

12 II February 2024

https://doi.org/10.22214/ijraset.2024.57902

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

674 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

A Survey Paper Review on Advancements in AI
Driven User Interface Testing

Shital Hote1, Shivam Dhonde2, Tanmay Jadhav3, Atharva Joshi4, Manish Jansari5

1, 2, 3, 4 Student, 5Assistant Professor Department of Computer Engineering, SCTR’s Pune Institute of Computer Technology, Pune,
India

Abstract: This survey explores the quality of software engineering and highlights the important role of artificial intelligence (AI)
in improving software testing. It emphasizes the importance of software testing to determine the effectiveness and capabilities of
software programs. This paper highlights inconsistencies in measurement guidance and the need for automation. It will also
provide a better look at the changing ecosystem of automation products driven by roles in the convergence of the artificial
intelligence and machine learning (ML) eras. An AI-powered machine is made based on machine learning principles and is
known as a tool that performs test models, provides logic, solves problems and performs tasks correctly. The main purpose of this
evaluation is to explain the practical use of artificial intelligence in software testing and to conduct an in-depth analysis of its
impact on software performance and development, improving agility. In summary, this communication provides a vision for the
future by demonstrating the effectiveness of intelligent automation tools in the software testing environment, making the
transition to software development reliable and convenient. More generally, this survey paper discusses today's practices of
using AI to improve software development and continually unlock problem-solving innovation in software testing and software
engineering along with making UI testing more reliable.
Keywords: BDD, Model driven approach, Slang Specification Language, Process Model, Test Model, Cucumber J, Slang,
JBehave.

I. INTRODUCTION
Software engineering is the design and application of sound engineering principles to create suitable software that is both reliable
and works on real systems. Creating a good software product requires a good development process. Software development is a
human activity that involves many tasks. These activities; Analysis, design, implementation and testing all lead to the creation of the
final product. Because these activities occur constantly during development, it takes time to create a working version of the system.
Software testing is one of the most important activities in software development used to define and verify software systems. Testing
helps software developers ensure that the software they create performs its intended function and determines whether any problems
are fixable. As the software development life cycle is a complex process, there is an urgent need to deliver new products within the
stipulated time.
In the software industry, automation plays an important role in test development. Various automation tools are available to
streamline the testing process. New technologies such as artificial intelligence (AI) and machine learning (ML) are constantly being
used to speed up the software development process. With the development of artificial intelligence technology, many businesses are
adopting and using artificial intelligence-based software. Artificial Intelligence systems are built on machine learning models and
techniques.
Artificial intelligence is used to facilitate automation and reduce the cost of routine work in the experimental phase by applying
logic, problem solving and machine learning. The purpose of this article is to introduce the application and impact of artificial
intelligence technology in software test automation. The article concludes with conclusions and ideas for future work to increase the
usefulness of AI automation tools.
Testing and similar activities continue taking on during the entire development phase and can take a lot of effort to produce the
required software [1]. In [3], author has criticized the inadequate infrastructure for software testing. Author encourages the use of AI
in software testing and claims that the software quality
Problems are not too much different from other tasks, which has been successfully tackled by artificial intelligence techniques [3].
As a very positive sign, artificial intelligence has been widely investigated and used to automate the process of software testing

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

675 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

II. LITERATURE REVIEW
A. Towards Behavior Driven Graphical user interface Testing
The researchers propose a specification language called Slang that integrates behavior-driven development (BDD) feature
descriptions with wireframe models. This allows for fully automated test case generation. They conducted an experiment comparing
specifying automated test cases using Slang versus JBehave, an existing BDD tool. The experiment found that Slang was more
efficient, taking 63% less time on average to create automated test cases. Slang consists of feature descriptions, mapping definitions,
and wireframe models. The feature descriptions specify the behavior of the user interface using BDD-like sentences. The mapping
definitions map wireframe elements to their implementations. The wireframe models represent the user interface using low-fidelity
prototypes. The researchers developed generators that combine the feature descriptions, mapping definitions, and wireframe models
to automatically generate executable test scripts and page objects.
The researchers argue that Slang addresses three common issues with GUI test cases: they are expensive to write, time consuming
to execute, and brittle. By automatically generating most of the test code, Slang decreases the time required to write test cases. In
summary, the experiment and case study results show that Slang offers an efficient language for specifying automated GUI test
cases, even for users with limited programming skills. The generated test cases reduce the manual effort needed compared to
existing BDD tools.

B. Systematic Automation of Scenario Based Testing of UI
The authors propose a model-driven approach to separate the user interface experience from test scripts. Evaluations are determined
by the interactive user interface. During test execution, abstract tests are added along with UI data and executed against the system.
They added meta models to standard user interfaces for graphical user interfaces such as desktop and web applications. Meta models
are designed to reduce modeling effort by allowing parts of the model to be tested separately. This can be expanded with further
testing. A multi-layered process for testing adapters is recommended. Each additional layer moves away from the user interface
concept until a system interface that is independent of the user interface is created. The test data defined at this stage is mostly
abstract. The adapter uses the UI model to create tests and execute them based on the correct tests.
Finally, the author presents a proof of concept used to test the open source Bugzilla application. Although the functional model is
shown, the meta model needs to be adapted to specific applications and requires supporting tools to create and manage the user
interface model. The main points to be successful are: the model-driven approach aims to separate the UI experience from the
testing, the UI meta model is embedded in the GUI model, the multi-layered process for testing adapters is proposed, and the use of
the concept of proofs. However, more work is needed to adapt the meta model to specific applications and to develop supporting
tools.

C. Utilizing User Interface Models for Automated Instantiation and Execution of System Test
The text discusses an approach for systematically testing the effectiveness and compatibility of interactive applications using task
models and scenario-based testing. The proposed approach consists of two phases, ensuring the effectiveness of the application by
automatically generating test scenarios from task models and executing them on the application. Any mismatches indicate errors
that need to be fixed in either the task model or the application. The goal is to ensure the application allows users to achieve all the
tasks specified in the model. Ensuring compatibility between the application and task model by generating not only normative
scenarios but also mutated scenarios to capture possible user errors. Both positive and negative test cases are executed to verify if
the application allows more behaviors than described in the task model. Any mismatches are analyzed to determine if the erroneous
behavior should be allowed or fixed.The approach is illustrated using an example from aircraft cockpits. Task models are created
for the relevant tasks and scenarios are automatically generated from them. The scenarios are then executed on an interactive flight
control unit application to test for effectiveness and compatibility. The proposed approach aims to provide a systematic and
repeatable way to analyze the effectiveness and compatibility of interactive systems using task models and scenario-based testing.
The automatic generation and execution of test scenarios helps achieve better test coverage than manual testing.

D. Automation of GUI Testing Using a Model-driven Approach
This article discusses issues related to system evaluation of applications with user interfaces. Test scripts are often brittle and
difficult to manage due to the combination of functional logic and data-specific user interface. This leads to high maintenance costs
and test automation is often abandoned. The authors propose a model-driven approach to separate the user interface experience from
test scripts.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

676 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Evaluations are determined by the interactive user interface. During test execution, abstract tests are added along with UI data and
executed against the system. They added meta models to standard user interfaces for graphical user interfaces such as desktop and
web applications. Meta models are designed to reduce modeling effort by allowing parts of the model to be tested separately. This
can be expanded with further testing. There are several methods to test adapters. Each additional layer moves away from the user
interface concept until a system interface that is independent of the user interface is created. The test problems defined at this stage
are mostly abstract. The adapter uses the UI model to create tests and execute them counterfactually.
Finally, the author presents a proof of concept used to test the open source Bugzilla application. Although the functional model is
shown, the meta model needs to be adapted to specific applications and requires supporting tools to create and manage the user
interface model. To summarize, the main points are: the model-driven approach aims to separate UI experience from testing, the UI
metamodel is incorporated into the GUI model, various methods for testing adapters have been proposed, and evidence discusses the
use of the concept. . However, more work is needed to adapt the metamodel to specific applications and to develop supporting tools.

E. Model based Approach to Assist Test Case Creation, Execution, and Maintenance for Test Automation
This article describes a standards-based test automation approach to provide end-to-end assistance with test documentation,
execution, and maintenance. Some key points are that this approach uses the standard structure of the test in testing to inform the
test model that drives test automation. Process models include tasks and methods, while test models include screens and fields. Test
data is generated by the process in the standard procedure. The function will then be closed to populate the test pattern and generate
the test text for each test; The test text can be modified and saved using the user interface to edit the text directly. Evaluation of the
results showed that the method was implemented using tools such as Sahi, Selenium and Robot Framework. Use the Excel interface
to replace the text and make the working data of the JBilling application to evaluate the method. Users find the process more
efficient and time-saving. In conclusion, the main advantage of the model-based test automation approach is that it provides end-to-
end support from test data to execution and maintenance when necessary. Leverage knowledge and save time and resources through
a user-friendly interface with the ability of this model.

F. Image-based Approaches for Automating GUI Testing of Interactive Web-based Applications:
This article describes methods for testing and optimizing user interfaces (GUIs). Current benchmarks use methods such as image
comparison, WebDriver automation and user login management. But there are still gaps in testing interactive interactions. The
authors present additional techniques that combine computer vision and machine learning algorithms to analyze screenshots. This
includes pattern recognition to identify shapes and lines, pattern matching to find content, and text recognition to read text. This
technology integrates WebDriver to simulate user interaction. Three applications are offered: pattern detection to identify lines and
shapes, pattern matching to find content, and text recognition to extract text. Use pre-processing technique to create screenshots
before analysis. This strategy is evaluated in the 2D tactical map interface. The results show that masking-improved pattern
matching runs only 3-9% longer while increasing accuracy by 80% compared to the standard algorithm. After adjusting the
technology for specific intersections, readings are up to 100% accurate. In summary, the implementation process can measure user
interactions that were previously difficult to test accurately. When combined with existing methods, they increase the number of
interfaces that can be fully identified. This technology can be easily integrated into test models and operators..

G. AI in Software test Automation: A Systematic Literature Review
The text discusses the use of artificial intelligence techniques to automate software testing, particularly graphical user interface
(GUI) testing. Artificial intelligence has significantly aided the automation of various software processes by reducing costs and
improving quality. While AI has helped automate software testing in general, its application to GUI testing has been more limited.
Automated software testing has advantages like reducing development cycles, improving test efficiency, and reducing costs.
However, it also has limitations like not being able to replace manual testing completely and being dependent on the quality of test
cases. AI techniques like genetic algorithms, ant colony optimization, and simulated annealing have shown promise for generating
test data and optimizing test cases. However, most research has focused on software testing in general rather than GUI testing
specifically. The text argues that AI techniques should be used more for GUI testing and event-driven software testing. Various AI
approaches have been proposed for GUI testing like generating tests based on models, automated test case generation, and using AI
planning techniques. However, GUI testing poses unique challenges due to the huge number of states that a GUI can have. While
initial results have been promising, the benefits of AI for GUI testing have not been as significant as for software testing in general.
The use of AI techniques could help make GUI testing more efficient and effective.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

677 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

H. Automation of UI Design Testing using ML
The paper discusses various methods to automate the testing of user interface designs using machine learning techniques. Manually
testing UI elements is time consuming, tedious and prone to errors. Automating the process can improve efficiency and reduce
testing cycles. The key challenges in automating UI testing are detecting dynamic elements in UI designs that change based on
device type and protocols and extracting regions of interest like graphics and text boxes from the UI images. The paper proposes a
methodology that Classifies the UI image based on protocols like Hart, WiHART, Profibus etc. using a CNN model for data
augmentation, preprocesses the image using grayscale, thresholding and dilation, extracts rectangular regions of interest from
contours, detects text within the regions using an English language dictionary, matches regions with standard graphics using key
points matching, executes test cases to detect design flaws that do not follow guidelines, stores results in an excel sheet for the
development team.
In conclusion, automating the extraction of variable UI elements using machine learning can make the testing process more efficient
and reduce delivery cycles. The proposed approach demonstrates how this can be achieved. The methodology can potentially be
extended to other UI designs and protocols. The paper explores automating user interface design testing with machine learning to
enhance efficiency and reduce testing time. It addresses challenges like dynamic elements and region extraction. The proposed
methodology involves image classification, preprocessing, region extraction, text and graphics detection, and test case execution,
providing a potential solution for more efficient testing across various UI designs and protocols. The key challenges in automating
UI testing are detecting dynamic elements in UI designs that change based on device type and protocols and extracting regions of
interest like graphics and text boxes from the UI images.

Table I: Summary Study on AI based UI testing techniques

Sr No.

Reference

Domain

Parameter study

1.

Filippo Ricca ,
Alessandro
Marchetto ,
Andrea Stocco
Towards BDD

AI

Introduced a language called Slang that combines BDD feature
descriptions with wireframe models to enable automated test
case generation. It takes 63% less time to create automated test
cases than JBehave.

2.

Systematic
automation of
scenario based
testing of UI

ML

Uses task models and scenario-based testing to systematically
assess the effectiveness and compatibility of interactive
applications. It involves two phases: confirming task completion
and testing for both normative and user error scenarios.
Automated test scenario generation enhances coverage
compared to manual testing, exemplified with aircraft cockpit
applications.

3.

Utilizing User
Interface Models for
Automated
Instantiation and
Execution of System
Test

AI Techniques

It discusses the problem of maintaining test scripts for UI-based
applications and proposes a model-driven approach to separate
UI knowledge from tests. They introduce a UI meta-model and a
multi- layered test adapter architecture, demonstrating their
approach with a Bugzilla test case. The authors acknowledge the
need for further adaptation and tool support.

4.

Automation of GUI
Testing Using a
Model- driven
Approach

AI in Testing

This outlines an approach to automate graphical user interface
(GUI) testing using UML models. It involves employing UML
use cases and activity diagrams, enriched with test data
requirements, to define and generate test cases. The method aims
to enhance test effectiveness, manage the number of test cases,
and improve data coverage while offering ease of test
maintenance compared to manual scripting.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

678 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Sr No.

Reference

Domain

Parameter study

5.

Model based
Approach to
Assist Test Case
Creation,
Execution, and
Maintenance for
Test Automation

NLP Presents a model-based test automation approach that simplifies
test case creation, execution, and maintenance. It offers a user-
friendly interface for modifying test scripts, reducing the need for
technical expertise, and a case study on the JBilling application
found it to be efficient and time-saving

6.

Image-based
Approaches for
Automating GUI
Testing of
Interactive Web-
based
Applications

GUI test

The paper introduces techniques that use computer vision and
machine learning to automate the testing of complex graphical
user interfaces (GUIs). These techniques include pattern
detection, template matching, and text recognition, resulting in
improved accuracy. Evaluations on a 2D tactical map interface
reveal substantial improvements in accuracy and show promise
for exhaustively testing previously challenging UIs, making them
easily integrals into testing frameworks..

7.

AI in Software
test automation:
A systematic
literature review

Cucumber

It discusses two key automated testing tools: Selenium, known
for web application testing, and Cucumber, a behavior-driven
development tool. It emphasizes the significance of studying
these tools, highlights their features and methodologies, and
stresses the importance of selecting the right tool based on
various factors. The ultimate aim is to develop a new testing tool
surpassing existing options like Cucumber.

8.

Automation of UI
design testing
using ML

ML

The paper explores automating user interface design testing with
machine learning to enhance efficiency and reduce testing time. It
addresses challenges like dynamic elements and region extraction.
The proposed methodology involves image classification,
preprocessing, region extraction, text and graphics detection, and
test case execution, providing a potential solution for more
efficient testing across various
UI designs and protocols.

9.

 Model based AI
driven test
generation system.

AI, CRT

 The paper explores how to make web component classification
using CRT(Computed Render Tree). Also, explores how image
classification and object detection can be leveraged to aid in
software testing.

10.

 Artificial
Intelligence
Applied to
Software testing

 The goal of our study is to understand how AI has been applied to
support ST. In this paper it focus on Testing Activities whose
automation has been supported by different AI techniques and
synthesize the main purpose for which each AI technique has been
used for

III. CONCLUSION

In conclusion, this survey paper has explored the different techniques to automate the UI testing. We've examined how AI, can be
used for the User Interaction testing, how it useful for more correct and accurate results.
As we move forward, it's essential to acknowledge the challenges and complexities that come with these technologies, such as
scalability, interoperability, and regulatory alignment. By harnessing artificial intelligence, machine learning and computer vision,
our project seeks to automate and enhance the testing process for the dynamic Sarvatra eHub frontend.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

679 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The project’s scope includes dynamic test case generation, defect detection, promising comprehensive coverage and adaptability.
The feasibility analysis highlights resource allocation and data availability as key factors for success. Ultimately, our mission is to
ensure the Sarvatra eHub's reliability and functionality, setting new standards for UI testing in the digital age.

IV. ACKNOWLEDGEMENT
We would like to express our sincere gratitude to our guide Mr. Manish Jansari for their valuable guidance and support throughout
the course of our research project. Their expertise and mentorship have been instrumental in shaping the success of this survey
paper. We are deeply thankful for their contributions to our academic journey.

REFERENCES
[1] F. Macchi, P. Rosin, J. M. Mervi and L. Turchet, "Image-based Approaches for Automating GUI Testing of Interactive Web-based Applications," 2021 28th

Conference of Open Innovations Association (FRUCT), Moscow, Russia, 2021, pp. 278-285, doi: 10.23919/FRUCT50888.2021.9347592.
[2] F. Ricca, M. Leotta, and A. Stocco, “Three open problems in the context of e2e web testing and a vision: Neonate,” Advances in Computers, 01 2018.
[3] K. P. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshy- ´ vanyk, “Machine learning-based prototyping of graphical user interfaces for

mobile apps,” IEEE Transactions on Software Engineering, 2018.
[4] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Automated migration of DOM-based to visual web tests,” in Proceedings of 30th Symposium on Applied

Computing, ser. SAC 2015. ACM, 2015, pp. 775–782
[5] Using AI to automatically Test GUI https://www.researchgate.net/publication/286851 173_Using_artificial_intelligence_to_automatica lly_test_GUI

DOI:10.1109/ICCSE.2014.6926420
[6] M. Leotta, Z. Oliveira, A. Memon, Approaches and tools for automated end-to-end web testing, Adv. Comput. 101 (2016), 193– 237.

http://doi.org/10.1016/bs.adcom.2015.11.00 7.
[7] E. Alégroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and evaluation of component-based testing unified with visual GUI testing: an empirical

study, 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), 2015, pp. 1– 10.
http://doi.org/10.1109/ICST.2015.7102584.

[8] L. G. Hayes, The automated testing handbook, Software Testing Institute, 2004.
[9] Cucumber Framework https://www.jetbrains.com/help/webstorm/runnin g-cucumber-js-unit-tests.htm
[10] Xie, X., Xu, B., Nie, c., Shi, L., and Xu, L. 2005. Configuration Strategies for Evolutionary Testing. In Proceedings of the 29th Annual international

Computer Software and Applications Conference - Volume 02 (July 26 - 28, 2005). COMPSAC. IEEE Computer Society, Washington, DC.
[11] Benoit Baudry, Automatic Test Case Optimization: A Bacteriologic Algorithm, IEEE SOFTWARE Published by the IEEE Computer Society, 2005.
[12] A. Bertolino "Software Testing Forever: Old and New processes and techniques for Validating Today's Applications", Keynote at 9th International Conference

Product-Focused Software process Improvement (PROFES 2008), Monte Porzio Catone, June 2008, LNCS 5089 , 2008.
[13] V. Mohan, D. Jeya Mala "IntelligenTester -Test Sequence Optimization framework using Multi- Agents", Journal of Computers, June 2008.
[14] Memon, A M., Soffa, M. L. and Pollack, M. E., Coverage criteria for gui testing. ESECIFSE-9: Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of software engineering, New York, NY, USA, 2001, ACM Press,
pages 256-267

[15] Trudova, Anna et al. “Artificial Intelligence in Software Test Automation: A Systematic Literature Review.” International Conference on Evaluation of Novel
Approaches to Software Engineering (2020).

[16] Zubair Khaliq, Dawood Ashraf Khan, Sheikh Umar Farooq, Using deep learning for selenium web UI functional tests: A case-study with e-commerce
applications, Engineering Applications of Artificial Intelligence https://doi.org/10.1016/j.engappai.2022.105446

