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Abstract: SRGAN is a generative adversarial network for super-resolution of a single picture. In this paper an adaptive filter in 

single image SRGAN which is a  Super-Resolution Generative Adversarial Network (SRGAN), is a deep learning-based 

approach that is used to generate high-resolution images from low-resolution ones. The SRGAN model is based on the 

Generative Adversarial Network (GAN) architecture, which consists of two deep neural networks: a generator network and a 

discriminator network. The generator network takes a low-resolution image as input and tries to generate a high-resolution 

image that is similar to the original high-resolution image. The discriminator network, on the other hand, tries to distinguish 

between the high-resolution images generated by the generator network and the original high-resolution images. The SRGAN 

model has been shown to be very effective in generating high-quality, realistic images from low-resolution inputs, and it has 

been applied in various applications, including image and video upscaling, medical imaging, and satellite imaging. 

Keywords: SRGAN, ResNet, VGG19, CNN, ML                                                                                                                                                       
 

I.      INTRODUCTION 

One of the major problems in our today’s life is accidents on foggy roads due to less amount visibility, which is occurred due to bad 

weather conditions. This project’s main goal is to use an algorithm to improve visibility in foggy weather camera-based Advanced 

Driver Assistance systems (ADAS) and to deduce a rough brightness map with no fog. This algorithm makes more contrast and 

viewable seen by the single camera-based ADAS at the same time. The main issue is that contrast enhancement from a single blurry 

image is an incorrectly phrased challenge. In order to restore vision after a fog, it is necessary to estimate both the scene's depth map 

and brightness without fog. This means estimating two unknown parameters from a single image for each pixel. Regularization is 

required for this issue. This concept of an approximate depth map was improved in [1] by putting out a number of straightforward 

parametric geometric models specifically designed for road sceneries observed in front of a moving vehicle. By globally 

maximizing the scene depths for each type of model, the parameters are fitted to each view without resulting in any black pixels in 

the augmented image. The rigidity of the suggested geometric models is this approach's limitation. These models have some adverse 

situations like: The driver's perspective on the scene geometry along the entire road path must be approximated, which is difficult to 

do. A second solution to this issue was put forth around the same time in [2], which relied on the usage of color images with pixels 

that had a tint other than grey. Additionally, in our opinion, visibility enhancement algorithms must be able to process low-

resolution images in order to transform intelligent vehicle applications into a function that is described in the visibility restoration 

problem in  [3]. To improve the foggy roadside image, the SRGAN (Super Resolution Generative Adversarial Network) algorithm 

is used, which mainly combines pixel-wise MSE loss with a discriminator loss. The algorithms are applied to foggy images and 

results are compared with the images without fog. Here [38] also used GANs for unsupervised representation learning. In the 

paper[33] author uses the style for transfer and  in [52] for iinpainting, describing the use of GANs to learn a mapping from one 

manifold to another. The squared error of the scattering networks and VGG19 [41] feature spaces is known by paper. [5]. The 

concept of this project is to make a low-resolution(LR) image into a high-resolution(HR) image. Using GANs(Generative 

Adversarial Networks) algorithm implemented by us. Super-resolution refers to the extremely difficult task of estimating a high-

resolution (HR) image from its low-resolution (LR) equivalent (SR). From this project, we can easily make a lower-resolution 

image into a higher-resolution  image. SR offered a wide range of applications and attracted a lot of interest from the computer 

vision research community . High upscaling factors, for which texture detail in the reconstructed SR images is often absent, make 

the underdetermined SR problem's ill-posedness especially apparent. The mean squared error (MSE) between the recovered HR 

image and the ground truth is typically the optimization goal of supervised SR algorithms. This is practical because the 

maximization of the peak signal-to-noise ratio (PSNR), a typical metric used to evaluate and compare SR methods, coincides with 

the minimization of MSE [50]. Nevertheless, because MSE (and PSNR) are established based on pixel-wise picture differences, 

their capacity to capture perceptually relevant differences, such as great texture detail, is severely constrained and the highest PSNR 

does not always reflect the perceptually better SR result. The recovered image is not photo-realistic in the sense mentioned because 

of the perceptual gap between the original and super-resolved images.  
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In this study, HR image, bicubic interpolation, a deep residual generative adversarial network optimized for a loss more sensitive to 

human perception, and a deep residual network optimized for MSE. In brackets are the PSNR and SSIM that correspond. So, a deep 

residual network has been proposed. (ResNet) with skip-connection and depart from MSE as the only optimization goal for a  super-

resolution generative adversarial network (SRGAN). In contrast to earlier research, our definition of a novel perceptual loss uses 

high-level feature mappings of the VGG network along with a discriminator that favors solutions that are perceptually difficult to 

differentiate from the HR reference images. 

 

II.      RELATED WORK 

Two recent overview works on image SR [37, 50]. This article's focus is on single-image super-resolution, the initial techniques to 

address SISR were prediction-based. The SISR problem is oversimplified by certain filtering techniques, such as linear, and bicubic 

filtering, which often results in solutions with excessively smooth textures. Edge preservation has been the topic of several proposed 

methods [1, 34]. More effective methods typically rely on training data in order to create a sophisticated mapping between low and 

high-resolution image information. Several example-pair-based techniques rely on LR training patches that are known to have 

known HR counterparts.[16, 15] presented their early research. Compressed sensing-based solutions to the SR problem are related 

[51, 12, 56]. This paper [19] uses patch redundancies between scales in the image to drive the SR.  In [26], where the author extends 

self-dictionaries by additionally allowing for tiny changes and shape variations, also uses this self-similarity paradigm. 

Convolutional sparse coding, as proposed by the researcher [23], increases consistency by analyzing the entire image as opposed to 

overlapping sections. The advantages of learning-based detail synthesis are merged with an edge-directed SR approach based on a 

gradient profile prior [42] and [44] to rebuild realistic texture detail without creating edge artifacts. A multi-scale dictionary is 

suggested by the author in [57] to identify the redundancy of comparable image patches at various scales[54]  retrieval of associated 

HR photos from the web with similar content and their proposal of a structure-aware matching criterion for alignment to enable 

super-resolved landmark images.By identifying similar LR training patches in a low-dimensional manifold and pooling their 

associated HR patches for reconstruction, neighborhood embedding techniques upsample an LR image patch [45, 46]. By utilizing 

kernel ridge regression, In paper[30] highlights the propensity of neighborhood techniques to overfit and create a map of example 

pairings that is more inclusive. Trees, Random Forests, and the Gaussian Process Regression can all be used to address the 

regression problem[6], The most suitable regressors are chosen during testing after a large number of patch-specific regressors have 

been trained. Lately, SR methods based on convolutional neural networks (CNNs) have demonstrated exceptional performance. In 

[49].'s feed-forward network architecture, which is based on the learned iterative shrinkage and thresholding algorithm (LISTA) 

[21], the authors incorporate a sparse representation prior. To attain state-of-the-art SR performance, In [9, 10] used bicubic 

interpolation to upscale an input image and trained a three-layer deep fully convolutional network end-to-end. The ability of the 

network to directly train the upscaling filters was later demonstrated to be able to significantly improve performance in terms of 

accuracy and speed [11, 40, 47]. In this paper [29] introduced a very effective architecture with its deeply-recursive convolutional 

network (DRCN), which allows for long-range pixel dependencies while minimizing the number of model parameters. The research 

[28,5], which relies on a loss function closer to perceptual similarity to recover visually more convincing HR images, is particularly 

pertinent to this paper Following the success of the working paper [32], the state-of-the-art for many computer vision issues is 

currently established by specifically developed CNN architectures. Deep network architectures have been demonstrated to be 

challenging to train but have the potential to significantly improve the network's accuracy as they permit modeling mappings of 

extremely high complexity [41, 43]. Batch normalization is frequently employed to combat the internal covariate shift in order to 

effectively train these deeper network designs. Deeper network topologies have also been demonstrated to improve SISR 

performance, as shown, for example, in paper [29], which develops a recursive CNN and reports cutting-edge findings. The recently 

announced ideas of residual blocks [29] and skip-connections [30, 29] are another effective design decision that makes training deep 

CNNs easier. The identity mapping, which is straightforward in nature but potentially non-trivial to describe with convolutional 

kernels, is modeled by skip-connections instead of the network architecture. It has also been demonstrated that learning upscaling 

filters improves SISR accuracy and speed [11, 40, 47]. In contrast to 10], where used bicubic interpolation was to upscale the LR 

observation before feeding the image to the CNN, this is an improvement. The uncertainty involved in recovering lost high-

frequency details like texture is difficult for pixel-wise loss functions like MSE to handle: minimizing MSE encourages finding 

pixel-wise averages of plausible solutions, which are typically excessively smooth and have poor perceptual quality [36, 28, 13, 5]. 

The difficulty of minimizing MSE is clearly understood. In [36] and [7], the authors used generative adversarial networks (GANs) 

[20] for the purpose of applying image generation to this problem.  
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To train a network that super-resolves face images with large upscaling factors (8), in the paper [13] the author combines adversarial 

training with loss functions based on Euclidean distances derived in the feature space of neural networks. It is demonstrated that the 

suggested loss enables the creation of visually superior images and can be applied to the inverse problem of decoding nonlinear 

feature representations, which is poorly posed. The use of features extracted from a pre-trained VGG network as opposed to low-

level pixel-wise error estimates is suggested in the paper. [28] and [5] in a manner similar to this study. The loss function developed 

by the researchers is based on the Euclidean distance between feature maps taken from the VGG19 [41] network. Both super-

resolution and artistic style transfer produced results that were more perceptually compelling [17, 18]. The author of the paper[33] 

recently examined the impact of contrasting and blending patches in VGG or pixel feature space. A strong framework for creating 

natural images with excellent perceptual quality is provided by GANs. The GAN method promotes the reconstructions to travel 

towards areas of the search space that have a high likelihood of having photorealistic images and are consequently nearer to the 

natural image manifold. The first very deep  [29, 30] architecture is described in this study leveraging the idea of GANs to create a 

perceptual loss function for photo-realistic SISR. Contribute by us primarily: With the 16 blocks deep ResNet (SRResNet) that is 

optimized for MSE, it  achieved a new state of the art for image SR with high upscaling factors (4), as evaluated by PSNR and 

structural similarity (SSIM). Here SRGAN is suggested which is a GAN-based network that is enhanced for a novel perceptual loss. 

Here, instead of using the MSE-based content loss, a loss-based function is calculated on the VGG network's feature maps [41], 

which are more resistant to changes in pixel space [33]. Using images from three publicly available benchmark datasets, confirm say 

that SRGAN is the new state of the art by a significant margin for the estimate of photo-realistic SR images with high upscaling 

factors (4). 

 

III.      PRELIMINARIES 

Increasing the visibility or making the low-resolute image into a high-resolute visible image is the  main aim of this project, where 

we clearly mentioned some kind of  specific algorithms is used that are applied for making our project more efficient. 

 

IV.      SUPER RESOLUTION GAN 

SRGANs are abbreviated as Super-Resolution Generative Adversarial Networks, which use a perceptual loss to convert a low-

resolution image to a high-resolution image without losing much information. The main idea is to introduce a new loss function 

called Perceptual loss, which is a combination of both adversarial loss and content loss. 

                 ݈ௌோ= ݈௑ௌோ + 10ିଷ݈ீ௘௡ௌோ         

 
Figure 1. Architecture of SRGAN. 

 

As journal papers are generally printed in black and white it is advisable that where ever possible the figures should be given in gray 

scale. After inserting the figures verify its readability by converting it to formats generally used for printing eg pdf.  
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V.      ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of Generator and Discriminator   Network with corresponding kernel size (k), number of feature maps (n), 

and stride (s) indicated for each convolutional layer 

 

Basically, GAN contains two parts, one is a generator and another one is a discriminator, where the generator produces some 

database of the probability distribution and the discriminator tries to guess whether data coming from a dataset of input dataset or 

generator. 

 

VI.      GAN ALGORITHM 

 GAN is a deep learning algorithm that is employed to produce artificial data that is comparable to a given dataset. A generator and 

a discriminator neural network make up the algorithm, and both are simultaneously trained.  

When given a random noise vector as input, the generator network creates artificial data, while the discriminator network attempts 

to tell the difference between the artificial data produced by the generator and the real data from the dataset.  

Feedback from the discriminator is given to the generator, which uses it to enhance output. The generator's objective is to produce 

fake data that, in the discriminator's opinion, can't be distinguished from genuine data.  

The generator and discriminator networks compete with one another during iterative training. The discriminator finds it harder to 

discriminate between genuine and synthetic data as the generator gets better, and the quality of the synthetic data also gets better. 

 

VII.      METHOD 

A. Data Description 

The goal of SISR is to estimate a low-resolution input image ܫ௅ோ into a high-resolution, super-resolved image  ܫௌோ .  ܫ௅ோ  in this case, 

is a low-resolution variant of ܫுோ, its high-resolution counterpart. Only when training is taking place are the high-resolution photos 

accessible. ܫுோ is first subjected to a Gaussian filter, then a downsampling operation with a downsampling factor of r, to produce ܫ௅ோ during training. ܫ௅ோ is defined by a real-valued tensor of size WxHxC for an image with C color channels, and ܫுோ, ܫௌோby 

rWxrHxC, respectively. Our ultimate objective is to train a generating function G that calculates the matching HR counterpart for a 

given LR input image. A generator network is being trained as a feed-forward CNN ܩఏீ   parametrized by θG to do this. Here, "G" 
specifies the weights and biases of an L-layer deep network, and was created by optimizing a loss function that is special to SRs, 

called. For training images ܫ௡ுோ , n=1, . . . ,N with corresponding ܫ௡௅ோ,n=1,...,N,we solve: 

           

݉ ෠=argߠ    ݅݊ఏீ ଵே∑ே௡ୀଵ ݈ௌோ )ఏீܩ)  ௡ுோ)                 (3)ܫ.(௡௅ோܫ

 

As a weighted combination of numerous loss components that model various desirable properties of the recovered SR image, A 

perceptual loss ܫௌோ  is explicitly built by us. 

 

B. Adversarial Network Architecture  

In keeping with paper [20], A discriminator network ܦఏ஽ is defined by us that alternately optimize with ܩఏ஽  in order to solve the 

adversarial min-max problem: 

 ݉݅݊ఏீ݉ܽݔఏ஽Eܫுோ∼݌௧௥௔௜௡(ܫுோ)[݈ܦ݃݋ఏ஽(ܫுோ)]+Eܫ௅ோ∼݌௧௥௔௜௡(ܫுோ)[log(1-ܩఏ஽(ܫுோ))]                                (2) 
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This formulation's fundamental notion is that it enables the training of a generative model G with the aim of deceiving a 

differentiable discriminator D that is trained to distinguish between genuine images and super-resolved images. By using this 

strategy, our generator can learn to produce results that are very close to actual photographs and challenging for D to categorize. 

This encourages solutions that reside in the subspace, or manifold, of natural images and are perceptually superior. In contrast, like 

the MSE, pixel-wise error measurements are used to develop SR solutions. 

A very deep generator network G, which is shown in Figure. 2, is composed primarily of B residual blocks with the same topology. 

We use the block arrangement suggested by [22], which was inspired by [28]. A batch-normalization layer is specifically employed 

by us  [27] and ParametricReLU [25] as the activation function, followed by two convolutional layers with tiny 33 kernels and 64 

feature maps. With the help of two  

 A discriminator network trained by us to distinguish actual HR photos from artificial SR data. In Fig 2, the architecture is 

displayed. Throughout the network, use LeakyReLU activation (= 0.2) and avoid max-pooling. The discriminator network is trained 

to resolve the maximizing problem in Equation 2. It comprises eight convolutional layers, identical to the VGG network, and 3x3 

filter kernels that increase in number from 64 to 512 by a factor of 2 [41]. Stepped convolutions are used to reduce the image 

resolution every time the number of features doubles. To determine the chance of classifying the data, two thick layers, the 512 

feature maps that result, and a final sigmoid activation function are used. MSE. 

 

C. Perceptual Loss Function 

This perceptual loss function defines the effectiveness of the generator network depending on SR. From [28] and [5] a loss function 

is constructed by us that gives a solution concerning perceptually relevant qualities, even though  ݈ௌோ is frequently represented based 

on the MSE [10, 40]. The weight of the total content loss (݈௑ௌோ), which is how we define the perceptual loss, 

                 ݈ௌோ=݈௑ௌோ+10ିଷ݈ீ௘௡ௌோ                               (4)   

 

D. Content loss 

The formula for calculating the pixel-wise MSE loss is as follows: 

             ݈ெௌாௌோ = 
ଵ௥మௐு ∑௥ௐ௫ୀଵ ∑௥ு௬ୀଵ ( ௫,௬ுோܫ − ௫,௬ )ଶ(௅ோܫ)ఏಸܩ                (5) 

The majority of cutting-edge methods for image SR rely on this as their most popular optimization goal [10, 40]. However, despite 

obtaining an especially high PSNR, MSE optimization problem solutions frequently lack high-frequency content, resulting in 

perceptually unpleasant results with excessively smooth textures . We build on the theories of [17], [5], and [28] and employ a loss 

function that is more closely related to perceptual similarity in place of relying on pixel-wise losses. Based on the ReLU activation 

layers of the pre-trained 19-layer VGG network mentioned in [41], we define the VGG loss. With i,j the feature map acquired by the  ܬ௧௛ convolution (after activation) within the VGG19 network before the ݅௧௛ max pooling layer, which was taken as supplied by us. 

The feature representations of a reconstructed image ܩఏಸ(ܫ௅ோ) ) and the reference image ܫுோ are used to determine the VGG loss: 

   ݈௏ீீ/ ௜,௝ௌோ =
ଵௐ೔,ೕ ு೔,ೕ∑ௐ೔,ೕ ௫ୀଵ ∑ு೔,ೕ ௬ୀଵ (߶௜,௝(ܫுோ)௫,௬ −߶௜,௝(ܩఏಸ(ܫ௅ோ) )௫,௬)ଶ  (6) 

Here  ௜ܹ,௝ and ௜ܹ,௝  outline the specific feature maps' sizes within the VGG network. 

 

E. Adversarial Loss 

The generative element of our GAN is added to the perceptual loss in addition to the content losses already mentioned. To trick the 

discriminator network, this encourages the  network to favor solutions that are based on a variety of natural images. Based on the 

probabilities of the discriminator ܦఏವ(ܩఏಸ(ܫ௅ோ)) overall training samples, the generative loss ݈ீ௘௡ௌோ  is defined as:  

           ݈ீ௘௡ௌோ =∑ே௡ୀଵ - logܦఏವ(ܩఏಸ(ܫ௅ோ))                                       (7)                                                  

In this case, ܦఏವ(ܩఏಸ(ܫ௅ோ)) represents the likelihood that the reconstructed image ܩఏಸ(ܫ௅ோ) is an actual HR image. Instead of 

minimizing log[1 - ܦఏವ(ܩఏಸ(ܫ௅ோ))]  [20], we minimize logܦఏವ(ܩఏಸ(ܫ௅ோ)) for improved gradient behavior. 

 

VIII.      EXPERIMENTS 

A. Data and similarity measures 

We perform the experiment using the FRIDA dataset, all experiments are  performed with a factor of four times between LR and 

HR images. This results in an image pixel reduction of a factor of 16.  
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All reported PSNR [dB] and SSIM [48] metrics were computed on the y-channel of center-cropped images with each border 

removed by a 4-pixel wide strip using the data package. The online material is supplementary to  [26] and was used to create super-

resolved pictures for the reference methods, including the nearest neighbor, bicubic. 

 

B. Training Details And Parameters 

Using an NVIDIA GeForce RTX 3050 GPU, we trained all networks using a random sample of 350000 photos from the ImageNet 

database [39]. Compared to the test images, these pictures are different. By employing a bicubic kernel and a downscaling factor of 

4, we were able to derive the LR images from the HR images (BGR, C = 3). We randomly select 16 images, 96 x 96 HR submerges 

of various training images for each mini-batch. Because the generator model is of arbitrary size we can use it to create images of any 

size convolutional. We scaled the HR picture range to [-1, 1] and the LR input image range to [0, 1]. To determine the MSE loss, 

pictures with an intensity range of [-1, 1] were used. To produce VGG losses on par with the MSE loss, VGG feature maps were 

additionally rescaled by a factor of 11.25%. This is equal to adding a rescaling factor of 0.006 to Equation 5. We utilize [31] with ߚଵ 

= 0.9 for optimization. The SRResNet networks were trained using  10଺  update iterations and a learning rate of 10ସ Adam [31], 

with ߚଵ = 0.9, is used for optimization. With 10଺ update iterations and a learning rate of 10ିସ, the SRResNet networks were trained. 

The trained MSE-based SRResNet network is initialization for the generator when training the actual GAN to prevent undesirable 

local maxima. The training process for all SRGAN variants included  update iterations at a learning rate of 10ିସ and further 10ହ 

iterations at a slower rate of  10ିହ. We alternate the generator and discriminator network updates, which is similar to [20]'s (k = 1). 

The 16 residual blocks in our generator network are all the same (B= 16). To get a result that deterministically depends exclusively 

on the input during test time, the batch-normalization update is turned off [27].  

 

C. Performance Of The Final Networks 

We assess how well SRResNet and SR-GAN perform compared to NN, bicubic interpolation, and four cutting-edge techniques. In 

the supplemental material, examples of super-resolved images created using SRResNet and SRGAN are shown. They demonstrate 

that SRGAN significantly outperforms all reference methods and establishes a new benchmark for photo-realistic image SR. 

 

IX.      DISCUSSION AND FUTURE WORK  

 
Figure 3: Foggy image (LR) to HR image 

 

 

 

 

 

 

 

 

 

Figure 4: LR to HR image. 

 

The perceived quality of super-resolved images rather than computing efficiency was the main focus of this effort. Contrary to [40], 

the provided model is not designed for real-time video SR. However, preliminary research on the network architecture indicates that 

thinner networks may be able to offer very effective substitutes at a negligible loss in performance quality. Unlike [10], we 

discovered deeper network designs to be advantageous. We hypothesize that the ResNet architecture significantly affects the 

effectiveness of deeper networks. We discovered that deeper networks (B > 16) can improve SRResNet performance even more but 

at the expense of longer training and testing times (cf. supplemental material).  
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Additionally, we discovered that SRGAN variations of deeper networks are getting harder to train because high-frequency artifacts 

start to show up. The choice of content loss  is crucial if photo-realistic solutions to the SR problem are desired. The perceptually 

most compelling findings in this study were obtained using ݈௏ீீ/ ହ.ସௌோ , which we attribute to the ability of deeper network layers to 

represent aspects of higher abstraction [55, 53, 35] outside of pixel space. The major distinction between super-resolved images 

without the adversarial loss and photo-realistic images, according to our hypothesis, is that feature maps of these deeper layers 

concentrate solely on the content, whereas the adversarial loss concentrates on texture details. We also point out that the best loss 

function varies depending on the situation. For instance, methods that hallucinate finer detail may not be as suitable for surveillance 

or medical purposes. It is difficult and will be the subject of future research to rebuild text or structured sceneries in a perceptually 

convincing manner [26]. Further enhancing photo-realistic image SR outcomes will be the creation of content loss functions that 

characterize picture spatial content while being more resistant to changes in pixel space. 

 

X.      CONCLUSIONS 

When assessed using the commonly used PSNR measurement, the deep residual network (SRRes-Net), we have developed a new 

state of the art on publicly available benchmark datasets.  We also generate different types of low-resolution images, a situation that 

was never considered previously in our domain. To improve visibility in such difficult situations, take help from this proposed 

algorithm. We have outlined some of the drawbacks of this PSNR-focused image super-resolution and presented SRGAN, which 

improves the content loss function by training a GAN to account for an adversarial loss. We have established through extensive 

MOS testing that SRGAN reconstructions for large upscaling factors are significantly more photo-realistic than reconstructions 

made using cutting-edge reference methods. 
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