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Abstract: The paper focuses on the architectural development of an IoT Framework that unifies the way you control various 

smart appliances. It takes a nodal approach to reduce the need of redundant sensors across various appliances. The benefits of 

this approach is that, it provides for a more inclusive automation adapting to the behaviour of the user. 
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I. INTRODUCTION 

A world in which all of our technological devices are completely connected, is frequently what comes to mind when we envision the 

future of human life. An environment where devices operate without human intervention, learning and adapting to our routines. The 

smart home technologies of today, however, fall well short of this goal. Although we do have sophisticated gadgets, but they 

primarily function alone. The missing link is integration — for instance, a smart refrigerator exists, but it can’t communicate with 

the air conditioner or adapt to the user's behaviour across systems. 

Several key issues need to be tackled, such as sensor redundancy, energy waste, and poor coordination. For example, a smart air 

conditioner and a smart refrigerator both contain similar sensors to monitor the room temperature and adjust their functionality 

accordingly. This leads to redundant temperature sensors across devices. Moreover, the same physical parameter being measured by 

multiple devices results in increased energy consumption. 

This is the motivation to device a solution that accounts to a centralized sensing and decision-making framework [1]. 

 

II. RELATED WORKS 

A. Google Nest Ecosystem 

It is a collection of various products provided by google to make homes more connected, efficient and easy to control. They are 

controlled with Google Home app or using Google Assistant. The Nest ecosystem includes Nest Thermostat, Nest Cameras, etc. But 

what this ecosystem lacks are a holistic view across rooms. It has a more appliance-centric-intelligence and each device has its own 

set of sensors leading to sensor redundancy.  

 
B. Samsung Smart Things 

Similar to Google’s Nest Ecosystem, Samsung’s SmartThings is also a platform for smart homes but unlike the Nest, it allows the 

central hub to connect smart devices of various brands. The automations are based on simple rules (like- “If motion is detected, turn 

on the lights”). 

The automations are basic and rules based and not dynamic and adaptive to external factors like weather. It also requires the 

appliances to be smart on their own adding the redundant sensor cost. Also, there is no real time learning or optimization across the 

whole room. 

 

III. SYSTEM ARCHITECTURE 

The proposed centralized IoT-based smart home system is designed to optimize energy consumption, enhance user comfort, and 

reduce redundancy in sensor deployment [2]. The architecture integrates sensor nodes at room level and also have a central control 

unit which facilitates intelligent decision-making based on both local and global environmental data acquired. [3] 

 

A. Room Sensor Nodes (RSN) 
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Each room is equipped with an RSN, a compact module containing a suite of sensors to monitor environmental parameters such as 

temperature, humidity, light intensity, motion, and air quality [4]. These nodes collect real-time data and transmit it to the Central 

Control Unit (CCU) for analysis[5].  
Also, they have a local processing unit embedded within, so as to take some instantaneous decisions like switching on the lights 

when motion is detected[6], [7]. 

 

B. Central Control Unit (CCU) 

The CCU acts as the system's brain, accumulating data from all RSNs and external sources like weather APIs. It then processes this 

data to determine the most suitable appliance settings. It learns user’s habits over time to predict preferences and automate the 

decisions. The CCU decides the most reasonable actions like- turning on/off lights, adjusting fans, ACs, air purifiers etc. 

 

C. Actuators  

Based on CCU directives, actuators control appliances (e.g., lights, fans, HVAC systems) within each room, adjusting their 

operation to maintain desired environmental conditions and user comfort[8]. 

 
Fig. 1 Architectural diagram of the Control system 

 

D. Communication Protocols 

For the suggested system to work, there must be efficient communication between the Central Control Unit (CCU), appliance 

controllers, and Room Sensor Nodes (RSNs)[9], [10]. Real-time data transfer with low latency and power consumption is supported 

by the system's scalable, effective, and lightweight communication protocols [11]. 

1) MQTT (Message Queuing Telemetry Transport): The system makes use of the MQTT protocol as its primary communication 

protocol. [12] This publish-subscribe-based messaging protocol is suitable for low-bandwidth, high-latency, or unreliable 

networks which are ideal for IoT systems. [13] Devices (RSNs) publish sensor data to specific topics (e.g., room1/temp), while 

the CCU subscribes to these topics to receive updates in real-time. MQTT has a small code footprint and low overhead, making 

it suitable for microcontroller-based devices with limited processing power and memory. Environmental data, such as 

temperature, humidity, and mobility, are published by RSNs. CCU publishes control decisions (e.g., room1/fan/control) and 

subscribes to all RSNs. In order to receive commands, actuator devices subscribe to relevant control topics. 

2) HTTP/Rest (For external API access): To incorporate external environmental context into its decision-making, the Central 

Control Unit (CCU) utilizes HTTP-based RESTful APIs to access third-party services. We pull in data from these APIs on a 

regular basis—things like outside temperature, humidity, UV levels, and weather alerts (think rain or storm warnings). By 

combining that info with readings from our Room Sensor Nodes, the system can make smarter choices. For instance, if it’s 

already cool outside, we dial back the indoor cooling to save energy. 

3) Wi-Fi as Physical Layer: The system employs Wi-Fi (IEEE 802.11) as the primary physical communication layer due to its 

widespread availability in residential settings and higher data throughput compared to protocols like ZigBee or Bluetooth [14]. 

Wi-Fi’s ease of integration with existing home routers makes it a practical choice for real-world deployment. However, in 

scenarios where power consumption is a critical factor—such as with battery-powered sensor nodes—alternative 

communication technologies like ZigBee or LoRa may be considered in future iterations to enhance energy efficiency and 

network longevity. [15] 
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Fig. 2 Illustration of the use of communication protocols in the system 

 

IV. MATHEMATICAL MODELLING 

To ensure the proposed smart home system operates intelligently and efficiently, several mathematical models are employed. These 

models guide decision-making by quantifying environmental conditions, estimating user comfort, predicting behavior, and 

optimizing energy usage. 
 

A. Sensor Data Aggregation  

Sensor nodes in each room collect multiple environmental parameters. To process these inputs effectively, we define a normalized 

aggregation function:[16] 

  (1) 

Where, 

 : Aggregated sensor score for room ‘r’ at time ‘t’. 

 : Value of sensor ‘i’ at time ‘t’. 

 : Weight assigned to sensor ‘i’ (based on importance). 

 : Normalization bounds for sensor ‘i’.  

 n: Number of sensors in the node[17] 

 

This normalization ensures that sensor values of different scales (e.g., temperature in °C, CO₂ in ppm) contribute proportionally to 

the system's decisions. 

 

B. Comfort Score Formula 

The comfort score quantifies how suitable the current room environment is for occupancy based on user preferences and 

environmental thresholds[18], [19], [20]. It is defined as: 

   (2) 

Where,  

 : Comfort score for room ‘r’ at time ‘t’. 

 : Normalized scores for temperature, humidity, air quality, light, and occupancy respectively. 

 : Tunable coefficients reflecting the relative importance of each parameter. 
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A higher  indicates a more comfortable environment. Thresholds can be defined to trigger control actions (e.g., turning on 

ventilation if air quality drops). 

 

V. PROPOSED METHODOLOGY 

To effectively realize the previously discussed system architecture, a structured methodology is essential. This will not only help 

achieve the intended outcomes but also clarify how information flows throughout the system and the sequence in which tasks are 

executed and controlled.  
 

A. Data Acquisition 

Every room is fitted with a virtual sensor group that records real-time environmental details. These sensors measure variables like 

temperature, humidity, brightness, air quality (AQI), and occupancy. For testing purposes, data is produced over a 24-hour period, 

refreshed hourly, enabling the system to replicate daily changes in the environment and occupant behaviour [21]. 
 

B. Data Aggregation 

Sensor inputs are merged into a single figure that reflects the room’s overall state. This figure is derived by averaging adjusted 

values of temperature, humidity, air quality, and brightness—specifically, temperature, humidity, (100 minus AQI), and (brightness 

divided by 10). This combined metric lays the groundwork for assessing comfort levels and directing appliance actions. 
 

C. Comfort level assessment 

The system computes a comfort level using the compiled data to evaluate how near the room’s conditions are to the user’s ideal 

preferences. Each element—temperature, humidity, brightness, and air quality—receives a sub-score from 0 to 1, based on its 

difference from the desired setting. The total comfort level is the average of these sub-scores. Should this level dip below a set point, 

such as 0.75, the system adjusts appliances to enhance comfort. 
 

D. Habit recognition and behaviour prediction 

Over time, the system quietly keeps tabs on each room—logging when and how you use appliances by the hour. It spots those 

regular habits and starts predicting what you’ll want next. So, if you always switch on the fan at 3 p.m., it’ll learn that pattern and 

take care of it for you automatically. 
 

E. Centralized management 

Using both your comfort preferences and the habits it’s learned, the central control unit (CCU) decides which devices to turn on or 

off. It keeps all the room sensors in sync, while also factoring in outside conditions—like temperature or weather alerts pulled via 

live or simulated feeds. And if circumstances change—say you’ve stepped out—the CCU can override individual room settings, 

shutting everything down until you return. 
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Fig. 3 Flow chart of the proposed methodology 

 

VI. EXPERIMENTATION 

For this system we planned a simulation experiment that puts our centralized smart home system to the test. Using Python, we 

created a virtual setup with three rooms, each decked out with sensors that mimic real-world conditions over a full day. The idea is 

to see how well the system adapts to changes in the environment and learns from user habits, all while keeping an eye on energy use 

and comfort levels. 
 

A. Simulation Environment 

For the simulation, we used Python on Google Colab to create a virtual environment with three rooms. Each room has sensors that 

measure things like: Temperature, Humidity, Light levels, Air quality, Whether someone’s in the room. These sensors spit out data 

every hour, and we made sure the readings make sense for a typical day, even though they’re randomly generated within certain 

limits. 
 

B. Data processing and Control Logic 

The system takes all the sensor data and crunches it into a single comfort score for each room. If this score drops below a certain 

level—say, 0.75—the system kicks into action. It decides which appliances to turn on, like the fan, AC, or lights, based on what’s 

needed and what it knows about the user’s habits. But if no one’s in the room, everything stays off to save energy. There’s also a 

smart module that learns from past usage, so over time, the system gets better at predicting what the user wants. 
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Overall, this simulation helps us see how well our smart home system can juggle comfort and energy efficiency in a realistic setting. 

It’s all about making sure the system can adapt and learn, just like a real smart home should. 

 

VII. RESULTS AND DISCUSSIONS 

Although the proposed centralized smart home control architecture has not yet been physically implemented, a thorough conceptual 

analysis provides insight into its expected performance, strengths, and design trade-offs. Table I consists of some of the data 

generated over a span of 24 hour 

TABLE I 

COMFORT SCORE AND APPLIANCE CONTROL 

Hour Room Temp Presence 
Comfort 

Score 
Fan AC E (kWh) 

0 Room1 20 1 0.58 OFF OFF 20 

0 Room2 28 1 0.62 OFF ON 1520 

0 Room3 31 0 0.54 OFF OFF 0 

1 Room1 29 0 0.3 OFF OFF 0 

1 Room2 24 1 0.81 OFF OFF 20 

1 Room3 24 0 0.88 OFF OFF 0 

2 Room1 24 0 0.78 OFF OFF 0 

 

A. Visual Representations 

Simulated outputs using generated data over a 24-hour cycle help demonstrate how the system operates under varied environmental 

and occupancy conditions. Two key visualizations were produced: a heatmap of user appliance interaction and a line graph of 

energy usage per room.: 
 

B. User Habit Learning (Figure 4) 

The heatmap shows familiar routines—like lights coming on at dawn or the AC kicking in as evening rolls around—demonstrating 

how the system picks up on your habits and starts handling them automatically based on who’s home and what the conditions are. 

 

 
Fig. 4 User Habit Learning Heatmap 
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C. Energy Usage Trends (Figure 5) 

The energy consumption graph illustrates that appliance usage peaks during active occupancy periods and remains minimal 

otherwise. This behavior is the result of intelligent appliance control based on comfort scores and habit prediction, which ensures 

energy is only consumed when necessary. 

 
Fig. 5 Energy Consumption Over 24 Hours 

 

D. Strengths of the proposed system 

1) Centralized Intelligence: By funneling all sensor data into one smart hub, we cut down on duplicate hardware and make 

decision-making much simpler. 

2) Personal Touch: The system gets to know your daily routines and quietly adjusts settings to keep you comfortable—no constant 

button-pressing required. 

3) Built to Grow: Each room’s sensor node works independently, so you can easily expand from a cozy apartment to a sprawling 

multi-floor home. 

 

E. Potential Limitations 

1) Network Reliance: Since the nodes chat over Wi-Fi, you might see occasional hiccups or delays if the connection goes spotty. 

2) Learning Curve: It takes a brief “getting to know you” phase before the automation really hits its stride, so things may feel a 

little off at first. 
3) Security Needs: With all data flowing through a central point—and some features talking to outside services—it’s essential to 

lock everything down with strong access controls and encryption [22]. 

 

VIII. CONCLUSION 

In this study, we introduce a smart home design that brings all the “brains” into one central hub while still using flexible, plug-and-

play sensor modules in each room. By having room-level sensors talk to a single control unit, we cut down on extra hardware and 

streamline how everything works—improving both your comfort and your energy savings. 

Our main achievements are threefold: a lightweight network of sensor nodes, a habit-learning algorithm that predicts what you’ll do 

next, and an energy-smart control system that balances efficiency with your personal comfort. Looking ahead, we see exciting 

possibilities like adding facial or voice recognition, tapping into more powerful AI for deeper personalization, rolling this out in 

offices or hotels, and even blending edge-and-cloud processing to keep things fast and efficient in real time. 
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