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Abstract: Urban traffic congestion remains a pressing challenge, particularly in developing regions where infrastructure
development struggles to keep pace with rapid urbanization. Fixed-time traffic signal systems, commonly deployed in countries
like Yemen, lack the adaptability needed to manage dynamic and unpredictable traffic flows efficiently. This thesis addresses
these limitations by proposing and evaluating reinforcement learning (RL)-based algorithms for adaptive traffic signal control,
with a dual focus on improving traffic flow and reducing environmental impact. The research introduces two core innovations: a
decentralized Q-learning algorithm and a deep reinforcement learning framework based on Proximal Policy Optimization with
Masking (PPO-Mask). While Q-learning demonstrated substantial improvements over traditional control strategies in reducing
vehicle delays and emissions, its scalability was limited in complex traffic environments. To overcome these challenges, the PPO-
Mask model was developed, incorporating action masking to ensure safer decision-making and faster convergence in high-
dimensional settings. Simulations conducted using the SUMO platform across both synthetic and real-world scenarios
demonstrated that PPO-Mask consistently outperformed Q-learning and fixed-time baselines across all key performance metrics.
This work contributes a robust, scalable, and cost-effective approach to adaptive traffic signal control that is particularly suitable
for low-resource urban environments. It also provides a comparative framework and practical insights that can inform future
integration of Al-driven traffic control strategies into broader urban mobility planning.

Keywords: Adaptive Traffic Signal Timing, Deep Reinforcement Learning, Traffic Signal Optimization, Q-learning, SUMO
Simulation, Multi-Intersection, Real-Time Traffic Management

I. INTRODUCTION
In recent years, Reinforcement Learning (RL) has emerged as a promising methodology to address these challenges in real-world
traffic management. Unlike traditional methods that depend on static traffic flow models, RL approaches enable systems to learn
optimal timing strategies by interacting directly with the environment. This learning process is based on continuous feedback, where
an RL agent optimizes a policy to maximize a specific reward function, such as minimizing travel time or congestion [6, 7]. The
ability of RL to operate without prior knowledge of traffic conditions offers a significant advantage, particularly in the face of un-
predictable urban traffic scenarios.
However, applying RL to traffic signal timing introduces several complexities. Early RL-based approaches typically modeled traf-
fic intersections as agents optimizing their reward by selecting actions such as green-light phase changes, based on simplified state
representations (e.g., vehicle counts or queue lengths) and a predefined reward structure [[6, 7]. Despite promising results in simple
settings, these methods face significant challenges when extended to more complex traffic scenarios. For instance, at an intersection
with multiple traffic movements (e.g., left-turn, through, and right-turn lanes), the state space expands exponentially, increasing the
computational complexity and the difficulty of learning optimal policies [8].
The state-space explosion becomes particularly evident in multi-phase intersections, where the number of possible actions increases
rapidly. A typical 8-phase intersection, where vehicles can move in multiple directions and turns, requires the RL algorithm to ex-
plore a larger state-action space. In such cases, the RL agent must evaluate multiple conflicting actions (e.g., prioritizing certain
phases over others), which often results in inefficient exploration and slower convergence to optimal solutions [9] . Moreover, trial-
and-error learning in a real-world setting is costly, as ineffective policies may lead to congestion, exacerbating traffic delays and
increasing environmental pollution [10].
To address the challenges of traffic signal timing, model-free reinforcement learning (RL) approaches, such as Fixed time (Yemen),
Q-learning and PPO-Mask, have been applied. Unlike traditional model-based methods, which require learning an approximate
model of the traffic environment, our potential algorithm directly learn optimal policies through interaction with the environment.
Q-learning allows the agent to optimize traffic signal timings based on real-time traffic data, while it enhances this process by in-
corporating action masking for efficient phase transitions.
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These algorithms focus on improving data efficiency and significantly accelerating the learning process by continuously interacting
with the environment. This approach reduces the reliance on trial-and-error, optimizing the decision-making process in complex
traffic signal timing tasks.
This research proposes an adaptive traffic signal timing system utilizing reinforcement learning (RL), specifically Q-learning. Simu-
lating this system in the SUMO (Simulation of Urban MObility) platform using real-world traffic data, the results demonstrate that
the proposed model outperforms traditional fixed-time systems and Q-learning, offering improved convergence rates, reduced vehi-
cle waiting times, and lower emissions, particularly in complex intersection scenarios. By simulating this system in the SUMO
(Simulation of Urban MObility) platform using real-world traffic data, this research demonstrates that the proposed model outper-
forms traditional fixed-time (Yemen) systems and previous RL-based approaches, by offering enhanced convergence rates, reduced
vehicle waiting times, and lower emissions.

Il. RELATED WORK
The field of traffic signal timing has evolved significantly over the years, with various approaches developed to address the
challenges posed by increasing urban traffic demands. Traditional methods, such as fixed-time and actuated systems, have served as
the foundation of urban traffic management but often fall short in adapting to dynamic and unpredictable traffic conditions. Recent
advancements in Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) have introduced more adaptive and
efficient solutions, offering the potential to optimize traffic signal timings in real-time. This section reviews key studies and
methodologies in both traditional and modern traffic timing systems, with a focus on their limitations and the innovations proposed
by contemporary RL-based approaches.

A. Traditional Traffic Signal Timing

Traditional traffic signal timing methods have been fundamental in urban traffic management but are increasingly inadequate in

handling modern traffic dynamics. These systems are typically categorized into:

1) Fixed-Time (Yemen): Fixed-time systems use pre-determined signal schedules based on historical traffic data, offering limited
flexibility. While simple, they fail to adapt to real-time traffic variations, leading to inefficiencies such as long queues and fuel
wastage [14, 2 ].

2) Actuated Timing: Actuated systems adjust signal phases based on real-time data from traffic sensors, offering more adaptabil-
ity. However, they still rely on predefined rules, making them less effective in handling unpredictable traffic flows [11, 4].

3) Selection-Based Adaptive Timing: These systems select the most appropriate signal plan from a set of pre-configured plans
based on real-time traffic data. While more responsive, they remain limited by their reliance on pre-defined plans and cannot
fully optimize traffic in dynamic conditions [15]. This approach is extensively implemented in modern traffic signal timing
systems, such as SCATS [12, 13], RHODES [14], and SCOOT [3].

4) Optimization-Based Timing: Optimization methods use real-time data and traffic flow models to minimize delays. While they
offer greater flexibility, they rely on simplifying assumptions (e.g., uniform arrival rates), often leading to suboptimal perfor-
mance in real-world, complex traffic scenarios [16].

B. Reinforcement Learning for Traffic Signal Timing

Unlike traditional signal timing approaches that rely on manually designed signal plans or pre-defined traffic flow models,
reinforcement learning (RL) provides a self-learning framework that directly interacts with the environment to optimize timing
policies. In RL-based traffic signal timing, each intersection is modeled as an agent, the state represents a quantitative description of
the traffic condition (such as vehicle density, queue length, or waiting time), the action corresponds to a traffic signal phase decision,
and the reward measures traffic efficiency in terms of reduced delay, queue length, or travel time [16] [20].

Devailly et al. (2022) introduced an inductive graph reinforcement learning framework that incorporates four distinct node types—
representing traffic signal timing, connections, lanes, and vehicles—to facilitate environmental understanding and enhance the mod-
el’s ability to generalize across different traffic scenarios [17]. To accelerate the training process, Zang et al. (2020) introduced a
meta-learning framework called MetalLight, designed to improve the adaptability of reinforcement learning models to new environ-
ments through the reuse and transfer of prior experiences [9]. Similarly, Wang et al. (2020) developed the Cooperative Double Q-
Learning (Co-DQL) approach, in which agents Q-values converge toward a Nash equilibrium. In their method, the state representa-
tion of each intersection incorporates the averaged state information of neighboring intersections, while the reward function com-
bines each intersection’s reward with a weighted average of its neighbors’ rewards to promote coordinated learning and system-
wide optimization [34].
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Building upon early frameworks such as IntelliLight [20] and PressLight [22] subsequent research has sought to augment RL’s deci-
sion-making robustness through hierarchical and relational modeling. For instance, Chu et al. [21] proposed a Multi-Agent Ad-
vantage Actor-Critic (MA2C) framework to facilitate decentralized coordination among intersections by incorporating spatial dis-
count factors, effectively mitigating oscillations in joint policy learning. Similarly, [21] extended this approach by introducing Co-
Light, a graph-attention-based mechanism that leverages inter-agent dependencies to enhance cooperation among intersections
through adaptive message passing.

To address the limitations of temporal instability and convergence divergence in multi-agent systems, Subham et al.(2021) devel-
oped a Hierarchical Reinforcement Learning (HRL) framework that decomposes complex signal timing tasks into sub-policies for
phase selection and duration optimization [23]. This hierarchical decomposition significantly reduces policy variance and improves
convergence efficiency. Furthermore, Xu et al. (2025) advanced this line of research with Multi-Agent A2C with Shared Experi-
ence Replay (MA2C-SER), enabling agents to share relevant experiences across intersections to accelerate learning convergence
and enhance policy generalization in large-scale networks [24].

C. Q Learning
Q-learning is one of the most widely used reinforcement learning techniques for solving traffic signal timing problems. It is a mod-
el-free, off-policy algorithm that allows an agent to learn the optimal policy for timing traffic signals by interacting with the envi-
ronment and receiving feedback in the form of rewards. The core advantage of Q-learning is its ability to operate without a prede-
fined traffic model, making it particularly useful in dynamic and complex traffic environments where traffic patterns can vary.
Several studies have applied Q-learning to traffic signal timing with varying degrees of success. For instance, Abdulhai et al. (2003)
proposed a Q-learning-based system for optimizing traffic signals at isolated intersections [7]. Their approach used real-time data to
adjust signal timings and demonstrated improvements in both vehicle throughput and reduced delays compared to traditional fixed-
time systems. Similarly, Bakker et al. (2010) applied Q-learning to multi-phase traffic signals, where they modeled each intersection
phase as an agent, allowing the system to dynamically adjust signal timings in response to real-time traffic flow [6].
Q-learning has also been integrated with traffic simulators like SUMO and VISSIM for more realistic evaluations of traffic systems.
For example, Zheng et al. (2021) applied Q-learning in a simulated environment with multiple intersections and observed improve-
ments in traffic efficiency [28]. However, their study also highlighted challenges, particularly with larger traffic networks where Q-
learning struggles with state-space explosion, leading to computational inefficiency.
By integrating constraint-aware decision-making within a robust policy optimization framework, it paves the way for scalable, real-
time adaptive traffic management in complex urban networks. While prior studies in adaptive traffic signal timing have achieved
notable progress through deep and reinforcement learning approaches, most remain constrained by unstable convergence, inefficient
exploration, lack of safety assurance, and limited scalability across complex urban networks. Our proposed framework addresses
these gaps by integrating a constraint-aware action masking mechanism within to ensure safe and stable phase transitions, enhancing
convergence efficiency through reduced exploration of invalid actions, and employing a multi-agent architecture for coordinated
timing among intersections. By combining learning stability, safety compliance, and network-level adaptability within the SUMO
simulation environment, the model establishes a new state-of-the-art benchmark in intelligent, data-driven, and sustainable urban
traffic signal timing.

111. METHODOLOGY
The methodology of this research has been designed to ensure both the scientific rigor and practical relevance of the proposed adap-
tive traffic signal optimization algorithm. The workflow of the proposed approach is illustrated in Figure 1.

State

Python
Control Script

Figure 1: Workflow of the PPO-Mask Model for Adaptive Traffic Signal Timing
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In Figure 1, the workflow illustrates the integration between the SUMO simulation environment, TraCl interface, and the PPO-
Mask RL agent. Traffic data, including vehicle counts, queue lengths, and waiting times, is generated by SUMO, which simulates
real-world traffic conditions. Through the TraCl interface, the traffic states are sent to the Python timing script, which then relays
this information to the PPO-Mask RL agent. The agent processes the state, applies action masking to ensure safe phase transitions,
and selects an optimal action (signal, double, fourth, sixth phase update). The resulting action is fed back into SUMO to update the
environment. Based on the new state, the agent receives a reward reflecting performance metrics such as delay, queue length, and
fuel consumption. This iterative loop enables the agent to refine its policy over time, ultimately achieving adaptive, real-time traffic
signal timing. The feedback loop facilitates efficient learning while ensuring safe and stable signal transitions.

A. Problem Definition

Figure 2 presents an overview of the problem addressed in this study. The environment is modeled as a traffic signal intersection,
where the deep RL agent observes a state S; € A, selects an action A; € A, and receives a reward R; from the environment. The
agent’s objective is to identify the optimal action a; for each state s;, aiming to minimize the average pre-defined cumulative dis-
counted return. The following sections provide a detailed explanation of each key component of the problem formulation.

Deep RL Agent
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Observation Reward Action
{""""""""""""l
' Rl
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! = I
|
RO -
o

i |
! I

Figure 2: Problem definition

Phase: In this study, a traffic signal phase is defined as the configuration of signal colors for each direction. Two phases are consid-
ered: NS and WE. The NS phase allows green for the north and south directions, while the east and west directions receive a red
signal. The WE phase, on the other hand, grants green to the east and west directions and red to the north and south directions. Yel-
low lights are not considered in this study, as they have a fixed duration and are typically appended at the end of each phase.
Environment: The intersection environment in this study consists of four directions: East (E), West (W), North (N), and South (S).
Each direction features a specific lane layout, such as three lanes per direction. The environment also includes pre-defined vehicle
movements for each signal phase, such as straight movements for the East-West direction and left turns for the East-West direction
during the WE phase.

Agent: The agent plays a central role in this study. It observes the current state of the environment (traffic signal intersection), se-
lects an action based on its learned policy, and receives an immediate reward at each time step. Figure 2, illustrates the general
structure of the interaction between the agent and the environment, highlighting the decision-making process and the feedback loop
involved in the learning process.
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Figure 3: The reinforcement learning process

As depicted in Figure 3, the reinforcement learning process involves continuous interaction between the agent and the environment,
forming a sequential decision-making problem. Typically, reinforcement learning problems are framed as Markov Decision Pro-
cesses (MDPs). MDPs serve as a mathematical model for sequential decision-making, encompassing interactive components such as
the environment and the agent. Additionally, MDPs consist of three key elements: state, action, reward.

State: The state at any given time s; represents the current traffic conditions at the intersection. This includes variables such as the
queue length, vehicle waiting times, lane occupancy, and the current signal phase. The state captures all the necessary information
that the agent requires to make an informed decision.

Queue length: g¢ = (q;, t) i€ 1, where g; t represents the queue length for lane i at time t.

Number of vehicles: v; = (v; t) i€ |, where v; t denotes the number of vehicles in lane i at time t.

Total waiting time: w; = (w; ) i€ |, where (w; ;) indicates the total waiting time (i.e., from the most recent vehicle stop to time t of
all vehicles in lane i at time t.

Phase: (P, Pi+1), where Py refers current phase and P, is the after phase.

The final state of the model is s;= Concat(qy, Vi, W, Py, P+1,1t) 1)

Action Set: In this study, two actions are considered: 1) switch to the next phase and 2) maintain the current phase. Therefore, the
action set is defined as:

A= {Switch to next phase, Keep current phase}

With this action set, the agent can dynamically determine the cycle length at each time step based on current traffic conditions. It is
important to note that switching phases too frequently is undesirable, so a cost is imposed for taking the action of “switch to the next
phase

Reward (R): The reward function R; measures the efficiency and effectiveness of the agent’s actions. It is designed to minimize traf-
fic delays, reduce queue lengths, and lower fuel consumption or emissions. The reward is typically negative to penalize delays and
congestion, encouraging the agent to optimize traffic flow:

r=— (wg - QL¢ + Wy - WTy 4Ws - Sy + W - Fy + We - E¢ + We - E¢ + W' - Ny) 2

where QL: total queue length at time t, WT, : average waiting time, S;: number of stops, Ft: fuel consumption, E;: emissions (CO,
CO:, NOx), N¢: noise level, Wi, : tunable weights reflecting policy priorities.

Based on these elements, MDPs calculate the optimal strategy, which is how to select the best action in each state to maximize the
expected cumulative reward (Barto et al., 1998). At each moment the intelligence receives a state from the environment, and based
on such a state, the intelligence makes a corresponding action, which then acts on the environment and gives the intelligence a re-
ward and the next state, and the intelligence selects the action for the next state based on the effect of the reward on the strategy. By
continuously cycling the above process, the optimal strategy to achieve the goal is finally obtained. The value function is divided
into a state value function and action value function, which evaluate the state and action, respectively, and their results are the ex-
pectation of cumulative rewards.
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B. Model Architecture

The Q-learning algorithm is a value-based reinforcement learning method that approximates the Q-function, which provides the
expected reward for each action taken in a given state. Unlike traditional methods, Q-learning does not require a predefined model
of the environment. It learns the optimal policy by interacting with the environment and updating the Q-values for each state-action
pair based on the observed rewards. In the context of traffic signal timing, Q-learning is effective for optimizing signal timings by
evaluating different signal phase actions and adjusting the timings to improve traffic flow and reduce congestion.

The PPO-Mask algorithm, a more advanced method in this study, builds upon Q-learning by using action masking to ensure optimal
transitions in complex intersections with multiple signal phases. PPO-Mask uses policy optimization techniques to adjust the signal
phase decisions dynamically, ensuring safer and more efficient transitions between phases, which is essential for managing intersec-
tions.

The PPO Mask is implemented using a fully connected neural network with two hidden layers. Each hidden layer consists of 512
units with ReLU activation functions. This architecture allows the network to learn complex patterns and relationships between traf-
fic states and actions.

RL Algorithms

ERTD

DERRPEIN
* Q-learning Metrics
« Waiting time
ﬁ TraCl e PPO-Mask | |- Fool -

consumption
+ Emissions

SU MO ) * Rewards
- /

Figure 4: Reinforcement learning framework for traffic signal timing

This step involves decomposing the collected traffic state, action, and future information of the intersection into separate representa-
tions for each lane group. By decomposing the traffic states, we ensure that the principle of invariance is preserved. The decomposi-
tion process is expressed as follows:

(s®,s?,....s™=Decomp®, ©)
@",a?,....a")y=Decomp® (4)
(912, f")=Decomp?, (5)

where n represents the number of lane groups with the same direction and phase. The implication of this step, as illustrated in the
figure, is that the lane group-specific state, action, and future information are encoded separately, akin to word embedding’s, to pro-
duce corresponding representation vectors. This encoding step converts raw data into a form that can be recognized and processed
by the neural network.

Specifically, the lane group state, action, and future information are denoted as s”, a®, and f®, respectively. Each of these compo-
nents is passed through three distinct fully connected neural networks with Ky hidden layers to generate the corresponding represen-
tation vectors, denoted as e®, e®, and e’ The process is defined as follows:

h*;=ReLUWe5+b"), (6)
hsszELU(WSkhsk_l'Fbsk), kE[Z,Kl]i (7)
e’ = hskl (8)

This formulation is applied similarly to the action and future information vectors, resulting in the final representation vectors e* and
e', respectively.
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Figure 5: Traffic timing cycle using Q Learning

In parallel, additional features including queue length, number of vehicles, current phase, and total waiting time are encoded as nu-
merical inputs. The concatenated feature vectors are passed through fully connected (FC) layers that learn the mapping between
current traffic conditions and the corresponding Q-values. To ensure phase-specific learning, separate FC layers are designated for
each signal phase. Here, the red network computes the Q-values for the NS (North—South) phase. The blue network computes the Q-
values for the WE (West—East) phase. A phase selector gate determines which branch of the FC layers is activated based on the cur-
rent phase ( P;). When ( P, = NS ), the NS selector is activated (( = 1)) and the WE selector is deactivated (( = 0)), directing com-
putation to the NS branch. Conversely, when ( P, = WE ), the WE branch is activated. This design enables the network to specialize
its learning for each traffic phase, reduces action bias, and enhances the model’s capacity to fit complex traffic dynamics [8].

1) Reward Function Design

The reward value represents the effect of the model’s decision on overall traffic performance. Since the reward function directly
determines the learning outcome, it is constructed to account for key traffic parameters such as vehicle delay, queue length, waiting
time, and speed. The primary objective of this study is to enhance traffic flow efficiency and minimize vehicle delay at intersections.

% b b b

LT

Figure 6: The Observation state of reward function

The queue length is used as the primary observed traffic state, representing the number of vehicles waiting on each lane. This value
dynamically changes with vehicle arrivals and departures. For each lane ( I;) at the intersection, the corresponding queue length (q;)
is recorded. As illustrated in Figure 6, the intersection’s traffic flow is divided into eight directional movements. Thus, the traffic
observation state at time (t ) can be expressed as an eight-dimensional vector:

[St,= 41,942,935, 94, 95,96, 97, qs] ©)

This state representation captures the real-time traffic conditions across all approach lanes, serving as the input for the reinforcement
learning model.
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C. Simulation Environment (SUMO Setup)

The proposed adaptive traffic signal timing framework was implemented and evaluated within the Simulation of Urban MObility
(SUMO) platform. SUMO provides a high-fidelity, microscopic traffic simulation environment capable of replicating realistic urban
mobility conditions and signal timing operations.

9

# File Edit Settings Locate Simulation Window Help -ex
FE O b 4D Time

Delay (ms): 03 .} — Scale Traffic: | 18| || =
¢ Al & ®M™ standard v ® =

Loading additional-files from ‘C:\Users\Lenov esktop\Yau\lrafficLightContr S\data\one ru-

‘C:\Users\Lenovo\Desktop\Yau\T e -| X272.92, y:312.07 x:-26.93, y:12.22 (No projection defined)

Figure 7: Sumo Simulator

Its modularity and compatibility with reinforcement learning interfaces make it a widely adopted tool for validating intelligent traf-

fic management algorithms. It is a well-established open-source traffic simulation platform that provides robust application pro-

gramming interfaces (APIs) and an intuitive graphical user interface (GUI), enabling efficient modeling, visualization, and man-

agement of large-scale road networks (see Figure 7). All network geometries, lane configurations, and traffic light logic were devel-

oped using SUMO’s NetEdit tool, while route and demand files were generated from the Cologne Traffic Dataset [37], which pro-

vides realistic traffic flow patterns and vehicle behavior calibrated for urban environments.

The simulation operates in discrete time steps of 1 second, with each timing action executed every 5 simulation seconds to ensure

stability between phase transitions. Each simulation episode runs for 100000 seconds, representing a typical peak-hour traffic cycle.

1) Dataset Description

The Cologne urban traffic dataset is a combination of synthetic and real-world traffic data, providing a comprehensive representa-

tion of urban traffic conditions. This dataset serves as the foundation for evaluating the effectiveness of the Q-learning and PPO-

Mask algorithms in optimizing traffic signal timing.

The dataset includes traffic data from multiple intersection types, which represent diverse urban traffic environments:

a) Single intersection: A basic intersection with two signal phases (e.g., NS/WE).

b) Double intersection: Two intersecting roads with separate signals timing each direction.

c) Four-way intersection: A more complex intersection with four traffic directions, requiring advanced signal management.

d) Six-way intersection: A highly complex intersection with six traffic directions, offering a challenge for efficient signal optimi-
zation

e) Custom Cologne intersection: A unique intersection designed to reflect real-world complexities found in Cologne, providing a
more realistic simulation of traffic timing scenarios.
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This diverse set of intersection topologies ensures that the algorithms are tested under varying levels of complexity, from simple
intersections to more complex multi-phase environments

Figure 8: Realistic Data for 3-, 4-, and 6-approach intersections.

It captures detailed information about vehicle trajectories, road layouts, and intersection configurations across a large metropolitan
area. It models over 7000 intersections and 200,000 vehicles, covering diverse traffic conditions such as peak and off-peak hours.
Each vehicle’s movement is simulated based on empirically derived travel demand data, ensuring realistic interactions and flow
variations representative of actual urban conditions.

IV.PERFORMANCE EVALUATIUON
A set of performance visualizations was generated to demonstrate the model’s learning progress and operational efficiency
throughout training. The primary parameters examined include reward progression, vehicle throughput, average waiting time, and
queue length. These indicators collectively reflect the system’s capacity to enhance mobility, reduce congestion, and improve
environmental sustainability.

Training Progress Training Progress
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Figure 9: (a) Waiting Time Over Episodes (b) Total Vehicle Stops (c) Fuel Consumption (d) Noise emission

The average waiting time (Figure 9a) decreases from approximately 21 seconds in the initial episodes to around 12 seconds after 40
episodes, reflecting an improvement of nearly 43%. Similarly, the average number of vehicle stops (Figure 9b) declines from 3.4
stops per episode to about 2.6 stops, indicating smoother vehicular movement and reduced stop-start behavior—an improvement of
roughly 24%. In fuel consumption (Figure 9c), the value drops from approximately 0.255 ml/s to 0.232 ml/s, yielding an efficiency
gain of nearly 9%.
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Figure 10: (a) Reward progression across different simulation steps (b) Variation of queue length with simulation steps

During the testing phase, rewards function as an indicator of model performance, reflecting how well the trained agent applies its
learned policies to manage traffic under diverse and unpredictable conditions. Consistently high reward values during testing signify
that the model has generalized effectively, maintaining stable and efficient traffic timing across varying scenarios, thereby validat-
ing the robustness and reliability of the proposed approach.

Compared to traditional timing methods [38] , the model reduces average waiting time by approximately 46%, shortens queue
length by 35%, and improves overall throughput by nearly 15%. Furthermore, fuel consumption and emissions decrease by about 8-
10%, highlighting the model’s environmental efficiency. The steady convergence of reward values and consistent performance
across varying traffic densities confirm the model’s robustness, adaptability, and capacity for real-time optimization. Collectively,
these results establish PPO maskmodel as a data-driven, efficient, and scalable solution for intelligent urban traffic management.

V. RESULT
The adaptive traffic signal timing model in comparison to Q Learning and Fixed-Time (Yemen), aiming to assess its ability to
optimize traffic signal timings, enhance intersection efficiency, and reduce environmental impact across varying traffic demand
scenarios. The evaluation focuses on key performance indicators such as waiting time, queue length, fuel consumption, and
throughput, providing a comprehensive view of the model’s effectiveness and scalability.

A. Experimental Setup

All experiments were conducted within the SUMO simulation environment, integrated with TraCl to facilitate real-time interaction

between the reinforcement learning models and the traffic simulation. To provide practical relevance, we conducted a comparative

experiment with the traditional traffic timing model currently used in Yemen, where traffic lights operate with fixed-time cycles

without adaptive sensing or optimization. Typically, these timing apply either:

1) Equal phase splits, where all approaches receive the same green time (e.g., 30 seconds per approach in a 120-second cycle).

2) Main road priority, where the arterial direction receives disproportionately longer green time (e.g., 60 seconds for the main
road, 30 seconds for side streets).
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These plans were implemented in SUMO by assigning static signal programs to intersections. The same traffic demands and routes
used in previous Q-learning experiments were applied here to ensure a fair comparison. Each model was evaluated under three dis-
tinct traffic demand scenarios: low, medium, and high, to test its adaptability and efficiency under a range of urban mobility condi-
tions. Each simulation lasted for vehicle arrival patterns generated using a Poisson distribution to simulate realistic traffic fluctua-
tions.

The following performance metrics were used to assess the models:

a) Average Waiting Time (s) — A direct measure of how long vehicles are delayed at the intersection.

b) Queue Length (vehicles) — The total number of vehicles waiting at the intersection, reflecting congestion.

c) Fuel Consumption (ml/s) — A metric for environmental impact, measuring the fuel consumption due to idling

d) Throughput (%) — The percentage of vehicles successfully cleared from the intersection, indicative of system efficiency.

B. Hyperparameter Setting

In this research, Q Learning-based adaptive traffic signal timing model was configured with specific hyperparameters to optimize
the learning process and ensure efficient traffic management. The values for each hyperparameter were carefully selected based on
previous studies and the requirements of the simulation environment. The following table summarizes the key hyperparameters used
for training the agent.

Table 1: Hyperparameter setting

Hyperparameter Initialized Value
Exploration Strategy 0.3-0.05
episode 40

iteration 5s

experience replay buffer 50000

batch size 200

learning rate o 0.07-0.4
discount factor y 0.9

green duration g; 6

yellow duration y; 3

C. Comparative Analysis and Performance Metrics

A comparison was conducted between the fixed-timing traffic timing system currently implemented in Yemen and a reinforcement

learning-based approach. The results demonstrated that the Q-learning algorithm significantly enhanced traffic flow efficiency and

reduced environmental impact, achieving improvements exceeding 50% relative to the conventional fixed-timing system deployed

in Yemen :

1) Comparative Analysis

Single Intersection

a) Average Wait Time (s) — A significant reduction was observed, with Q-learning reducing the wait time by approximately52.1%,
from 26.38 seconds to 12.53 seconds. This drastic decrease in idle delays highlights the effectiveness of adaptive timing, ensur-
ing a near-continuous flow of vehicles.

b) Stopped Vehicles — The number of stopped vehicles dropped by 24.8%, from 13.52 to 10.16. Q-learning’s optimization of phase
transitions and queue clearing reduced vehicle stops considerably.

c) Fuel Consumption (ml) — Fuel consumption was reduced by nearly 16.5%, from 402.05 ml to 335.71 ml, demonstrating the
efficiency of smoother acceleration patterns and fewer idle periods

d) Noise Emission — There was a sharp decline in noise levels, with noise emission dropping by 12.5%, from 0.88 dB to 0.77 dB.
This reduction reflects the impact of minimized braking and acceleration cycles

e) CO Emission — CO emissions were nearly eliminated, with a reduction of 16.5%, from 18.75 g to 15.66 g. The stabilized traffic
flow and shorter stop durations contributed to cleaner combustion

f) CO: Emission— A drastic reduction in CO: emissions by 16.5% was observed, from 25.05 g to 21.04 g, highlighting the signifi-
cant environmental benefits.
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Double Intersections

a) Average Wait Time (s) — Q-learning reduced average wait time by approximately 51.6%, from 29.61 seconds to 14.33 seconds,
effectively eliminating idle delays by dynamically adjusting green phases based on queue lengths.

b) Stopped Vehicles — The number of stopped vehicles decreased by 17.4%, from 13.35 to 11.03, with phase coordination across
the two intersections significantly minimizing disruptions.

c) Fuel Consumption (ml) — Fuel consumption dropped by 15.9%, from 465.05 ml to 391.45 ml, due to smoother vehicle flow and
the near-elimination of idle time.

d) Noise Emission — Noise emission decreased by 15.3%, from 0.63 dB to 0.53 dB, due to lower acceleration and braking frequen-
cies.

e) CO Emission — A 15.5% reduction in CO emissions was achieved, from 17.53 g to 14.81 g, reflecting improved combustion
efficiency with minimal stop-and-go motion.

f) CO: Emission— CO: emissions decreased by 15.5%, from 29.49 g to 25.17 g, confirming strong environmental benefits from
adaptive timing.

Fourth Intersections

a) Average Wait Time (s) — Q-learning drastically reduced wait times by 45.3%, from 36.32 seconds to 19.78 seconds, minimizing
idle times even at four-way intersections.

b) Stopped Vehicles — The number of stopped vehicles decreased by 16.9%, from 9.78 to 8.09, facilitated by smooth coordination
between all four directions.

c) Fuel Consumption (ml) — Fuel consumption dropped by 13.%, from 512.84 ml to 446.17 ml, highlighting improved energy
efficiency due to lower idle and acceleration frequencies.

d) Noise Emission — Noise emission decreased by 13%, from 1.67 dB to 1.46 dB, reflecting fewer acceleration and braking events.

e) CO Emission — CO emissions reduced by13%, from 17.97 g to 15.62 g, indicating successful eco-efficiency generalization to a
multi-approach network.

f) CO: Emission— A 13% reduction in CO: emissions was observed, from 31.92 g to 27.77 g, confirming sustainable traffic opti-
mization.

Six Intersections

a) Average Wait Time (s) — The average wait time decreased by 31.73%, from 37.56 seconds to 25.64 seconds, with adaptive
phasing handling multi-arm congestion efficiently.

b) Stopped Vehicles — The number of stopped vehicles dropped by10.87%, from 10.87 to 9.76, with dynamic light switching pre-
venting queue breakdowns under high-load conditions.

c) Fuel Consumption (ml) — Fuel consumption was reduced by 11%, from 331.79 ml to 295.29 ml, demonstrating substantial en-
ergy optimization due to minimized idle time.

d) Noise Emission — Noise emission decreased by 8.70%, from 0.69 dB to 0.63 dB, reflecting fewer acceleration events and
smoother traffic operation.

e) CO Emission — CO emissions were reduced by 11%, from 9.89 g to 8.80 g, signifying stabilized flow and minimized braking.

f) CO: Emission— CO: emissions dropped by11%, from 20.38 g to 18.14 g, verifying sustainable traffic timing.

PPO mask consistently outperformed the Yemen fixed-time system and Q Learning across various intersection complexities,

demonstrating exceptional improvements in efficiency, fuel consumption, emissions, and overall traffic flow. The algorithm's per-

formance scaled well from single intersections to more complex multi-intersection networks, validating its potential for large-scale

traffic optimization.

2) Traffic Efficiency

Average Waiting Time: The model outperforms both Q Learning and Fixed-Time (Yemen) . This significant reduction highlights the
model's ability to adaptively manage signal phases, effectively minimizing congestion during peak traffic periods.

Stopped vehicles : The PPO Mask model reduces Stopped vehicles decreased by 19% over Q-learning..By dynamically adjusting
signal timings based on real-time traffic conditions, the model prevents excessive vehicle buildup, ensuring smoother traffic flow.
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Figure 11 illustrates the training progress of the model across four key reward metrics. The waiting time rewards show a steady im-
provement, with the reward value increasing from approximately -0.99 to -0.94 across 40 episodes, reflecting a 5% reduction in
average vehicle waiting times. The fuel consumption rewards fluctuate but stabilize around -0.13, down from -0.16, indicating an
18.75% decrease in fuel consumption penalties, suggesting more efficient signal timings that reduce idling. The noise emission re-
wards show slight improvements, increasing by 2.2% over time, as the model optimizes vehicle movements to minimize noise pol-
lution. Lastly, the stopped vehicles rewards demonstrate a clear upward trend, rising from 0.34 to 0.42, a 23.5% increase, highlight-
ing the agent’s enhanced ability to reduce vehicle stoppage and improve throughput. These statistically significant improvements
confirm the model’s ability to optimize traffic flow, reduce delays, and contribute to environmental sustainability.
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Figure 12 shows the total reward progression of the Decentralised multiagent model over 40 episodes of training. The reward values
fluctuate between -1.38 and -1.24, with occasional sharp increases, reflecting the model's learning dynamics and the exploration-
exploitation trade-off. The model’s reward improves as it adapts to the traffic environment, although occasional dips suggest mo-
ments of suboptimal policy exploration.
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Figure 13: CO and CO: Emissions

Figure 13 shows the progression of CO and CO: emissions over 40 episodes. For CO emissions (left), a sharp reduction is observed
in the first few episodes, from around 18.5 to 16.0, followed by stabilization at 15.5. Similarly, CO. emissions (right) decrease from
30.5 to 28.0 early on and then stabilize around 27.8. These trends indicate that the model effectively reduces both CO and CO:
emissions by optimizing signal timing and improving traffic flow.

3) Performance Comparison

As anticipated, reinforcement learning (RL) methods outperform traditional approaches like Fixed-Time, as their ability to capture
real-time data at the intersection allows for more informed and efficient decision-making. Among the RL techniques, our method
excels not only in reducing travel time but also in achieving faster convergence.

The figure compares the performance of Fixed-Time (Yemen), Q-learning, across several metrics: Average Waiting Time, Number
of Stops, Fuel Consumption, CO Emitters, CO. Emitters, and Noise Emission.
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Figure 14: Comparison of the number of queued vehicles for dynamic and static action selection strategies.

The analysis focused on the number of vehicles in the queue, with the comparison between the two methods shown in Figure 14.
During testing, the number of vehicles queued in the environment optimized by the dynamic-greedy method was significantly lower
than with the fixed-greedy method. This suggests that the dynamic-greedy approach offers better traffic diversion capabilities,
effectively maintaining a lower vehicle count at intersections.
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VI. CONCLUSION
This proposal explores reinforcement learning for adaptive traffic signal timing in developing cities like Yemen. It proposes two RL
models decentralized Q-learning and PPO-Mask both significantly outperforming fixed-time systems in reducing delay, fuel use,
and emissions. While Q-learning suits small-scale deployments, PPO-Mask excels in complex environments with safer, more stable
learning. The work demonstrates RL’s practical potential for low-cost, sustainable traffic management in resource-constrained urban
setting.

VII. FUTURE WORK

While this study demonstrated promising results, there are several avenues for future research. First, extending the model to multi-
intersection environments using multi-agent reinforcement learning (MARL) would allow for better coordination across urban cor-
ridors, enhancing overall traffic flow. Second, incorporating real-time data from various sources, such as connected vehicles and
traffic sensors, could further improve the model's adaptability and efficiency. Additionally, future work could explore reinforcement
learning with continuous action spaces, such as adaptive cycle lengths, to allow for even finer timing over signal timings. Finally,
integrating deep reinforcement learning models with smart city infrastructure could pave the way for large-scale implementation of
adaptive traffic signal systems, ensuring the scalability and practicality of this approach in real-world applications.

A. Abbreviations

MARL Multi-Agent Reinforcement Learning

PPO Proximal Policy Optimization

PPO MASK Proximal Policy Optimization with Action Masking
SUMO Simulation of Urban Mobility

TRACI Traffic Control Interface

WE West—East

MA2C Multi-Agent Advantage Actor—Critic

Co Carbon Monoxide

CO, Carbon Dioxide

RELU Rectified Linear Unit

SCATS Sydney Coordinated Adaptive Traffic System
SCOOQOTS Split Cycle and Offset Optimization Technique
RL Reinforcement Learning
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