enabling it to adapt to
evolving market behaviors and maintain long-term accuracy. Through this combination of automation, predictive Finally, an
interactive interface displays all critical outputs, including live prices, projected trends, and tailored product suggestions. To
communicate this information clearly and intuitively, there are several visualization tools, including Matplotlib and Plotly.
Additionally, the system has a continual learning model that retrains the models with the newly collected data, which allows it to
become accustomed to the changing market behaviors and provide reliable predictions long-term. All together, when combining
automation, predictive analytics, and user personalization, the Smart Shopping Assistant provides a reliable, intelligent, and time-
efficient experience for today's online shopper.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1097 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig.1 Flow Diagram

III. SYSTEM DESIGN
The Smart Shopping Assistant is developed as a minimal, service-oriented platform that deploys functionality as separate but
interdependent components. This composable design establishes a data-centric workflow in which data move from ingestion to
analysis and predictions to user-facing display. At the input stage, the system employs lightweight web scrapers and API
connectors that continue to ingest product specifications, like prices, ratings, and stocktag status, from multiple e-commerce sites.
The data ingestion methods pipeline the data ingestion, separating data collection from data processing allowing for consistent
usage patterns even under heavy loads. A modular design enables efficient data collection and handling, scalability across multiple
sources, and promotes maintainability when adding new sites or APIs.
Once the data is ingested into the processing pipeline, a preprocessing module accomplishes a series of critical discussion tasks to get
the data ready for analysis. These tasks include removing duplicates, converting currency and units to be standard across all
selected sites, filling in missing values, and creating time-based features of interest such as day of week and percent change. Text
data like product titles, descriptions, and review comments are tokenized, and vectorized, using TF-IDF or embeddings, to prepare
them for computation tasks of interest such as similarity, clustering, and recommendation. The cleaned and transformed data is
stored in a relational database some of which will allow for filtered, time series queries while metadata is stored in a separate
database.
The analytical and decision-making layer provides intelligence to the system. For example, forecasting models such as LSTM
leverage historical price data to predict future price trajectories and an ensemble mechanism can aggregate these outputs to improve
precision and reliability. A recommendation module utilizes vector similarity to recommend alternative products on the market, uses
forecast data to adjustprioritization of items most likely to decrease in price. The alerting system continuously tracks all forecasting
and will notify when user- defined thresholds have been reached or general business rules have been met. Alert is sent out via
email, in-application or SMS to quickly inform the user of an opportunity.

Fig.2 System Design

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1098 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

IV. SYSTEM ARCHITECTURE
The architecture is based on a layered microservices model, promoting scalability, modularity, and resilience. At the bottom is the
data layer, which includes relational databases for structured records, a document store or columnar store for vector data, and a
message queue to asynchronously complete background tasks. All these components combine to decouple processes involved in
scraping, preprocessing the data, and creating alerts, which increases fault tolerance and throughput; though they are coupled with
asynchronous messaging, each service can run independently of each other in failures or varying loads. In addition, we maintain a
distributed cache, generally Redis, to improve responsiveness, which holds frequently accessed queries and prediction results
fostering an improved user experience by increasing performance and decreasing core database load as queries can originate in the
service caching and not the database.
Above the data layer is an application layer that runs multiple specialized microservices that can be packaged independently to
predict, recommend, and alert. The prediction service contains the trained models and exposes REST APIs to send requests for
inference on new data. Model training jobs are run in allocated resources at scheduled intervals, and that way they complete outside
of the service's execution. In the service we subscribe to new model parameters which push appropriate changes into the inference
microservice. The recommendation and alerting modules communicate through event-driven messaging as well allowing for
adaptive scaling of the cluster based on load. The alert orchestrator monitors price forecasts and applies decision rules to determine
how and if to notify the user. The services communicate securely through the API gateway utilizing the decoupled boundaries,
allowing independent deploys and simple service upgrades and updates.
The interface and operational layers are at the top of the architecture, which manages the presentation, security, and deployment of
the system. The front-end dashboard presents data visualization insights to the user by connecting to backend services using a REST
API and WebSockets, displaying historical price charts, trade prediction signals, and personalized recommendations to the user.
Tools for containerization and orchestration (e.g. Docker and Kubernetes) are being used to manage the deployment, scaling, and
failover of the system. Continuous integration and monitoring pipelines support the oversight of scraping performance, latency of
models for notifications sent to the user, and alert delivery metrics to facilitate timely diagnosis. Finally, security considerations are
integrated throughout the architecture, including encrypted communication, OAuth authentication, and secure credential
management. Overall, the architecture is designed to operate with high performance, real-time, and security to facilitate future.

Fig 3. System Archietecture

A. Data Collection Using Web Scraping
The Smart Shopping Assistant relies on the process of data collection as the foundation for machine learning predictions and
monitoring deals in real-time. Product-level data points such as product names, prices, ratings, reviews, and stock status, are
extracted from the largest e- commerce platforms as Amazon and Flipkart via a process called automated web scraping, which
depends on bit of code running on a web server to extract the data. Libraries such as Selenium, and Requests can be utilized
efficiently to parse and retrieve data from client web pages. The scrapers are designed to run on a periodic basis and are structured to
obtain both current prices and historical price data to build a complete time-series data set. The idea is to continuously scrape
product data, so the current product database is always compiling and providing the best information for prediction and analytics.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1099 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The raw data is "cleaned" before reuse to reduce inconsistencies. Duplicates, missing values, and non-standard formats are
eliminated. All currency and unit conversions are made to form a singular "currency" across data points before standardization and
normalization occur. Product data points and price can then be structured and stored in a relational database such as MongoDB or
other standard data source to obtain more structured data for retrieval and efficiency. Relevant data points such as time stamps to
denote scraping time, product category tags, and signs of discount will also be appended to a structured or unstructured product
object, which would allow the prediction models to account for seasonal or trend-based product data and pricing.
The web scraping process has been specifically developed both to be effective and to operate ethically. The scrapers have
implemented rate limiting, random delays, and polite request headers to prevent overloading the e-commerce platform websites and
violating e-commerce platform policies. If an official API is available, scrapers will use it to collect authenticated data. The data is
then securely stored and updated automatically with the help of schedulers in order to work indefinitely without human
involvement. This structured and automated data collection pipeline lays a strong automated foundation for accurate price
predictions, alerts, and recommendations in the Smart Shopping Assistant system.

B. Discount Prediction Using LSTM Algorithm
The LSTM (Long Short-Term Memory) algorithm is a deep learning model that fits within the broader family of recurrent neural
networks (RNNs) specifically designed to learn temporal dependencies of data in sequences. In the case of the Smart Shopping
Assistant system, the LSTM model is utilized to predict the likelihood of discount in the future by analyzing price patterns,
seasonality and promotional cycles using price data from previous time periods collected through web scraping. In contrast to
traditional statistical modeling methods, such as ARIMA or Prophet, that assume linear dependencies, LSTM networks can capture
complex, nonlinear dependencies that occur over long spans of time - making them an advantageous technique for forecasting e-
commerce prices. The price history of each individual product of interest is gathered from online retailers, such as Amazon or
Flipkart, and is passed to the LSTM model as a time-series sequence.
Inside the LSTM structure, three gates—forget, input, and output gates—decide how information moves through time steps. The
forget gate says what past information to forget, the input gate determines how much information to save, and the candidate cell
state provides updated information to learn. These functions update the cell's memory in every time step by combining past
knowledge with today's new input. The output gate produces a new hidden state that applies the learned time-sensitive knowledge.
By alternating through time to remember long- term dependencies while disregarding irrelevant variability, the model learns to
identify when a price trend or discount is occurring in the e- commerce data. The result of the output provides a prediction of price
for information for a future period, which is compared to today's price to establish a potential discount percentage.

Forget Gate:
 (݂ܾ + [ݐݔ ,1−ݐℎ]݂ܹ) = ݐ݂

Input Gate:
 (ܾ݅ + [ݐݔ ,1−ݐℎ] ܹ݅) = ݐ݅

Output Gate:
ܾ + [ݐݔ ,1−ݐℎ]݋ܹ) = ݐ݋ (݋

Prior to training, all collected price data is subjected to preprocessing and normalization to ensure stable convergence. The historical
prices are segmented into time windows, representing fixed-length sequences, allowing the model to learn from past movements
and to predict the next expected value. During training, the objective is to minimize the difference between predicted prices and
actual prices using standard loss functions like mean squared error. Once adequately trained, the model can then predict future
prices for each product, and if a predicted price drops significantly compared to the previous price, the system flags it as a potential
discount event and provides the user an alert. Prediction accuracy is validated based on forecast performance metrics like mean
absolute error and root mean square error, comparing how closely the predicted prices come to what was observed in real market
data.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1100 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Overall, the LSTM discount prediction method improves the system's capacity to accurately predict drops in price compared to
conventional approaches. By leveraging the ability to discern long-term temporal dependencies, and more accurately learn the
relationships within product pricing data, the system is able to provide advance notice of predicted discounts Informed shopping
decisions can be made by consumers, as they can proceed on a planned basis with their purchases before prices go back up - while
also obtaining useful savings in their purchasing costs. And through continual retraining against new data the system can
continuously train.

C. Machine Learning Models with Database
In this project, we employ the Long Short-Term Memory (LSTM) model to forecast discount trends from historical sales data. LSTM
is a type of recurrent neural network meaning it has particularly good performance for time-series prediction as it can find long-
term relationships in sequential data. The architecture relies on memory cells and gates, which control whether information is
ignored or passed on, compounding the ability of the model to capture patterns in discount variability over time. The LSTM model
is trained using historical transaction data and learns from sequences of sales, information about seasonal effects, and previously
provided discounts to predict pricing strategies.
For data management, we use MongoDB, a NoSQL database, because it effortlessly works with semi-structured data like JSON
documents. MongoDB optimally stores the sales records, product data, and historical discounts providing scalable capabilities for
both read and write operations. This capability is particularly useful as the sales field evolves. MongoDB's dynamic schema ensures
that new data can be added to the existing datasets without restructuring the data. We are able to extract pre-processed data without
complication. MongoDB coupled with LSTM provides a robust pipeline to forecast discounts based on data.

D. Streamlit Dashboard Visualization
To create an interactive and friendly user experience for the discount prediction system, a Streamlit dashboard is introduced.
Streamlit is used to create real-time visualization of the LSTM model’s predictions, allowing users to access historical discount
history, predicted values, and essential sales metrics easily.
The dashboard completes retrieves data from MongoDB, ensuring the status of the data they are viewing is contemporary and not
days or months old. The various visualization design elements, including line charts, bar charts for visualizing actual versus
predicted discounts, and tables with various relevant metrics, allow different stakeholders to view trends, as well as a variety of
metrics to analyze the model's performance here too. Students and professors, and marketing executives can use Streamlit’s
visualization features, including the sliders, dropdowns, and date selection tools, to dynamically filter products, time periods, or
categories to create a unique lens for viewing data. Not only does this integration enhance the interpretability of the LSTM’s
predictions, but it also provides ease of transforming overwhelming sequential series data into meaningful, actionable data to inform
pricing or marketing initiatives.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1101 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig.4. Web Scrabing

This project uses a Long Short Term Memory (LSTM) model to forecast trends in discounts using historical sales data. LSTM is a
unique brand of recurrent neural networks that is designed to work with sequentially formed data over time, which includes
capturing long-range dependencies. Its memory cells, gating units, and other mechanics help it retain relevant information and filter
out useless data patterns. This makes LSTM an excellent modeling option for forecasting discount behavior over elongated periods
of time. By using sequences of prior sales, trends by seasons, and prior discounts in forming the learned accuracy, the predictions
provided to the user will create the ability to have a more efficient basis for pricing planning.
To manage the underlying data structure, MongoDB was used as the database. MongoDB is based on a flexible, scalable database
structure. MongoDB performances compared to traditional relational databases do not require a static schema. This is important
because sales transactions, product-level details, and historical discount records can be stored as JSON-like documents. This
enables the mocking of new data fields without the need to modify the existing structure of the previously loaded file type.
Additionally, MongoDB can perform quick read and write operations, making it easier to extract and pre-process the data for
training and testing the LSTM. Using MongoDB allows for clean, structured, and updated datasets as the foundation of the
predictive process. A Streamlit dashboard is implemented to visualize the predictions and allow action upon the predictions

V. BEST DEAL AND ALERT MODULES
The Best Deal feature is set up to determine the best discounts for customers based on what is predicted with prices going forward
over the longer term, as well as historical pricing data. It uses predicted discount data in the LSTM model to highlight products that
are most discounted or are predicted to be the best price discount over a given time. This feature compares predicted prices to what
the price point historically has been, as well as current market prices, to ensure that users are getting the best deals. In addition to
positively impacting user engagement, the Best Deal feature also allows the retailer or brand to make pricing decisions guided
toward pricing actions based on which items would have the most reason to sell based on discount quality.
The Alert feature extends the Best Deal feature by giving users a real-time alert of when the brand or retailer has the opportunity to
take advantage of significant or good discounts. Being integrated with MongoDB, the system sits and monitors product prices,
predicted discounts, and user preferences. Once the product meets a threshold that the brand or retailer would deem excess, for
example the discounted price had gone down a certain percentage, it would alert in either the Streamlit dashboard or by automation.
Using this method of alert or notification, the system increases overall user satisfaction and brand loyalty or retailer loyalty by
offering users a reason to avoid or not miss a deal.
Both modules were effortlessly incorporated into the Streamlit dashboard so that users can interactively explore deals and alerts.
Visual elements such as tables, highlight boxes, and charts that respond to changes in data allow users to compare deals, analyze
alert histories, and filter notifications by category, price, and percentage off in an easy way. This cohesion ensures that complicated
predictive data from the LSTM model is easily converted into action, allowing customers and decision-makers to rapidly and
practically identify opportunities while also maintaining a user-friendly experience.

VI. RESULT AND DISCUSSION
The suggested discount prediction system yields positive forecasts for future discounts using past sales data. Overall, the LSTM
model creates meaningful representations from the time-based structure of sequential sales data and learns trends that traditional
models do not capture. Forecasting is motivated by two factors: if the model has been trained on past sequences of discounts, and if
the model understands the seasonality of discounts. The model predicts similar accuracy to historical value discounts. Lastly,
forecasting was tested in a number of product categories consistently demonstrated aspects of sensible price behavior confirming
suitability of LSTM models for forecasting problems in time series.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1102 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The integration with the MongoDB ensures the model has and continuous access to clean, structured, and scalable data for model
training and prescriptive analysis. Historical transactions (in addition to product characteristics) are quickly queried from a
document-based storage and retrieval paradigm. This process is efficient for maintaining speed and transformation amount at times
of quick data pre-processing into the annotation data pipeline all while providing the ability to continually train the model as new
sales occur. The database supports a dynamic schema, allowing immutable data as defined by rapid or account changes, without
restructuring any data, which is important for ensuring reliable forecasts as some products or categories could be expected to obtain
discounted pricing on sale.

Fig.5 View of Database

Visualizing with the Streamlit dashboard makes the results more interpretable. The user can see the predicted discounts together
with actual historic trends in clear line charts, bar graphs, and tables. Using sliders, dropdowns, and date filters to interactively
filter stakeholders to examine specific products, times (stats for timeframes), or product categories for a narrower view of the data.
This means the stakeholders visually isolate cases and will likely assist them in identifying trends, tracking potential drifts, and
justifying the forecasted views, which adds to the level of transparency and trust in the system as a whole.

Fig.6 Dashboard

In addition, the Best Deal module uses the model's predictions to identify the best products with the biggest discount. By comparing
forecasted prices to historic trends, the system identifies the best users might want to buy. This is a valuable tool for both customers
interested in the best discount and businesses trying to push products for sales. In testing, the module performed very well and was
able to successfully showcase value deals in line with previous trends in the marketplace, thus validating its use.

Fig.7 Discount Prediction

The Alert module, likewise, delivers notifications in real-time whenever the discounted predictions surpass a set limit. This allows
the user to stay informed about a better deal faster, which will help an overall positive user experience. The alert module accurately
activated based on the testing's predetermined conditions, confirming the alert module's functionality. The combination of
predictive accuracy, real-time alerts, and easy-to-use visualizations allows the user to quickly access smarter solutions. Thus, the
predictive analytics and data become actionable insights.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1103 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig8 Alert Message

In summary, the findings suggest that the combined system: LSTM predictions, MongoDB storage, and Streamlit visualizations,
along with Best Deal and Alert modular add-ons, provide an efficient discount forecasting system. The combination of: accurate
predictability, real-time alerts, and user-interactive visualization will result in a better decision-making framework and an improved
user experience. This indicates that the use of this type of pipeline can be generalized to other retail or e-commerce use cases to aid
in strategic discount pricing decisions and improve shopper satisfaction based on better visibility into real-time data.

Fig.7 Discount History

VII. CONCLUSION
The recommended discount forecasting solution successfully combines LSTM-based forecasting, MongoDB data management, and
Streamlit visualization to provide actionable insights and reliable recommendations for pricing strategies. The solution takes
advantage of LSTM's sequential learning capabilities to forecast discounted prices based on historical sale sequences, utilizing
trends that traditional models tend to overlook. MongoDB allows for a scalable and flexible data architecture for querying, storing
and preprocessing large datasets on sales history. The Streamlit application brings the complexities of the predictive analytics into a
friendly, interactive dashboard with Best Deal and Alert modules that can also notify users when to take action and assist in
identifying the discounted price of an item.
As a whole, the system is functional, scalable and can be practically applied to live retail and e-commerce environments. The results
show that predictive modeling combined with dynamic visualization and alerting mechanisms assists in making decisions for
businesses and customers. Unlike theoretical implementations or improvements in technology- all which were demonstrated in the
project- taking advantage of both machine learning and modern database and dashboard technology can lead to intelligent data-
driven systems. Future enhancements could include additional features such as customer analysis, competitor pricing data, and
streaming live updates or data to enhance prediction accuracy

VIII. FUTURE ENHANCEMENT
To extend its global market reach and enable better deal discovery, the system could integrate multiple eCommerce platforms
through APIs so the user has a broader choice of items to compare prices on. Sophisticated deep learning models (such as
Transformers) can be leveraged to increase the accuracy of price trend forecasting and personalized product recommendation,
which could provide the user compelling data informed solutions around price and budget spending.
Additionally, the platform could even add voice assistant capabilities so the user can receive price predictions, offer alerts, and deals
updates via smart speakers or voice apps on mobile for convenience. Bridging product searches based on images using computer
vision technology would be helpful by allowing the user to search for prices of similar products simply by uploading their product.
Furthermore, the platform could include budgeting/savings goals, which in return enables the app to recommend deals based on
each user's financial behavior patterns enabling even more customized and enhanced intelligent shopping experience.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

1104 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
[2] Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
[3] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
[4] Chodorow, K. (2013). MongoDB: The Definitive Guide (2nd ed.). O'Reilly Media.
[5] Streamlit Inc. (2023). Streamlit Documentation - Create Interactive Web Apps for Machine Learning and Data Science.

https://docs.streamlit.io
[6] Brownlee, J. (2020). Time Series Forecasting With LSTMs in Python. Machine Learning Mastery. https://machinelearningmastery.com
[7] Raschka, S., & Mirjalili, V. (2019). Python Machine Learning (3rd ed.). Packt Publishing.
[8] Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks. Springer.
[9] Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In ICLR 2015.
[10] Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1),

35-62.
[11] Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Forecasting methods for statistical and machine learning: Issues and recommendations.

PLoS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889
[12] Zhang, C., & Lu, Y. (2021). Artificial Intelligence in E-commerce: A survey and manager implications for pricing prediction and recommendation

systems. Electronic Commerce Research and Applications, 48, 101073. https://doi.org/10.1016/j.elerap.2021.101073
[13] Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts. https://otexts.com/fpp3/
[14] Sun, P., Ma, X., & Zhao, Y. (2020). Short-term E-commerce sales forecasting using a hybrid deep-learning model. IEEE Access, 8, 155850– 155860.

https://doi.org/10.1109/ACCESS.2020.3019355
[15] Liu, Y., Singh, P., & Sidorov, K. (2022). Intelligent price prediction and dynamic deal alert generation through hybrid machine learning approaches. Expert

Systems with Applications, 198, 116870. https://doi.org/10.1016/j.eswa.2022.116870

