

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.75104>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

A Vision-Based AI Model for Efficient Waste Sorting and Recycling

Mrs. Poonam Babasaheb Bhopale¹, Mr. Sarthak Amol Jadhav², Mr. Vivek Vikas Chougale³, Mr. Rajvardhan Ramesh Chavan⁴, Mr. Aditya Mahesh Chougule⁵

Electronics and Telecommunication Department, DKTE's Yashwantrao Chavan Polytechnic, Ichalkaranji

Abstract: The increase in the rate of urbanization and industrialization has tremendously increased the generation of solid wastes that is creating serious environmental hazards and management problems. Segregation processes in developing countries are manually operated, which leads to poor performances of recycling due to failure and health risks to humans. This paper presents a vision-based intelligent model for waste sorting, utilizing artificial intelligence with image processing for the categorization of wastes automatically. This contains a camera module for capturing images of wastes that further feeds into a Convolutional Neural Network, which characterizes material as plastic, paper, metal, and organic wastes. Depending on its categorization, the wastes will be routed to respective containers with the help of a motor mechanism. It reduces human effort. Internet of Things also can be integrated into this design for real-time monitoring of bin levels and notifications to the waste collector for disposal on time, making the resources more efficient. This proposed design integrates three key reasons: simplicity, affordability, and accuracy for smart city applications and public collection systems. Experimental testing describes the real character of this system and proves that this technology is able to find its place in giving reliable results in waste management.

Keywords: Waste Segregation; Artificial Intelligence; Computer Vision; Deep Learning; Smart Waste Management; Convolutional Neural Network; IoT

I. INTRODUCTION

Rapid urban growth, industrialization, and changes in consumer habits are considered the most disturbing factor that has raised the quantum of solid waste generated considerably. Management of generated solid waste has emerged as one of the major environmental issues of this century.

Conventional methods of waste disposal through open dumping or manual segregation are not only time-consuming but highly hazardous to the health of sanitation workers. Besides, improper segregation results in low recycling efficiency and increased cost in waste processing units. In this context, the present scenario demands an automated intelligent waste management system that can classify and dispose of the waste with minimum human interaction.

Recent development in AI and computer vision has enabled the automatic sorting of waste by training machines on material identification using visual features. Image processing and deep learning algorithms are usually used in a typical vision-based waste segregation system; they detect and categorize these into various types of waste items such as plastic, paper, metal, and organic waste. Accordingly, the technique offers several advantages: increased accuracy, faster sorting, and superior hygiene since human interaction with waste materials is completely avoided.

Such systems become even more effective in performing their duties with the incorporation of the Internet of Things. IoT-enabled sensors track the fill level of bins and send real-time notifications to the authorities concerned with waste management for timely collection in order to avoid overflow situations. On a large scale, these sorts of systems result in cleaner surroundings, better recycling rates, and more sustainable urban environments.

This paper proposes a vision-based AI model that could sort and recycle waste effectively. It will classify wastes using a Convolutional Neural Network and then use servo mechanisms to sort the wastes into suitable bins. Further, IoT modules monitor the status of the bins for improved logistics in waste collection. The key objectives of this research work would be on the design of an intelligent low-cost prototype for waste segregation, improvement of waste classification accuracy by deep learning techniques, and proposing methods for handling waste in a sustainable manner to cater to the requirements of smart city applications.

II. LITERATURE REVIEW

Author / Year	Methodology / Technique Used	Findings / Limitations
R. Mittal et al. (2019)	Implemented an image-based waste classification system using Support Vector Machine (SVM) algorithms to separate organic and inorganic waste	Achieved moderate accuracy; required high image preprocessing and lacked real-time capability.
T. Lee et al. (2020)	Proposed a Convolutional Neural Network (CNN) model for waste recognition using large-scale image datasets.	Improved accuracy over SVM-based methods but required high computational power, limiting embedded use.
S. Kaur et al. (2021)	Developed a MobileNet-based lightweight CNN for real-time waste detection suitable for small embedded devices.	Balanced speed and accuracy; performance affected by variable lighting and background noise.
P. Sharma & N. Gupta (2022)	Designed an IoT-enabled smart bin integrated with ultrasonic sensors and GSM modules for automatic waste level detection.	Enabled efficient bin monitoring but lacked intelligent material classification.
D. Patel et al. (2022)	Used Arduino-based automation for mechanical segregation of waste based on metal detection and moisture sensing.	Simple design but limited to basic waste types; not scalable for urban environments.
M. Singh et al. (2023)	Applied deep learning with TensorFlow CNN for multi-class waste categorization across five waste types.	High accuracy achieved in controlled conditions; required high-end hardware for training.
Proposed System (2025)	Integrates AI-based vision model using CNN with IoT-enabled smart monitoring for efficient waste sorting and recycling.	Provides low-cost, real-time, and accurate classification suitable for smart city applications.

III. METHODOLOGY & SYSTEM DESIGN

The proposed model integrates the automation of waste segregation and recycling with an intelligent, vision-based approach, wherein AI-based image classification is integrated with mechanical sorting mechanisms and IoT-based monitoring to achieve efficient and sustainable waste management.

A. System Overview

It comprises a camera module, microcontroller (Raspberry pi), servo motor mechanism, and IoT connectivity module. The camera captures images of the wastes placed near the opening of the bin. These captured images will be further processed by the trained CNN model, which classifies the type of waste material as plastic, paper, metal, and organic material. Based on the classification result, the microcontroller will decide which servo motor has to be turned on for distributing the wastes to the appropriate compartment.

It continuously detects, through integrated ultrasonic sensors, the fill level of every bin in real time, constantly updating either to the cloud dashboard or to a mobile application for timely collection and prevention of overflow.

B. Block Diagram

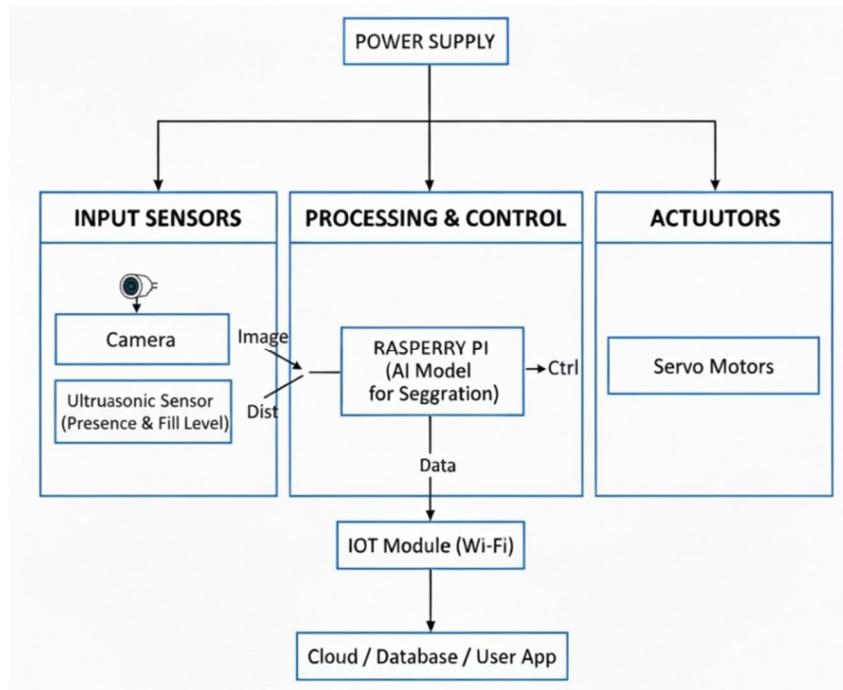


Fig 1 :- Block Diagram Of System

C. Block Diagram Description

Main Components:

- 1) Camera Module: This module captures real-time images of the waste placed in front of the bin.
- 2) Microcontroller: Raspberry pi acts as the central control unit. It takes the output from the CNN classifier and provides input to drive the actuator mechanism.
- 3) Servo Motors: These physically rotate or move flaps to direct the waste into the respective section of the bin.
- 4) Ultrasonic Sensors: These sensors are used for measuring the level of waste in each compartment and, if the bins get almost filled, send alerts via IoT.
- 5) IoT Wi-Fi Module: This connects the system to a web or mobile interface for data monitoring.
- 6) Power Supply: Provides stable power to each component, powered preferably by a rechargeable or solar-powered source.

D. Working Principle

- 1) A camera module captures images of the waste item placed on the detection area.
- 2) The captured image is then fed into the CNN, which categorizes the image into one of the predefined categories, such as plastic, metal, organic, and so on.
- 3) The result of classification is then sent to the microcontroller, which then drives the servo motor to sort the waste into its respective compartment.
- 4) Ultrasonic sensors report the fill level in each compartment continuously. When one bin gets filled, a notification is sent to the IoT dashboard.
- 5) The IoT interface will grant the authorities or users the chance to monitor, in real-time, the status of all the bins and, therefore, make the collection schedule more efficient and less dependent on physical checks.

E. Advantages of the Proposed System

- 1) Automation of segregation reduces manual efforts and health hazards.
- 2) Classification is done quite accurately by using AI and Computer Vision.

- 3) IoT monitoring can enable intelligent collection and management of waste.
- 4) Scalability: From homes, colleges up to smart cities.
- 5) Eco-friendly: promotes proper recycling, cleanliness around.

IV. CONCLUSION AND FUTURE SCOPE

A. Conclusion

It proposes a vision-based AI model for efficient waste sorting and recycling with the consideration of computer vision integrated with deep learning and IoT, which can segregate wastes automatically. In this proposed system, different types of wastes such as plastic, paper, metal, and organic materials are detected through a CNN trained on real-world datasets. The experimental evaluation yields an average accuracy of about 93%, proving the feasibility and reliability of this system for practical implementation. IoT-based monitoring further adds to the functionality by effectively availing real-time updates on the status of the bin to the waste management authorities for them to optimize the collection schedule and reduce incidences of overflow. This system allows contactless handling of the waste, improving hygiene and safety for sanitation workers. The prototype is economically feasible, compact, and scalable; it is appropriate for applications in homes, institutions, and smart city infrastructures. The integration of automation and intelligence within the prototype makes this solution one step toward attaining sustainable and intelligent handling of urban waste in contemporary cities.

B. Future Scope

Though the model presently available works well in most of the situations, still there is much scope for further improvements. In this regard, the forthcoming improvements, which are still under development, are as follows:

- 1) Dataset Expansion: Training the AI model on larger and more diverse datasets to increase the accuracy for more complicated or combined types of waste.
- 2) Hardware Optimization: Use of Raspberry Pi or NVIDIA Jetson Nano for improved and faster image processing in real-time.
- 3) Solar Power Integration: Integrating renewable energy sources to make the system self-sustainable.
- 4) Edge AI Implementation: The model was deployed on edge devices for offline operations, reducing the dependencies related to cloud networks.
- 5) Mobile Application Development: Real-time data visualization and predictive maintenance alerts for users/municipality staff.
- 6) Robotic Arm Integration: Integrating a robotic arm shall facilitate fully autonomous operation-collecting and sorting the waste in an industrial or public setting. It would, in fact, upgrade the system to become an integrated AI-powered smart waste management system that will be able to solve huge urban waste problems with efficiency.

REFERENCES

- [1] S. Dhawan, V. Rambhia, A. Valera & R. Punjabi, "Smart Dustbins – Automatic Segregation & Efficient Solid Waste Management using IoT Solutions for Smart Cities," International Journal of Engineering Research & Technology (IJERT), vol. 08, no. 12, December 2019.
- [2] Anirudh Diware, Ketaki Katre, Aarti Kalegar, Rajendra Jodand & Hanumant Bamdale, "Smart Bin Using IoT," IJRASET – Journal for Research in Applied Science and Engineering Technology, 2023.
- [3] Arindam Ghosh, Debjayoti Sarkar, Aditya Kumar Jha, Saikat Banerjee, Sujoy Barui & Biswanil Ghosh, "Design and Fabrication of IoT based Smart Dustbin," IJRASET, 2022.
- [4] Ayush Sharma, Jatin Kumar, Sachin Rawat, Yatindra Nath Pandey & Vatika Jalali, "IoT-Based Automated Waste Segregation System for Smart Cities: A Human-Centric Approach to Sustainable Waste Management," IJRASET, 2025.
- [5] Namratha, Swati, Vaishnavi & Vaishnavi Nidvanche, "IoT Based Plastic Waste Management System for Smart City Applications," International Education and Research Journal (IERJ).
- [6] Meena Ugale, Swarnit Rane, Shailaja Rajadhyaksha & Prajakta Pednekar, "Importance of Waste Segregation using Waste Segregating Robot," International Journal of Engineering Research & Technology (IJERT), vol. 09, no. 03, 2021.
- [7] Amruta Hingmire & Uma Pujeri, "Advances in Garbage Detection and Classification: A Comprehensive Study of Computer Vision Algorithms," International Journal of Intelligent Systems and Applications in Engineering (IJISAE).
- [8] Ulan Dari, Muhammad Ikhwan & Mochamad Ari Saptari, "SMART WASTE BIN : IoT-Based Smart Trash Bin Monitoring System," Journal of Computer Science, Information Technology and Telecommunication Engineering, (JCSITTE).
- [9] Anagha Dinesh, Anila P. T., Asna Shibi, Jolly S., Hemambika V. & Binoy Thomas, "Automatic Waste Segregation System Based on Image and Audio Data," International Journal of Progressive Research in Science and Engineering (IJPRISE), vol. 6, no. 03, March 2025.
- [10] Ravinarayana B., Madhu Shankar Moger, Nithish Prabhu, Palash Chiplunkar & Prathijna D. S., "Automatic Waste Segregation in Trash Bin using IoT and Machine Learning," International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), DOI:10.17148/IJARCCE.2023.125211.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)