
 

13 IX September 2025

https://doi.org/10.22214/ijraset.2025.73977



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

 
522 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

A Survey on AI-Based Multilingual Robotic 
Assistant for Smart  Agriculture  

 
Lavanya D R1, Dr. Kamalakshmi Naganna2, Sahana N O3, Manasa H B4, Anushree H S5 

1, 3, 4, 5Dept. of CSE,  Sapthagiri College Of Engineering 
2HOD, Dept. of CSE,  Sapthagiri College Of Engineering 

 
Abstract: Intelligent robotic assistants increasingly rely on advances in speech, vision, and navigation technologies. Multilingual 
voice interaction, powered by Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), enables seamless 
human–robot communication across languages. Real-time vision, supported by Convolutional Neural Networks (CNNs) and 
detection models such as YOLOv5, enhances object recognition, tracking, and scene understanding. At the same time, 
autonomous navigation methods, path planning, and obstacle avoidance ensure safe mobility. This survey reviews improvements 
across these domains, outlines key challenges such as adaptability and robustness, and highlights opportunities for advancing 
human-centered robotic assistants. 
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I. INTRODUCTION  
In recent years, the convergence of artificial intelligence (AI), robotics, and computer vision has significantly influenced the 
evolution of precision agriculture. As global food demand rises and the agricultural workforce declines, the need for intelligent, 
autonomous systems in farming has become more urgent. Innovations such as real-time object detection, multilingual voice 
interfaces, and autonomous navigation are emerging as transformative tools to address critical challenges including labor shortages, 
inefficient field monitoring, and communication barriers among farmers. 
This survey explores the current landscape of AI-powered robotic systems designed for agricultural applications, with a focus on 
three major capabilities: natural language voice interaction, vision-based object detection, and autonomous field navigation. The use 
of Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and cloud-based services like Google Speech API 
has enabled the development of multilingual voice interfaces, making agricultural robotics more inclusive for linguistically diverse 
rural communities. 
Computer vision technologies, particularly those leveraging Convolutional Neural Networks (CNNs) and advanced architectures 
like YOLOv5 is being used to detect crops, weeds, pests, and tools in real-time. Simultaneously, navigation systems using ArUco 
markers allow robots to operate autonomously in dynamic field environments. 
This paper provides a comprehensive review of recent research and implementations in the domain of intelligent agricultural robots. 
It compares state-of-the-art approaches across multiple dimensions — language interaction, object detection, and autonomous 
mobility — and identifies key trends, technological gaps, and future research directions. Through this survey, we aim to guide 
researchers and developers in designing more robust, cost-effective, and user-centric robotic systems for smart agriculture. 
 

II. BACKGROUND  
A. Problem Description 
Agriculture continues to face critical issues that hinder productivity, sustainability, and ease of operation, particularly in rural regions. 
Traditional farming practices often suffer from inefficiencies due to labor shortages, lack of automation, minimal technological 
support, and communication barriers stemming from the linguistic diversity among farmers. As the demand for food rises globally, 
the agricultural sector must evolve to meet the needs of a growing population while also ensuring efficient resource management. 
One of the most significant challenges is the lack of accessible, systems that can assist farmers in real-time—especially those who 
may not be tech-savvy or fluent in global languages. Existing agricultural robotics solutions often rely on complex interfaces, are 
language-restricted, or require human supervision, making them unsuitable for large-scale, localized farming environments. 
Moreover, the absence of affordable autonomous systems capable of detecting objects such as crops, pests, weeds, and obstacles in 
real time further limits precision and efficiency.  
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To address these challenges, there is a strong need for a cost-effective, AI-powered, multilingual robotic assistant that can: 
1) Understand and respond to voice commands in local languages, 
2) Detect and classify agricultural elements (e.g., crops, pests, animals) using real-time vision systems, 
3) Navigate autonomously in unstructured farm environments, and 
4) Operate without screens or keyboards, offering a hands-free, natural interaction model for farmers. 
 

III. LITERATURE SURVEY 
A. VL-Nav: Real-Time Vision-Language Navigation with Spatial Reasoning (Du et al., 2025) 
This work introduces an AI agent designed to navigate within simulated environments by understanding both visual inputs and natural 
language instructions. The system leverages spatial reasoning to follow complex directional cues such as “move to the left of the red 
box” or “go toward the nearest exit.” It is optimized for virtual tasks in controlled 3D environments, showcasing impressive language 
grounding capabilities, but it lacks physical embodiment and real-world deployment, limiting its application to simulation 
environments. 
 
B. WebNav: An Intelligent Agent for Voice-Controlled Web Navigation (Srinivasan & Patapati, 2025) 
WebNav is a voice-controlled browser assistant capable of interpreting natural language commands to perform web-based actions like 
opening links, searching, or navigating pages. It uses speech-to-text and intent recognition for accurate command execution. 
However, the assistant is limited to virtual screen interfaces and has no capabilities for physical mobility or real-world task execution, 
restricting its usability to online digital environments. 
 
C. Automatic Navigation and Voice Cloning Technology Deployment on a Humanoid Robot (Han & Shao, 2024) 
This paper presents a humanoid robot equipped with path-planning algorithms and voice cloning technology to simulate natural, 
human-like interaction. The system supports basic conversational abilities and can follow predefined paths indoors. Despite its 
advanced interactive design, the robot is not optimized for outdoor terrain or agriculture. It also lacks robustness in handling real-time 
voice commands under noisy, unstructured environmental conditions. 
 
D. YOLOv5-Based Real-Time Object Detection for Agricultural Applications (Kumar & Rathi, 2022) 
The study applies YOLOv5 for detecting key agricultural entities such as crops, pests, and weeds in static farm images. The model 
demonstrates high detection accuracy and speed on benchmark datasets, proving valuable for precision agriculture. However, it 
operates on non-mobile platforms and lacks real-time adaptability, mobility, or integration with autonomous systems for field-wide 
deployment. 
 
E. Multilingual Voice Recognition Using Deep Neural Networks for Human-Robot Interaction (Zhang & Li, 2022) 
This work designs a multilingual speech recognition system using deep neural networks for human-robot interaction. It supports 
multiple languages and provides reasonable accuracy in lab conditions. However, the system struggles in noisy environments or real-
world outdoor use. It also lacks integration with other robotic functionalities such as vision or mobility, limiting its real-world 
effectiveness. 
 
F. Real-Time Navigation for Farm Robots Using ArUco Marker Tracking (Shah & Patel, 2021) 
This research presents a navigation method for farm robots using ArUco markers placed strategically in structured layouts. It enables 
robots to move efficiently through predefined paths in controlled farm environments. While cost-effective and relatively easy to 
implement, the system depends on artificial markers and cannot adapt to dynamic or unstructured outdoor conditions without prior 
marker placement. 
 
G. Deep Learning-Based Weed Detection for Smart Agriculture (Nguyen & Le, 2021) 
The system uses convolutional neural networks (CNNs) to detect and classify different types of weeds in images captured from 
agricultural fields. The model enhances accuracy in identifying unwanted plants, contributing to better crop management. However, it 
functions as a static detection system and does not provide real-time mobility, navigation, or autonomous intervention based on visual 
data. 
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H. Mobile Agricultural Robot for Crop Monitoring (Yadav & Sharma, 2020) 
This project showcases a budget-friendly mobile robot designed to monitor crop health using basic environmental sensors. It supports 
movement through farmlands and collects data like soil moisture or temperature. However, the robot lacks AI-based perception, voice 
interaction, and real-time object detection capabilities, limiting its intelligence and adaptability in complex farming scenarios. 
 

IV. DISCUSSIONS 
The multilingual voice recognition, real-time object detection, and autonomous navigation represents a promising frontier in human-
robot collaboration, particularly within agriculture and other socially impactful domains. The systems reviewed in this survey reflect a 
growing effort to develop intelligent robotic assistants capable of operating effectively in dynamic, real-world environments. 

 
A. Multilingual Voice Interfaces: Bridging Communication Gaps 
Natural language processing (NLP) and Automatic Speech Recognition (ASR) tools such as Google Speech API, Whisper, and local 
language models have enabled voice-based control in multiple languages. This is especially important in regions where farmers or 
end-users may not be proficient in English or standard languages. However, most existing models lack robust performance in low-
resource languages, dialects, and noisy environments — limiting their practical adoption. There is a clear need for expanding 
linguistic datasets and building domain-specific language models tailored to local agricultural contexts. 

 
 

B. Real-Time Object Detection: Visual Intelligence in the Field 
Recent advances in deep learning-based computer vision (e.g., YOLOv5, YOLOv8, EfficientDet) have significantly improved real-
time object detection capabilities. In agricultural settings, this translates to accurate identification of crops, weeds, pests, and tools. 
While many systems achieve high accuracy in controlled environments, their performance often degrades in field conditions due to 
variable lighting, occlusions, and background clutter. Lightweight, high-speed models optimized for edge devices are essential for 
field deployment. 

 
C. Autonomous Navigation: Precision and Safety in Unstructured Terrain 
Navigation techniques such as ArUco marker-based tracking, GPS-aided path planning, and SLAM enable robots to move 
independently across farmlands and indoor environments. However, challenges such as terrain irregularities, GPS drift, dynamic 
obstacles (humans, animals), and power efficiency remain unsolved. Hybrid approaches combining visual odometry, sensor fusion, 
and scalable navigation solutions. 

 
D. System Integration and Real-World Deployment 
While individual components (voice, vision, mobility) have seen considerable advancements, seamless integration remains a 
bottleneck. Many solutions are still prototypes or limited to lab environments. Real-world deployment demands not only technical 
robustness but also user acceptance, affordability, and ease of use. There is a growing emphasis on developing open-source, modular 
platforms that can be customized based on local needs and resources. 

 
E.  Cross-Domain Applicability and Future Outlook 
Although the focus of this survey is on agriculture, the technologies discussed have broad applicability in healthcare (e.g., elderly care 
robots), customer service (e.g., voice bots with mobility), and home automation. Building truly inclusive and adaptive robotic systems 
will require cross-disciplinary collaboration, ethical AI considerations, and deeper engagement with the communities they aim to 
serve.  
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YOLOv5 is a deep learning–based algorithm designed for real-time object detection, capable of identifying and localizing multiple 
objects in an image or video within a single pass. It partitions the input frame into grids and simultaneously predicts bounding boxes, 
object classes, and confidence levels. Developed on Convolutional Neural Networks (CNNs), YOLOv5 is widely recognized for 
balancing speed and accuracy, making it well-suited for time-sensitive tasks such as robotics, security monitoring, and autonomous 
systems. In addition, it is lightweight, straightforward to train, and optimized for deployment on edge devices, including platforms 
like the Raspberry Pi. 

 
 
A Large Language Model (LLM) is an advanced type of deep learning system designed to process and generate human language. 
Built on the Transformer framework, it relies on self-attention mechanisms to capture word relationships within sentences as well as 
across longer contexts. Through training on vast collections of text, LLMs acquire knowledge of linguistic patterns, structure, and 
semantics. This allows them to handle a variety of tasks, including text prediction, summarization, translation, answering queries, and 
engaging in interactive dialogue. 

 
 

V. FUTURE WORKS 
1) Adaptive Learning for Crop-Specific Behaviour  
2) Soil Health Monitoring with Robotic Sampling  
3) Energy Sustainability with Renewable Power  
4) Personalized Farmer Interaction  

VI. CONCLUSION 
The study identifies a strong movement toward designing robotic assistants that are more adaptive, inclusive, and context-sensitive. 
Nevertheless, unresolved challenges persist, including limited progress in handling low-resource languages, maintaining reliable 
visual recognition under unpredictable conditions, and enabling robust navigation in unstructured areas.  
Future directions should aim at advancing cross-lingual natural language processing models, designing efficient yet precise object 
detection architectures, and developing navigation strategies validated in real-world scenarios. Bridging these gaps can result in 
robotic assistants that are more intelligent, user-friendly, and impactful across varied applications, ultimately promoting human-
centered automation on a broader scale. 
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