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Abstract: Federated Learning (FL) is a decentralized machine learning approach that allows collaborative model 
training across multiple devices while preserving data privacy. However, its decentralized nature exposes it to poisoning 
attacks, where malicious clients corrupt model updates, compromising the global model’s integrity. This study introduces a 
trust-based framework that combines Krum, Differential Privacy (DP), and adaptive trust measures to counter these 
threats effectively. The framework dynamically assigns trust scores to clients based on their behavior, mitigating the 
impact of unreliable or malicious updates. Using the MNIST dataset, the framework’s robustness is tested against 
label flipping and gradient manipulation attacks at varying intensities. Results demonstrate the hybrid approach’s 
superior performance in accuracy, precision, recall, and F1-scores compared to standalone defenses, showcasing its 
adaptability and resilience. This research underscores the impor- tance of integrating robust, scalable defense mechanisms 
in FL to ensure secure, reliable, and trustworthy systems in adversarial settings 
Keywords: federated learning, security, privacy and poisoning 
 

I. INTRODUCTION 
Introduced by Google, [3] Federated Learning (FL) is a decentralized machine learning approach that allows training of 
shared model across multiple devices or servers without sharing their in- dividual data. However, its decentralized nature 
makes it vulnerable to poisoning attack, [8] where malicious clients inject manipulated data to corrupt the global model and 
compromise its performance. Data poisoning involves tampering with client data to induce errors, while model poisoning 
targets model gradients directly, altering updates to affect the global model. Studies such as [11, 4, 2] have explored these 
vulnerabilities in depth. Addressing these attacks necessitates robust and efficient defense mechanisms. An existing study 
adopted Majority voting to aggregates model updates from clients, discarding outliers of a majority threshold [5]. While 
simple, this approach is susceptible to collusion attacks where malicious actors collaborate to manipulate the majority vote [5]. 
Byzantine Fault Tolerance (BFT) protocol such as Practical-BFT offer stronger resilience against collusion [10] but requires 
significant communication overhead, hindering scalability. Federated averaging with anomaly detection identifies and exclude 
update deviating significantly from the average model [12]. However, its effectiveness depends on the accuracy of anomaly 
detection algorithm, which can be challenging in complex scenario [7]. Numerous methods have been proposed to counteract 
these vulnerabilities such as reputation systems that assign trust scores based on behavior, down weighting or discarding updates 
from low-trust entities [1] and untrusted clients [1]. Krum, an approach by [14], is designed to identify and ex- clude 
malicious updates, retaining only the most reliable client updates based on proximity to the majority’s median gradient. 
Although effective, Krum is less robust against sophisticated, coordinated attacks[9]. Differential Privacy (DP) [6]provides 
another layer of security by injecting noise into model updates, thus masking individual client contributions. DP, as discussed 
by [6], pre- serves privacy but can impact accuracy, especially in data-diverse environments. Hybrid defense mechanisms 
combine approaches like Krum and DP to enhance robustness [13]. These hybrid models, such as those discuss by [15], seek 
to balance resilience against attacks with minimal loss of accuracy. These approaches, while effective, require optimization to 
address computational demands in resource-limited federated settings. Our trust-based framework represent a newer approach 
that dynamically assigns trust scores to clients based on behavior, thereby reducing the influence of unreliable updates. This 
study support the need for robust, scalable models that address both privacy and trust, by combining Krum and DP with 
adaptive trust measures to bet- ter resist sophisticated attacks. This approach supports a trustworthy, resilient FL environment 
capable of countering a wide range of adversarial threats. 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XI Nov 2024- Available at www.ijraset.com 
     

 
2504 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

II. METHODOLOGY 
To simulate a federated learning environment, this research uses the MNIST dataset sourced from Kaggle platform, MNIST which 
is widely used in machine learning and security research. The MNIST dataset consists of 70,000 labeled images of 
handwritten digits (0-9), divided into 60,000 training images and 10,000 test images which account to 85% for training and 
15% for testing respectively. Each image is 28x28 pixels in grayscale. The choice of MNIST is motivated by its simplicity 
and ubiquity in federated learning research, allowing for easy comparison with existing works. The dataset serves as a 
foundation for understanding how federated learning behaves under normal conditions as well as when subject to poisoning 
attacks. 

 
Figure 1: Flowchart of our proposed framework 
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A. Data Partition 
The MNIST dataset is partition into 10 clients to simulate and represent the decentralized envi- ronment. Each client trained 
its data on its own local partition, and then contribute update to the overall model without sharing raw data, maintaining 
privacy in the process. In this research, Independent and Identically Distributed (IID) partitioning was employed to allocate 
the MNIST dataset across 10 clients, simulating a federated learning environment. This partitioning method ensures that each 
client receives a representative, balanced subset of the dataset, preserving the statistical properties of the original data. 

 
For the IID setup, the dataset is divided evenly across n clients (which is 10 in our case). Each client receives a randomly 
selected, equally sized subset of both training and test images. 
For full training dataset let denote D, with N = 60,000 samples, and Ci denote the dataset assigned to client i .The size of each 
client’s dataset 

 
Each client receives 6,000 images for training, ensuring equal representation across all clients. Each subset Ci is sampled randomly 
from D without replacement, ensuring that clients have unique but statistically similar data distributions. Thus, each client’s data 
subset reflects the overall distribution of the digit classes, maintaining balance across all 10 digit classes (0-9).The 10,000 
images in the test set are similarly divided among the 10 clients, with each client receiving an equal portion of 1,000 images. 
This allows local model evaluation at each client without needing access to the entire test set. The choice of IID partitioning 
provides a baseline scenario where client data distributions are statistically similar, allowing for a controlled evaluation of 
federated learning algorithms and defenses under uniform data conditions. This setup facilitates straightforward ag- gregation of 
model updates, as each client’s data is representative of the population distribution, making IID partitioning ideal for 
preliminary experimentation in federated learning environments. 
 
B. Attacks Simulation 
We simulate two common poisoning attacks—label flipping and gradient manipulation—to evaluate the robustness of 
federated learning systems. These attacks disrupt model performance by introducing malicious updates into the federated 
aggregation process, which can skew or degrade the accuracy of the global model. Below, we detail the mathematical 
formulation used to simulate each attack. The label flipping attack involves systematically altering the labels of a subset of 
training data held by malicious clients to introduce mislabeled examples into the training process. This distorts the local model 
updates generated by these clients, thereby affecting the aggregated global model and Dataset Transformation: 

 
represent the local dataset of client i, where xj is a feature vector and yj is the true label. A malicious client applies a 
flipping function f to alter specific labels, producing a modified dataset 

Di
′ = {(xj, yj

′ )}, (3) 
 

where: 

yj
′ = f (yj) 

For example, f might transform labels of class ’0’ to class ’1’, systematically corrupting data samples  with  original  labels  yj  

=  0.   When  client  i  trains  on  Di
′,  the  local  model  update  ∆Wi reflects the incorrect labels, resulting in gradients biased 

toward the flipped labels. During aggregation, these malicious updates contribute to the overall model as: 
n 

W (t + 1) = W (t) + η ∆Wi (4) 
i=1 
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∼ N 

Σ

∈

Here, W (t + 1) is the updated global model, η is the learning rate, and the aggregated updates 
∆Wi are skewed by those from malicious clients. This leads to model misclassifications due to corrupted gradients in ∆Wi 
introduced by label flipping. 
In a gradient manipulation attack, the malicious client intentionally alters the gradient values it sends to the server. This can 
involve either scaling or adding noise to the gradients to disrupt convergence or influence model direction. The formulation 
as followed 
Let ∆Wi represent the local gradient update computed by client i after training on its local dataset. A malicious client scales 
its gradient by a factor α to amplify or diminish its influence on the global model update: 

If α > 1, the scaled gradients ∆Wi
′ 

∆Wi
′ = α · ∆Wi (5) 

exert greater influence on the aggregation, skewing the global model. If α < 1, the client’s impact is minimized, which may 
camouflage malicious activity. 

 
Noise Injection 
Alternatively, malicious clients may add noise ϵ to their gradient to degrade model performance: 

∆Wi
′ = ∆Wi + ϵ (6) 

Here, ϵ (0, σ2) represents Gaussian noise with mean 0 and variance σ2, added to each gradient parameter. When 
aggregated, this noisy update disrupts the server’s ability to aggregate consistent gradients effectively, producing a noisy global 
model: 
 

n 

W (t + 1) = W (t) + η ∆Wi
′ 

i=1 
The result is slower model convergence or a model prone to misclassification.                              (7) 
 
C. Attack Intensity 
Attack intensity is quantified as the extent of the adversarial modification applied by malicious clients. In label flipping, 
intensity corresponds to the fraction p of labels in each adversarial client’s MNIST dataset that are modified to a different 
target label. Let |Dk| denote the size of the dataset Dk held by client k, and P    [0, 1] represent the attack intensity, indicating 
the fraction of flipped labels. The number of flipped labels per adversarial client is: 
 

nflipped = p · |Dk| (8) 
In this work, three levels of label flipping intensity were tested: 

• Low Intensity (p = 0.1): 10% of labels in Dk are flipped. 

• Medium Intensity (p = 0.2): 20% of labels in Dk are flipped. 

• High Intensity (p = 0.3): 30% of labels in Dk are flipped. 
Increasing p introduces progressively higher proportions of mislabeled data, which misleads the global model by shifting 
gradients away from the correct direction. 
In gradient manipulation, intensity is represented by the scaling factor α, which malicious clients use to scale their gradient 
updates, amplifying their effect on the model. Let gk denote the gradient computed by client k. α ∈ R+ is the intensity scaling 

factor, where a higher α indicates stronger manipulation.  For malicious clients, the manipulated gradient gk
′   is: 

 
where: 

• α > 1 intensifies the gradient’s impact. 

• ϵ is Gaussian noise with variance σ2, added to distort the gradient. 
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In this work, three levels of gradient manipulation intensity were evaluated: 

• Low Intensity (α = 0.100): Minimal manipulation. 

• Medium Intensity (α = 0.200): Noticeable gradient distortion. 

• High Intensity (α = 0.300): Severe gradient distortion. 
Higher α values magnify the malicious gradients’ influence on the global model, potentially destabilizing the learning 
process. 
 
D. Defense Strategy 
Our Trust Model comprises two primary defense strategies tailored to detect and mitigate ad- versarial client behavior: Krum 
for robust aggregation and Differential Privacy (DP) for privacy- preserving defense. Krum is a robust aggregation method 
that selects updates based on their similarity to other client updates, effectively filtering out those that diverge significantly 
(indica- tive of malicious behavior) using the following. 
For a set of client gradients G =    g1, g2, . . . , gn   , Krum selects a gradient gk with the smallest sum of distances to the closest n f 
2 gradients, where f represents the estimated number of malicious clients. 
1) Calculate  Pairwise  Distances:  Compute the Euclidean distance dij  = ∥gi − gj∥ for each pair of gradients gi and gj in 

G. 
2) Aggregate Similarity Score: For each gk ∈ G, calculate the similarity score Sk by summing the distances to the n − f 

− 2 nearest neighbors: 

 
3) Select Gradient with Minimum Score: The client update with  the  lowest  similarity score Sk is chosen as the global 

update, thus minimizing the influence of outliers. 
This robust approach makes Krum effective in reducing the impact of manipulated gradients or outliers, as it relies on 
consensus-based trust—prioritizing updates that are consistent with the majority. 
Differential Privacy is applied to each client’s update, introducing controlled noise to obscure individual contributions while 
allowing trustworthy model aggregation. DP ensures that no single client’s data has a significant influence on the model, 
helping reduce the risk of manipulation. 
In the DP mechanism, we apply noise to each client’s gradient gk before sending it to the server. The perturbed gradient g˜k is 
defined as: 
 

g˜k = gk + N (0, σ2) (11) 
where: 

• N (0, σ2) represents Gaussian noise with mean 0 and variance σ2. 

• σ2 is calibrated based on the privacy budget ϵ, which determines the level of privacy pro- tection. 
 
The DP mechanism helps to ensure that even if a client is malicious, the influence of any single client is limited due to the 
added noise, reducing the ability of adversaries to skew the model. 
 

III. RESULT AND DISCUSSION 
This section presents a comprehensive analysis of the experimental results obtained during the evaluation of adversarial 
defense mechanisms in a federated learning framework, with the MNIST dataset serving as the evaluation benchmark. The 
study primarily explores the effectiveness of Baseline, Krum, Differential Privacy (DP), and a Hybrid approach in 
mitigating the impact of two adversarial attack strategies: Label Flipping and Gradient Manipulation. The performance of 
these mechanisms is assessed using standard evaluation metrics, including accuracy, precision, recall, and F1 score, to provide 
a holistic understanding of their robustness as in Table 1. 
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Table 1: Results of Attacks and Defenses against evaluation metrics 

 
A. Accuracy 
The figure 4.1 presents a comparative analysis of the accuracy of four defense mechanisms—Baseline, Krum, Differential 
Privacy (DP), and Hybrid—under varying adversarial attack intensities (0.1, 0.2, and 0.3). The results indicate that the 
Baseline approach, representing a federated learning system without specialized defense, exhibits a significant decline in 
accuracy as attack intensity in- creases, highlighting its susceptibility to adversarial perturbations. Krum demonstrates consistent 
robustness across all attack levels, achieving superior accuracy compared to the Baseline. Differ- ential Privacy (DP) also 
provides a moderate level of resilience, though with a slight reduction in accuracy relative to Krum, reflecting a trade-off 
between privacy preservation and performance robustness. Among all approaches, the Hybrid defense mechanism consistently 
outperforms oth- ers, achieving the highest accuracy across all levels of attack intensity, thereby demonstrating superior 
adaptability and robustness in the presence of adversarial disruptions. These findings underscore the necessity of integrating 
advanced defense mechanisms, such as Krum and Hybrid, to mitigate adversarial threats effectively and maintain the reliability 
of federated learning sys- tems in security-critical applications. The analysis further emphasizes the limitations of simplistic 
approaches, such as the Baseline, in adversarial settings, while advocating for the adoption of so- phisticated strategies to 
enhance resilience and accuracy. 
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B. Recall 
The Baseline defense, representing an unprotected federated learning system, exhibits the lowest recall across all attack intensities, 
with a marked degradation as the attack intensity increases. This trend underscores the inherent vulnerability of naive 
implementations to adversarial ma- nipulations. In contrast, the Krum defense consistently achieves higher recall values, demon- 
strating its robustness in maintaining positive prediction accuracy, even under adversarial con- ditions. Similarly, DP shows 
moderate resilience, maintaining competitive recall at lower attack intensities but exhibiting a slight decline as attack severity 
escalates, reflecting the trade-off be- tween privacy preservation and prediction performance. The Hybrid defense mechanism 
emerges as the most effective strategy, achieving the highest recall across all attack levels. Its perfor- mance underscores the 
efficacy of combining multiple defense techniques to enhance robustness and mitigate the impact of adversarial disruptions. 

Importantly, while all mechanisms expe- rience a decrease in recall with increasing attack intensity, the Hybrid and Krum 
mechanisms demonstrate significantly lower rates of performance degradation, affirming their adaptability in challenging 
adversarial environments. These findings emphasize the critical importance of integrating advanced defense mechanisms 
within federated learning frameworks to bolster re- call, particularly in security-critical applications. The superior recall 
performance of the Hy- brid mechanism positions it as a highly effective solution for adversarially resilient federated 
learning. Meanwhile, the limitations of the Baseline approach further reinforce the necessity of deploying robust, defense-
oriented strategies. These insights provide a strong foundation for ad- vancing the development and optimization of 
adversarially robust systems in federated learning. 

 
C. Precision 
The figure 4.3 depicts the precision performance of four defense mechanisms—Baseline, Krum, Differential Privacy (DP), 
and Hybrid—across varying intensities of adversarial attacks (0.1, 0.2, and 0.3). Precision, a key metric for evaluating the 
proportion of correctly predicted positive instances, is particularly important in adversarial settings to assess the defenses’ 
ability to avoid false positives. The Baseline, representing an unprotected federated learning framework, shows acceptable 
precision at lower attack intensities but demonstrates a consistent decline as attack severity increases. This highlights its 
vulnerability to adversarial disruptions and its limited capacity to sustain precision under elevated attack conditions. The 
Krum defense mechanism consistently maintains higher precision across all attack levels compared to the Baseline, reflect- ing 
its robustness in mitigating adversarial influences.  
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Similarly, DP exhibits moderate resilience, achieving competitive precision scores, although slightly trailing Krum in 
scenarios with higher attack intensity. The Hybrid defense mechanism outperforms all other strategies, achieving the highest 
precision at each level of attack intensity. Its superior performance illustrates the effec- tiveness of leveraging a combination of 
defense strategies to enhance the model’s resilience against adversarial attacks while minimizing false positives. Notably, while 
all methods exhibit a decline in precision as attack intensity increases, the Hybrid and Krum mechanisms demonstrate a slower 
rate of degradation, underscoring their effectiveness in sustaining precision in adverse conditions. These findings reinforce the 
importance of adopting advanced defense mechanisms in federated learning environments to enhance precision, particularly in 
adversarial scenarios where accuracy alone may not fully capture the system’s performance. The consistent superiority of 
the Hy- brid approach further establishes its potential as a robust solution for applications requiring high precision and reliability. 
In contrast, the limitations of the Baseline defense emphasize the need for deploying sophisticated mechanisms to safeguard 
federated learning systems from adversarial threats. These insights contribute valuable knowledge to the development of 
adversarially robust federated learning frameworks. 

 
D. F1-Score 
The figure 4.4 illustrates the F1-score performance of four defense mechanisms—Baseline, Krum, Differential Privacy (DP), 
and Hybrid—under varying adversarial attack intensities (0.1, 0.2, and 0.3). The F1-score, representing the harmonic mean of 
precision and recall, is a crucial evaluation metric for assessing the balance between false positives and false negatives, 
particularly in adversarial scenarios. 
The Baseline model, devoid of specialized defense strategies, shows ad- equate performance at lower attack intensities but 
exhibits a sharp decline in F1-score as the attack intensity increases. This highlights its vulnerability to adversarial 
perturbations and its inability to sustain a balance between precision and recall under mounting threats. In contrast, Krum 
demonstrates remarkable resilience, maintaining consistently higher F1-scores compared to the Baseline. This underscores its 
effectiveness in countering adversarial manipulations and sustaining predictive balance. Differential Privacy (DP) also 
performs commendably, achieving F1-scores that surpass the Baseline across all attack intensities but remain slightly below 
those of Krum.  
This suggests that DP is effective in mitigating attacks, albeit with minor compromises in achieving optimal balance. Among 
all mechanisms, the Hybrid defense consistently achieves the highest F1-scores across all attack intensities. This superior 
performance highlights the benefits of integrating multiple defense strategies, enabling enhanced robustness while preserving a 
strong balance between precision and recall. Furthermore, the Hybrid and Krum mechanisms exhibit a gradual decline in F1-
scores as attack intensity increases, reflecting their ability to adapt and mitigate adversarial threats effectively. In contrast, the 
steep decline observed in the Baseline emphasizes the necessity of adopting advanced defense mechanisms in adversarial 
settings. DP, while moderately robust, demonstrates a slightly faster performance decline compared to Hybrid and Krum, 
indicating room for improvement in its robustness. 
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In summary, the Hybrid defense mechanism emerges as the most effective approach for main- taining high and stable F1-scores, 
followed closely by Krum. These findings underline the critical importance of adopting advanced and integrative defense strategies 
to enhance the resilience of federated learning systems against adversarial attacks, ensuring robust and reliable performance in 
real-world deployments. 
 
E. Performance Comparison of Defenses against Attack 
The comparative evaluation of defense mechanisms, as shown in the graph, underscores the per- formance metrics across 
different attack types—label flipping and gradient manipulation. The results are presented for four prominent defenses: 
Baseline, Krum, Differential Privacy (DP), and a Hybrid approach, measured across accuracy, precision, recall, and F1-
score.The Hybrid defense consistently outperforms other mechanisms across most metrics, especially under label flipping 
attacks, with accuracy and F1-score surpassing 0.87 and 0.83, respectively. This demonstrates the hybrid approach’s 
robustness in mitigating the impact of malicious client manipulations. On the contrary, the Baseline defense exhibits the 
weakest resilience, particularly for gradient manip- ulation,  where all metrics decline significantly—accuracy and recall dip 
below 0.75.  Krum and DP defenses exhibit comparable performance under moderate attack intensities but diverge under gradient 
manipulation, where DP demonstrates a sharper decline. Precision under DP exhibits a notable drop, nearing 0.8, compared 
to Krum’s relatively stable trend. A general trend observed is the higher impact of gradient manipulation attacks 
compared to label flipping across all defenses, as indicated by the consistently lower metric scores. This aligns with the higher 
complexity and subtlety of gradient manipulation, which often bypasses simpler defenses. This analysis showcase the 
importance of adopting hybrid strategies that combine robustness with adaptability to counter diverse attack vectors effectively. 
The findings provide critical insights into enhancing federated learning systems’ resilience against adversarial threats. 
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