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Abstract: Motorcycle safety is a critical concern in traffic systems worldwide. This paper introduces a novel approach to
enhancing rider safety through the integration of airless tires and advanced airbag systems, underpinned by artificial
intelligence (Al) and control sensors. Airless tires contribute to vehicle stability by eliminating the risk of sudden deflation, while
Al-driven airbag systems promise dynamic protection for riders during collisions. The study begins with an analysis of airless
tire technology, emphasizing its impact on motorcycle stability and safety. It then transitions to the development of motorcycle-
specific airbag systems, which utilize Al to process sensor data and make real-time decisions regarding airbag deployment. The
effectiveness of these systems is validated through crash simulation tests and impact force measurements, demonstrating a
substantial reduction in injury severity. Challenges such as cost, user acceptance, and technical constraints are thoroughly
examined. The paper concludes with a discussion on future trends, including the potential for Al to predict and prevent
accidents before they occur, thereby setting a new standard for motorcycle safety.

L. INTRODUCTION

.The air that is still contained in the tire is one of the factors that greatly affect the occurrence of loss of control. Based on research at
Honda, if the air pressure in the tire has decreased by only 0.3 kg/cm2, then the stability of the motor will decrease by 10%. This
situation is often experienced by new riders who still do not understand the characteristics of tire pressure changes. With easy and
fuelefficient maintenance, airless tires will greatly assist the rider. Because there are no tires that will leak air and the tire has high
bending properties with road conditions, airless tires will increase vehicle stability and safety. High bending properties are obtained
from the elastic modulus that is smaller than conventional tires. With the airless tire and small motor dimensions due to the use of
electric energy from the airless tire compressor, we will make a two-wheel vehicle to assist people with the same functionality as a
single-wheel vehicle, the wheelchair. Airbag system has been widely used in automotive in order to reduce injuries during a crash
and save human lives. But for two-wheeled vehicles, this system is rarely used. It's because in motorcycles, when accidents happen,
people tend to be thrown from their vehicle and experience several contacts before a really serious impact occurs. The first contact
is the motor with the ground or another object, the second is the rider with the motor or ground, and the serious impact is when the
rider hits a hard/stiff object such as another vehicle or a wall, etc. Based on the data from NHTSA on traffic accidents involving
motorcycles, more than 22% of accidents occur only because of a mild collision avoidance or when sliding due to road conditions.
In addition, the rider's physical condition also affects whether an accident will occur or not. More than 90% of accidents that occur
only involve one rider and are often caused by a loss of vehicle control. Then, more than 50% of motorcycle accidents occurred with
a time of use under 6 months and 33% with a time of use under 6 years. Background In riding a motorcycle, the accident is
something that can't be predicted and avoided, because we can't guess the driver of other vehicle mistake. The lack of safety
facilities in a motorcycle is also one of the supporting factors of the high-rate motorcycle accident. And if we are looking for the
other side about the increase of the number of sales and usage of high cc motorcycle; it's also increased the excitement for world
class motorcycle racing fans today. All of these things inspired us to do some innovations that can support the driving safety of a
motorcycle, especially in the purpose for reducing the number of motorcycle accidents. So, we decided to temporarily stop our plan
for joining in world class motorcycle racing, and we are concentrating our team to make a breakthrough innovation to reach a
motorcycle driving safety.
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Background is all matter about the driving territory of motorcycle at this time. The motorcycle driving territory at this time always
increases in both positive and negative meaning. The positive meaning is the increasing of requirements from people around the
world about the motorcycle usage as an economical transportation mode and also about the race of motorcycle in world level with
higher cc. It's proven with many motorcycle exhibitions around the world and motorcycle racing with Moto GP level which is
followed by many countries, and also with the increasing sales of high cc motorcycle. But, increasing of motorcycle usage around
the world is also followed by the increasing of accidents that involve motorcycle with other vehicle, with the number of percentages
reaches 75% from the total motorcycle users, and this is the negative meaning. Objective The primary objective of this research is to
explore the potential of airless tires and airbag systems in improving motorcycle safety. By analysing the technological
advancements, benefits, challenges, and future prospects of these innovations, this paper aims to provide insights into their
effectiveness in enhancing vehicle stability, protecting riders, and preventing accidents. Scope This paper will investigate the
following key aspects: The technology behind airless tires, including their design, materials, and impact on vehicle stability. The
development and implementation of airbag systems in motorcycle safety gear, including their design, functionality, and
effectiveness. The benefits of airless tires and airbag systems in reducing injuries and fatalities in motorcycle accidents. The
challenges and limitations associated with the adoption and integration of these technologies into existing motorcycle designs. The
future trends and potential innovations in motorcycle safety technology, including advancements in sensor technology, artificial
intelligence, and smart vehicle systems. By examining these aspects, this research aims to provide a comprehensive understanding
of the role of airless tires and airbag systems in improving motorcycle safety and reducing the risk of accidents.

1. AIRLESS TIRES: REVOLUTIONIZING MOTORCYCLE STABILITY

Technology and Design Airless tires, also known as non-pneumatic tires or NPTs, represent a radical departure from traditional
pneumatic tires by eliminating the need for air pressure. Instead of relying on air to support the vehicle’s weight and absorb shocks,
airless tress utilizes innovative materials and structures to provide similar performance characteristics without the risk of air leakage.
One of the key features of airless tires is their unique design, which typically consists of a series of flexible spokes or a solid lattice
structure that supports the weight of the vehicle. These structures are made from resilient materials such as rubber, thermoplastic
elastomers, or composite materials, which offer both flexibility and durability. Unlike conventional tires, which rely on air pressure
to maintain their shape and provide cushioning, airless tires distribute the vehicle’s weight evenly across their surface, minimizing
the risk of uneven wear and punctures. In addition to their structural design, airless tires often incorporate advanced materials and
manufacturing techniques to enhance their performance characteristics. For example, some airless tires feature specially formulated
rubber compounds that provide superior grip and traction in various road conditions. Others may incorporate lightweight materials
such as carbon fibre or Kevlar to reduce weight and improve fuel efficiency. Overall, the technology and design of airless tires
represent a significant departure from conventional tire designs, offering enhanced durability, stability, and safety for motorcycle
riders.Impact on \ehicle Stability One of the primary benefits of airless tires is their ability to enhance vehicle stability and
handling, particularly in challenging road conditions. By eliminating the risk of air leakage and maintaining consistent tire pressure,
airless tires provide a more stable and predictable riding experience for motorcyclists. Traditional pneumatic tires are susceptible to
fluctuations in air pressure, which can affect their performance and handling characteristics. Even minor changes in tire pressure can
lead to reduced traction, increased rolling resistance, and decreased stability, particularly at high speeds or during sudden
manoeuvres. In contrast, airless tires maintain their shape and performance characteristics regardless of changes in external
conditions, providing a more consistent and reliable riding experience. The enhanced stability provided by airless tires can be
especially beneficial for new riders who may lack experience or confidence in controlling their motorcycle. By reducing the risk of
skidding, sliding, or loss of control, airless tires can help novice riders feel more comfortable and secure on the road, ultimately
improving overall safety. Additionally, the improved stability and handling offered by airless tires can enhance the performance of
motorcycles in off-road or rough terrain environments. Traditional pneumatic tires are vulnerable to punctures and damage from
rocks, debris, and other obstacles, which can compromise their performance and safety. Airless tires, with their durable construction
and puncture-resistant design, offer a more robust solution for riders who venture off the beaten path. Durability and Maintenance
Another key advantage of airless tires is their enhanced durability and reduced maintenance requirements compared to conventional
pneumatic tires. Traditional tires are prone to punctures, flats, and blowouts, which can result in costly repairs and downtime for
riders. In contrast, airless tires are designed to withstand the rigors of everyday riding without the risk of punctures or leaks. The
solid or semi-solid construction of airless tires eliminates the need for regular inflation checks and pressure adjustments, simplifying
maintenance and reducing the risk of tire-related issues on the road.
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Additionally, the absence of an inner tube or air chamber reduces the risk of pinch flats and blowouts, further enhancing the
reliability and longevity of airless tires. While airless tires offer significant advantages in terms of durability and maintenance, they
are not without their drawbacks.

The solid or semi-solid construction of airless tires can result in a stiffer ride compared to traditional pneumatic tires, which may be
less comfortable for some riders, particularly over long distances or rough terrain. Additionally, airless tires may be more expensive
to manufacture and replace than conventional tires, which could pose a barrier to widespread adoption.

1. AIRBAG SYSTEMS: ENHANCING RIDER SAFETY

Development of Motorcycle-Specific Airbag Systems The adaptation of airbag technology for motorcycle safety gear has been a
significant area of innovation in recent years. Recognizing the unique challenges faced by motorcycle riders, several manufacturers
have developed specialized airbag systems designed to provide protection in the event of a crash. These motorcycle-specific airbag
systems typically consist of a wearable vest or jacket equipped with integrated airbag modules. Unlike automotive airbag systems,
which are built into the vehicle’s structure, motorcycle airbag systems are designed to be worn by the rider, providing personal
protection in the event of a crash. Deployment Mechanisms and Sensors The deployment mechanism of motorcycle airbag systems
varies depending on the design and manufacturer. Some systems utilize tethered or wireless sensors that detect sudden deceleration
indicative of a crash and trigger the inflation of the airbag modules. Others incorporate accelerometers and gyroscopes to detect
changes in rider orientation and activate the airbags accordingly. These sensors are strategically positioned within the motorcycle
gear to accurately detect crashes and initiate the deployment sequence. In addition to detecting impacts, some systems also monitor
rider movement and position to ensure optimal deployment timing and trajectory. Types of Motorcycle Airbag Systems There are
several types of motorcycle airbag systems available on the market, each offering varying levels of protection and coverage. Frontal
airbag systems are the most common and typically inflate to protect the rider’s chest, abdomen, and spine in the event of a frontal
collision. In addition to frontal airbags, some motorcycle airbag systems also feature side airbag modules that provide protection in
the event of lateral impacts or slides. These side airbags inflate rapidly upon detection of a crash, providing additional protection for
the rider’s torso and vital organs. Effectiveness and Benefits Studies have shown that motorcycle airbag systems can significantly
reduce the severity of injuries in the event of a crash. Research conducted by the Motorcycle Accident In-Depth Study (MAIDS)
found that riders equipped with airbag vests or jackets were less likely to suffer severe injuries to the chest, abdomen, and spine
compared to those without airbag protection. In addition to reducing injury severity, motorcycle airbag systems can also help
prevent secondary injuries caused by impacts with the ground or other objects. By providing a cushion of protection around the
rider’s body, airbag systems can help absorb and distribute impact forces, reducing the risk of fractures, internal injuries, and
abrasions

V. BENEFITS OF AIRBAG SYSTEMS IN BIKE SAFETY

A. Reduction of Impact Forces

One of the primary benefits of airbag systems in motorcycle safety is their ability to reduce the impact forces experienced by riders
during a crash. In traditional motorcycle accidents, riders are often thrown from their bikes and can experience significant impacts
with the ground or other objects. Airbag systems provide an additional layer of protection by deploying inflatable cushions that
absorb and distribute these impact forces, thereby reducing the risk of serious injury. Studies have shown that airbag systems can
significantly decrease the severity of injuries sustained by motorcycle riders. By cushioning the rider’s body and dissipating energy
over a larger surface area, airbags help mitigate the effects of sudden deceleration and blunt force trauma associated with crashes.
This can lead to fewer fractures, internal injuries, and abrasions, resulting in improved overall outcomes for riders involved in
accidents.

B. Protection of Vital Body Parts

Another important benefit of airbag systems is their ability to protect vital body parts during a crash. In motorcycle accidents, the
chest, abdomen, and spine are particularly vulnerable to injury due to the high forces involved. Airbag systems are designed to
specifically target these areas, deploying inflatable cushions that provide protection against impacts and blunt force trauma. Frontal
airbag systems, for example, are positioned to inflate in front of the rider’s torso, creating a protective barrier between the rider and
any objects or surfaces they may come into contact with during a crash. Side airbag modules provide additional protection for the
torso and vital organs, further reducing the risk of injury in the event of a lateral impact or slide.
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By safeguarding these critical body parts, airbag systems help minimize the risk of serious injury and improve the chances of
survival for riders involved in motorcycle accidents. This can have significant implications for long-term health outcomes and
quality of life for individuals affected by crashes.

C. Prevention of Fatal Injuries

Perhaps the most significant benefit of airbag systems in motorcycle safety is their potential to prevent fatal injuries. Motorcycle
accidents are a leading cause of death and serious injury worldwide, with riders facing a disproportionately high risk of fatality
compared to occupants of enclosed vehicles. Airbag systems offer a promising solution to this problem by providing an additional
layer of protection that can help prevent fatal injuries in the event of a crash. Studies have shown that airbag systems can
significantly reduce the risk of death and serious injury for motorcycle riders involved in accidents. By cushioning the rider’s body
and reducing the severity of impact forces, airbags help mitigate the most lifethreatening aspects of crashes, such as blunt force
trauma to the head, chest, and abdomen. This can mean the difference between life and death for riders involved in high-speed
collisions or other severe accidents. Overall, the benefits of airbag systems in motorcycle safety are clear. By reducing impact
forces, protecting vital body parts, and preventing fatal injuries, airbags offer a valuable tool for improving rider safety and reducing
the risk of death and serious injury in motorcycle accidents.

D. Simulation Model

Data collection is accomplished solely by means of simulation as it offers the opportunity to cheaply evaluate and measure various
operational driving and collision scenarios. In addition, the motorcycle concept currently only exists virtually, and real-world
driving and crash tests are costly and pose great challenges to represent targeted scenarios. The simulation model is implemented in
Siemens Simcenter’s Madymo (version MADYMO 2020.1), which serves as a multibody (MB) finite-element (FE) crash-
simulation environment. Madymo is a simulation environment for physical systems with a focus on vehicle collision dynamics and
passenger safety and injury assessment. It combines MB system capabilities for large rigid body motions as well as FE analysis for
structural behaviour. Here, simulating crash dynamics not only saves costs but can also serve to reduce time to market significantly

V. MOTORCYCLE MODEL AND ACCIDENT OPPONENT

The motorcycle is modelled with three masses, see Fig. 1, defined by their mass m, rotational inertia I, and geometry. The bodies are
linked via kinematic joints. The motorcycle chassis is attached to the suspended front fork (FF) and rear swing (RS). The telescopic
front fork translates linearly (cFF), whereas the rear swing rotates angularly (¢FF). Both suspensions attach to their wheels (FW,
RW) via hubs, around which these rotate (¢FW, ¢FW). To model structural deformation in an impact, the front fork allows for
angular deformation ¢FF. It depicts a rotation of the front fork inwards around the steering hub. As an impact opponent vehicle, the
simulation setup comprises a collision partner, which is represented by a 1987 Ford Scorpio configured according to [16]. The
model is part of a broader modelling and simulation strategy ranging from a multibody-system ([26]), a coupled multibody- and
finite-element setup ([25, 27]), to a full finite element model ([23]). The multibody model used here is chosen in order to simulate
long scenarios that span many seconds.

Figure 1: Three mass rigid body model of the motorcycle: A frame (Moto) and two wheels (FW, RW).
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For a thorough overview of the models that also include the passive safety systems, be referred to [24, 26]. In contrast to
investigations of passive safety measures in the course of an accident, which are already well-established, the period of interest for
this study includes only a few moments after the impact. This means that the period of interest for this study occurs well before the
passenger comes in contact with the airbags or is significantly restrained by the belts allowing to reduce the overall computational
costs significantly. On the one hand, this allows stopping the crash simulations before any computationally complex passenger-
safety-system interactions occur. On the other hand, the passive safety system, i.e., thigh belts and airbags, and the rider model can
be excluded from the simulation setup as they have no qualitative influence on the simulation results in the period under
consideration. These simulation setup modifications are beneficial for the overall numeric costs and allow for the execution of a far
greater number of simulations than what would have been feasible within the same time with the inclusion of rider and passive
safety systems.

A crucial issue with generating data from the model is that, due to complexity, the model does not allow for the application of
lateral dynamics. Cornering behaviour can thus not be incorporated into the dataset. Hence, only longitudinal dynamics are covered
by the training data. This circumstance has far-reaching ramifications: Since, for example, the steering angle moves out of the 0°
position in case of a head-on crash and by design never leaves this position during normal (non-crash) riding, the classifier would be
induced false knowledge and would most likely decide solely on the basis of the steering angle signal.

Table 1: Recorded output signals from the motorcycle simulation model.

abbreviation description unit comp.
Body lin. vel. motorcycle body linear velocity m/s T
Body lin. acc. motorcycle body linear acceleration m/s? T
Body ang. vel. motorcycle body angular velocity rad/s Y
Body ang. acc. motorcycle body angular acceleration rad /s> Y
FW ang. vel. front wheel angular velocity rad/s

FW ang. acc. front wheel angular acceleration rad /s?

RW ang. vel. rear wheel angular velocity rad /s

RW ang. acc. rear wheel angular acceleration rad /s?

RS ang. pos. rear swing angular position rad

RS ang. vel. rear swing angular velocity rad/s

RS ang. acc. rear swing angular acceleration rad /s>

FS lin. pos. front suspension linear position m

FS lin. vel. front suspension linear velocity m/s

FS lin. acc. front suspension linear acceleration m /s>

FD ang. pos. front deflection angular position rad

FD ang. vel. front deflection angular velocity rad/s

FD ang. acc. front deflection angular acceleration rad /s>

FW cnt. force front wheel contact force N

RW cnt. force rear wheel contact force N

FW/RW vel. diff. wheel speed differential rad/s

FW/RW acc. diff. wheel acceleration differential rad /s?

cnt. sensor left contact sensor left boolean

cnt. sensor right contact sensor right boolean

To circumvent this contingency, signals that contain information about lateral motion are to be strictly neglected in order not to
overestimate the decision-making ability of a classification model. This poses a major restriction on parts of the available sensor
data, as certain DOFs are only changed when the motorcycle collides with an opponent. Signals that are affected by the restriction
are the motorcycle body’s velocity and acceleration, both linear and angular. In Table 1, all modelled sensors and available signals
are listed. The first five signals are subject to dimensional limitation. The used component of these signals is given in the last
column.
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In order to emulate the response of a tire pressure sensor, the resulting contact force between the crash opponent and each tire is
combined with the contact force between each tire and the road surface, yielding the residual contact forces FW and fRW for the
front and respectively the rear wheel.

VI. DATA ACQUISITION

A notable benefit of the proposed method is that the data used to train ML models does not come from logged real-world sensor
data but from closely monitored simulations. This means that each individual sample can be assigned to a scenario and, therefore,
also state (non-crash/crash). The knowledge about the state introduces the ability to use supervised learning methods. A switch is
incorporated into the model in order to automate the labelling process. It is flipped as soon as a part of the motorcycle comes in
contact with the car. The switch is allowed only one initial flip since, for the purpose of this elaboration, a crash does not stop until
the simulation terminates. The switch reliably distinguishes between normal non-crash operation and crash scenarios, and is, thus,
eligible to be further used as a class label for the machine learning classification application.

A fundamental operation of this investigation is to produce data covering the whole spectrum of both non-crash driving and crash
scenarios. Training data must contain all necessary information to reliably differentiate between those two states, but it can only be
composed of a multitude of individual simulations. The fact that the labelling process is not a task to be carried out manually but
rather by the simulation itself enables to consider all necessary scenarios. Henceforth, a scenario-parameter-based simulation
definition is used to fully exploit the fact that individual simulation postprocessing is not required. Consequently, a set of scenario
parameters with an allocated range defines each subset. The individual subsets are then merged to form a comprehensive database.
In order for the parameter space to be sufficiently covered by a given number of instances, Latin-hypercube sampling (LHS) is
applied. LHS, in contrast to simple-randomsampling (SRS), subdivides each parameter’s range into equal-sized subdivisions, thus
effectively partitioning the entire parameter space into hypercubes, called strata. A random sample is generated from each stratum,
thus ensuring that the resulting distribution is fully representative of a given population ([29]). All resulting simulative
measurements are available under [34].

A. Class A: Uncritical Data
Within the class of uncritical data, simulations are divided into two subsets. The first of which uses a sinusoidal base structure as a
road profile. The second subset supplementary adds specified use cases to the database that cannot be reproduced by the sinusoidal
subset.

Table 2: Parameter space for non-crash scenario set A.1.

parameter range unit
sine amplitude D: = 6 m
phase shift D = 360 ~©
road "'noise’ 0O : 0.025 m
UMoto,init,A1l -1.2 : 1.2 m/s
R -500 : 500 Nm

Scenario Set A.1

A mesh of rigid shell elements which is created before each simulation serves as contact surface for the motorcycle. This road model
has a total length of 300 m and a segment length of 0.2 m. The sine amplitude ranges from 0 m to 6 m. The first subset’s road profile
is described by a sinusoidal base profile with added noise in order to mimic road-unevenness. By ensuring that the interval length
corresponds to the road length, the steepest section is limited to a road gradient of 12% which amounts to the maximum gradient
found on open roads according to [22]. Phase shift and noise amplitude are also incorporated as parameters for additional variation.
A set of 20 exemplary road profiles is depicted in Fig. 2. The figure additionally depicts an expanded view in order to illustrate the
superimposed noise. The motorcycle’s initial velocity ranges from 3 m/s up to 23 m/s. The speed range is chosen to correspond to
that of the crash scenarios (6). Otherwise, if speed distribution in one class far exceeds that of the other class, the classification
model would tend to incorporate that bias. Lastly, brake and acceleration torque acting on the wheel hubs are derived from one
single parameter (since they cannot occur at once).
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[8] show that the mean braking torque of a motorcycle can be assumed to be 500 Nm and is distributed, so that 70% is directed to
the front wheel and 30% to the rear wheel. Likewise, [14] investigate the acceleration of high-performance race motorcycles. The
authors state that the braking torque at the wheel can reach up to 1000 Nm. As a conservative estimate the acceleration torque limit
is set to 500 Nm since the motorcycle under investigation here is not designed for racing. Scenario set A.1 is composed of 100
entities that are parametrized via LHS. The parameters with their corresponding variation range are listed in Tab. 2.

10

road height in m

-10

road length in m

Figure 2: Road profiles for non-crash scenario set A.1. The road consists of a start platform which is connected to a randomly
generated sinusoidal profile with a maximum gradient of up to 12% and a superimposed noise

Scenario Set A.2

Although the parametrized scenario generation already covers a wide range of applications, some use cases cannot be emulated by
this method and should still be considered in the database. These scenarios, referred to as set A.2, are designed manually and
appended onto the dataset. Namely, these simulations are intended to replicate the following use cases: (i) riding over potholes, (ii)
approaching a curb stone, (iii) riding down multiple curb stones, and (iv) riding over speedbumps. Road profiles that are designed to
imitate these obstacles are depicted in Fig. 3. In combination with initial velocities lying within the same range as in subset A.1, see
Tab. 2 and using LHS as sampling method, a total of 20 simulations (4 in each use case) are performed to build subset A.2.

B. Class B: Crash Data

The data containing accidents involves more than just head-on collisions, where simple threshold-based decision logic would suffice
for detection. Instead, the aim is to examine a broad range of conceivable impact scenarios. Consequently, parametrized scenario
generation is resorted to again. Two different base architectures are designed to cover the motorcycle striking a stationary car at
different angles and velocities (subset B.1) and a car striking the stationary motorcycle at different angles and velocities (subset
B.2). Additionally, a set of ISO 13232 crash scenarios are simulated and preserved in order to validate the classifier’s ability to
generalize after being trained.
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road length in m road length in m

(3]

Figure 3: Additional road profiles for non-crash scenario set A.2

T Moto,.init, 3. 1

Figure 4: Schematic illustration of crash scenario set B_ 1.

Table 3: Parameter space for crash scenario set B_71.

parameter range unit
UMoto,init, B. 1 6.7 = 13.4 m/s
v O ~ 360 -
Oy . B.1 -1.2 = 1-2 m
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Scenario Set B.1

Set B.1 consists of 100 simulations in which the motorcycle with an initial velocity moto, in it, B1 approaches a stationary car that
is both rotationally (aB1) and laterally (oy,B1) displaced. Figure 4 illustrates the structure of the scenario set B.1. By offsetting the
car by offset, grazing-accidents are included in the scenario database. Table 3 shows the range in which the parameters are varied.
Scenario Set B.2

For more variation, in B.2 the setup is inverted with the motorcycle now stationary and the car pointing at the motorcycle at
different angles, see Fig. 5. Additionally, the direction of rotation of the car is shifted by yB2 for further variation of the point of
impact. Table 4 lists the range of variation for each parameter assigned to set B.2.

l‘( ‘ar,init, B. 2 I

Figure 5: Schematic illustration of crash scenario set B.2.

Table 4: Parameter space for crash scenario set B.2.

parameter range unit
UCar,init, B.2 6.7 : 134 m/s
B. 0 : 360 .
Yz,B.2 -5 5 .

Validation Set B.3

Validation scenarios are implemented in order to evaluate the final performance of the trained models and, thus, their ability to
generalize. Scenarios according to [18] are selected for this purpose in order to be representative. The ISO norm 13232 provides a
set of impact configurations based on a statistical analysis of real-world crash events. The full set consists of 25 impact
configurations, shown in Fig. 6.

C. Machine Learning Classification

The remainder of the chapter is devoted to the task of building machine learning models using the scikit-learn toolbox in Python
([31]). The section is structured into preprocessing of the raw data, model preselection, and hyperparameter-tuning using grid-search
in combination with cross-validation (CV).

D. Preprocessing
Data preprocessing can often lead to a significant performance enhancement compared to working with raw data. Preprocessing
includes distribution management, standardization, checking for, and handling of missing values.
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Figure 6: Scenarios of the validation set B.3 from [18]. Each scenario is described by a code XXX-Y/Z, where XXX encodes the
relative position of car and motorcycle, Y is the cars, and Z is the motorcycle’s impact velocity in m/s.

As some classification algorithms tend to perform better or even depend upon standardization, a scaling routine is implemented
prior to the classification. Whereas some classification algorithms like decision trees and ensembles do generally not require data
standardization, others, like, for example, neural networks, are strongly reliant on it. Otherwise, features that have different
magnitudes are not treated equally. Standardization scales each feature to unit variance. In order to be consistent, a transformation
vector is computed on the training set and applied to the test set rather than scaling each dataset to unit variance in its own right. The
standardized value x ' i,m for each sample i,m of timestep i and feature m is carried out via with xm being the arithmetic mean of
feature xm and xm its standard deviation ([37]).
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An additional preprocessing method is featuring extraction via principal-componentanalysis (PCA). It aims to derive meaningful
and non-redundant variables from the original dataset by projecting it to a lower-dimensional space by means of singular value
decomposition (SVD). By this the original dimension of the feature space dimension, which is with a total of 23 features fairly high,
could be reduced, this could be beneficial considering that the concluding model is to be run in real-time on an embedded system.
However, the desired effect does not materialize well and the method proves to be ineffective for this application. Consequently, it
will not be addressed further in this report. For a thorough introduction to PCA and its potential enhancements be referred to [1]

E. Training-Test-Split

A decisive circumstance to consider when subdividing time-dependent data is that neighbouring samples have a tendency to be
located in close proximity to each other. A random training test split, like it is often performed on non-time-dependent data, is,
henceforth, not an appropriate splitting method [33]. In the case of this application, training-test-split is carried out on whole
coherent simulations itself rather than on samples. As this is a safety-critical application, a 50-50 split is performed, meaning half of
the available data is retained for testing to cover a broad range of scenarios. The remaining half is dedicated towards training the
models. Additionally, none of the 1SO scenarios of set B.3 shall be included in the training set as it is of particular interest to assess
how well-trained models generalize on these representative scenarios.

When training a model for classification purposes, close attention must be paid towards the distribution of the two classes. Since
crash-labelled samples are, in this case, much less frequently represented in the raw dataset, non-crash-labelled data requires
subsampling in order to achieve equal distribution. The desired distribution is achieved with a sampling rate of twelve. The resulting
sizes and distributions of the two datasets are displayed in Tab. 5.

Table 5: Parameter space for crash scenarios set B.2.

dataset class samples
non-crash 13.842

training crash 10.908
total 24. 750
non-crash 11.238

test crash 11.778
total 23.016

For the final application of the real-time classification model into the virtual” system” of the motorcycle, a sample rate of 2 kHz is
selected. This is a sample rate that most commercially available sensors are able to safely handle and which also leaves a sufficient
margin of samples for the implementation of an activation threshold. In addition to the above-mentioned training and test datasets,
which are no longer subject to a uniform sample rate, individual scenario datasets are prepared, which incorporate the realistic
scenarios from [18]. Those simulations are synchronized to the selected sample rate of 2 kHz in order to evaluate the model’s
decisional delay.

VII. MODEL PRESELECTION
The amount of available classification algorithms is extensive and thus not feasible to investigate exhaustively. A preselection of
suitable algorithms is therefore shortlisted. The preselection is designed to incorporate multiple different classification approaches
like assembling, support vector machines (SVMs), and artificial neural networks (ANNS) as they are some of the most frequently
used algorithms available. Tab. 6 lists all preselected models and their underlying method.
Table 6: Preselection of scikit-learn classification algorithms
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algorithm base method
AdaBoost N1 ensembling (boosting)
Gradient Boosting ensembling (boosting)
Random Forest ensembling (bagging)
SV support vectors
NP feed forward neural network

A. Hyperparameter-Optimization

A decisive determinant for the performance of a classification model is the proper choice of its hyperparameters. There are several
different approaches to resolve this problem, such as random or gradient searches. In the scope of this paper, grid search
parametrization, in combination with cross-validation (CV), is employed in order to discover the best-fitting parameters for each
model. Using grid search optimization, the (discrete) hyperparameter space searched within must be predefined. A classification
model is trained on each combination of parameters, and, using cross-validation, a mean score is computed for each iteration. The
type of score as well as the number of cross-validation folds are user-defined. For this application 20-fold CV in combination with
the is selected since the dataset consists itself of a multitude of subsets.

precision - recall

1“1 ——— ‘)

precision + recall

The F1 is chosen as it combines both precision and recall scores. Each parameter’s grid is incrementally refined, effectively
narrowing the search radius until further refinement no longer yields an improvement. Tuned resulting hyperparameters for all five
models are listed in Tab. 7. Only parameters that deviate from the standard parameters are listed.

B. Baseline Model
In order to put the performance of the classification models into perspective, a simple threshold-based model acts as a baseline. The
model is implemented according to [19], where a set of accelerometers is placed at the fork legs of the motorcycle. The signals are
then used to determine if the motorcycle is about to collide. Since the two accelerations

Table 7: Tuned hyperparameters for the five classification methods

algorithm hyperparameter value

( number of learners 80

max. leaner depth 2

AdaBoost Z ) I i

learning rate 0.6

! algorithm SAMME

[ number of learners 80

. = max. leaner depth 10

Gradient Boost < : I =

learning rate 0.5

! loss function exponential

number of learners 45

Random Forest max. leaner depth 17

splitting criterion entropy

“x 7 C 120
SVM {

gamima auto

number of hidden layers 1

hidden layer size 220

Neural Net initial learning rate 0.002

optimization tolerance 0.0003

early stopping enabled
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signals are averaged, in this paper there is only one accelerometer placed at the front hub. The models only parameter is the
threshold at which it detects an impending collision. This threshold is tuned on the training data in the exact same way as for the
other models, with its hyperparameter-space being only one dimensional. 19

VIIl.  RESULTS AND DISCUSSION
In this section, the results from the previously introduced trained classification models are compared to each other and are
individually evaluated for fitness. ML classificationspecific criteria on one side, as well as several application-specific criteria, act
as a basis for comparison. Furthermore, available sensor data is examined and ranked according to its individual contribution. The
computation of feature importance can be helpful to point out whether the feature space dimension can be reduced. The final section
describes the individual feature contribution, giving an overview of sensor significance that can assist future work.

A. Capability Assessment

The following sections serve as an illustration of the trained classification models’ performance. This allows to draw a comparison
between the models and assess the level of proficiency that can be expected from a specific model. In addition to a selected set of
machine learning performance metrics, a few domain-specific criteria are established. The main objective is to outline the overall
performance as broadly as possible in order to make a reasoned choice when selecting a model.

B. Performance Measures

Performance metrics that are considered to evaluate and compare the achieved training results are the receiver operating
characteristic (ROC) curve, explained e.g. in [4], which shows the true positive (TP)-false positive (FP) trade-off of a model. The
area under the ROC curve (AUC) quantifies the individual trends. Additionally, scores that are computed from the confusion matrix
are listed. For the sake of clarity, the resulting confusion matrix of all models is shown in the appendix (Fig. 12).

C. Receiver-Operator Characteristic

The resulting receiver operator characteristics for all trained models are displayed in Fig. 7. All curves lead through the sweet spot
in the upper left corner, where classification yields a high TPR while maintaining a low FPR. The results indicate that there is no
direct trade-off for all models between achieving a high TP rate (TPR) and keeping the FP rate (FPR) low. The ROC curves show an
almost identical trend for four of the models, with only the AdaBoost model’s performance being marginally poorer.

1.00 0.95 == Baseline

== Ada Boost

== Random Forest
(0 = Gradient Boost
& - SVM

=== Neural Net

: // = Random Guess
T0.70 t

0.00 ek 4

0.00 1.00 0.00 0.20
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Figure 7: Receiver-operator characteristic of all five models. A perfect classification model would reside in the top-left corner,
reaching a 100% TPR while maintaining a 0% FPR, essentially, mapping each sample flawlessly to its associated class. ROC curve
does, therefore, not yet permit any statement about performance fluctuation between the models.
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D. Machine Learning Scores

Since one single index is not able to sufficiently describe the performance of a classification model, a selection of metrics is chosen.
The intention is not only to point out which models perform well and which are rendered unfit but also to indicate potential
overfitting by computing the score on the training data. Consequently, a well-fitted model will tend to yield similar scores on both
sets sacrificing training accuracy for better generalization ability. In contrast, an overfitted model tends to achieve a higher score on
the training set than on the test set.

The resulting scores are collected in Fig. 8.

» The AUC Score quantifies the trend given by the receiver-operating characteristic, by calculating the area underneath the curve. A
higher score means the demand for a better TPR does not tend to sacrifice a models FPR and vice versa.

 Accuracy measures the rate of correctly classified samples of both classes out of all samples. It is thus a valuable indicator of
overfitting, if a model yields a sufficiently lower score on the test set than on the training set.

* The precision score, which in this context accounts for the classifier’s ability to not falsely misclassify a non-crash sample as a
crash. Sufficient scoring on this assessment is of elementary importance for applying the method presented in

model:

Baseline
AdaBoost
Random Forest
Gradient Boost
SVM

Neural Net

data:

accuracy

test

- = ={raining

AUC: area underneath the ROC
curve

precision

accuracy:  share of correctly classified
samples out of all samples

precision:  share of correct positives

Youden’s of all positives

Youden’s: ~ estimated probability of an
informed decision

0 1

21 Figure 8: Performance scores of all five trained models computed on both training and test data. A large deviation between
training and test score is a strong indicator for and overfitted model.

22 this report. Frequently misclassifying class A samples and, thus, falsely initiating deployment of passive safety mechanisms
render the implementation of a ML-based crash detection algorithm possibly more harmful than profitable.

+ As a combination of sensitivity and recall, Youden’s index measures the overall informed Ness of a model’s decision-making
process

. Summarizing the scores and discrepancies presented in Fig. 8 permits to conclude the models’ performance and generalizing
ability.
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At first glance it is clearly visible, that the baseline model is not able to keep up with the ML models in terms of performance. Its
scores are significantly lower than those of the other models. The poor scores indicate, that the model may be able to make a
decision, albeit not an informed one. In comparison to the baseline model the ML models tend to achieve a similar performance,
with the AUC scores only ranging from 0.94 to 0.97 and precision being almost identical. The accuracy and Youden’s scores
however hold more information. Firstly, the test scores of the Random Forest and Gradient Boost models are slightly higher than
that of the other models. However, as the dashed line suggests, their ability to generalize will be impaired due to overfitting. To
summarize, all of the five models achieve a similar performance with two of the models being subject to overfitting.

E. Crash Prediction Requirements

Besides the aforementioned performance criteria which assess the classification models themselves, there are certain requirements
that are given by the very nature of what is intended to follow the crash prediction algorithm. These requirements are that (i) no
false detection is raised when not at risk for accidents, that (ii) detection delay is sufficiently short, for the airbag to deploy fully
before the rider impacts the motorcycle, and that (iii) the model is computationally efficient. The first domain requirement results
from the fact that the algorithm is intended to initiate passive safety precautions, such as the deployment of the airbag and fastening
of the thigh belts. Some of the used airbags are non-deflating and, thus, stay inflated for at least a few seconds. False deployment
should, therefore, be avoided at all costs due to the obstruction of visibility and manoeuvrability as well as rider shock and product
reputation. Requirement (ii) aims to keep the prediction delay of the classification models modest since the airbag inflation takes a
comparably long time due to a much larger volume than that of a passenger car. In this context, a prediction time lower than 12 Ms
has proven to be sufficient in order for the airbag to inflate fully in time [13]. Furthermore, the fundamental idea behind this
investigation is that the classification model operates in real-time on the motorcycle’s 23

Table 8: Number of successive samples and equivalent time for a valid classification for each trained classification model.

model N activation activation time unit
Baseline 36 18.0 ms
AdaBoost 26 13.0 ms
Random Forest 19 9.5 ms
Gradient Boost 25 12.5 ms
SVNM 16 S ms
Neural Net 9 4.5 ms

embedded system. It is, therefore, reasonable to analyse and compare the latency of the classification models since CPU capacity
can be assumed to be seriously limited. The requirements are tested on the ISO scenarios presented in Fig. 6 as well as a share of
sets A.1 and A.2 that are preserved for the test set and that act as control scenarios. Thus, all data the classifier is tested upon is not
included in the training set and is not used for hyperparameter tuning.

F. Decisional Delay

Requirement (i) and (ii) correlate strongly, as can be concluded from a conceptual experiment concerning the ROC curve. If the
activation threshold activation is set arbitrarily high, the rate of false positives will diminish as would true positives resulting in the
lower-left corner in the ROC plane. In the opposing case that the detection threshold is set arbitrarily low. In this case, no positive
value goes undetected but at the cost of misclassifying each negative sample in doing so.

Thus, the two requirements are accounted for in the same process. The activation threshold activation assigns a limit to each
classification model that tells how many successive samples must be positively classified in order for a valid prediction to be made.
The schematic process is explained in Fig. 9. The threshold values are tuned individually for each model so that no false prediction
is made in control scenarios. Classification models that are subject to a higher FP rate are consequently assigned a higher threshold
activation. The individual activation thresholds are listed in Tab. 8.

From Tab. 8 it becomes apparent that at a sample rate sample of 2 kHz and an activation threshold activation = 26 and 25, the
AdaBoost and Gradient Boost models are rendered unfit as they could not meet the required decisional delay of 12 Ms even with a
perfect accuracy score.
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Figure 9: An exemplary detection process, beginning at the time of impact and ending with a valid classification. A valid prediction
requires a specified number of consecutive positive classifications in order to filter out any false positives

The set of I1SO crash scenarios is categorized for the purpose. of the decision delay assessment. Categories are frontal contact
crashes, lateral or rear contact crashes, and lastly, grazing accidents. Decision delay is interpreted as the time between initial contact
and the moment when activation successive positive classifications are reached. The mean decision delay each model achieves in
each of the three crash categories is presented in Fig. 10. The illustration presents, first of all, an intuitive trend regarding the three
crash categories. The delay when predicting frontal accidents, on average, is significantly lower than that of grazing accidents,
meaning they are effectively easier to predict. This can partly be attributed to the acceleration that the motorcycle exhibits during an
accident, which is generally larger in magnitude in frontal crashes than during grazing. The figure shows that only the Neural Net
model is capable of making an informed decision within the time limit for frontal, lateral, and rear-end accidents. The SVM model,
though failing at detecting frontal accidents, predicts lateral and rear-end accidents in due time. The other models are not able to
decide within the required period of time as their decisional threshold does not allow for as much agility. Grazing accidents pose a
serious challenge for all of the models equally, as no model manages to stay within the time limit.

G. Runtime

To conclude the capability-assessment-investigation, the runtime of each model is evaluated. Runtime, in the context of real-time
capability, is the time that elapses between the input of an instruction and the results output by the computing unit. It shall be stated
that the results of this evaluation have no context outside this work and are merely a concept to compare the latency distribution of
the six trained models. runtime measurement is carried out on an Intel® Core™i7-2600 CPU which operates at a base frequency of
3.4 GHz.

target (12ms)

== Baseline
fionisl == AdaBoost
== Random Forest
) == Gradient Boost
=SVM
== Neural Net
lateral/rear o
[
=
grazing

0 ) 10 15 20 25 30 35 40 45
25 Figure 10: Prediction delay for the [18] control scenarios categorized into 3 accident groups\
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The runtime mean and standard deviation are computed for each. model on the same test set and on the same processing unit. The
results are listed in Tab. 9 for each of the models. The distribution of the mean values shows that incremental sample classification
for the Gradient Boost, SVM, and Neural Net model takes considerably less time than it takes for the remaining two models. With
latency ranging from (0.05 to 0.2) Ms these classifiers require only a fraction of the time of AdaBoost and Random Forest, where
latency is distributed from (4.29 to 5.60) Ms. It is to be expected that the runtime of the baseline model is small, as its computational
cost is moderate. The low runtime of the models Gradient Boost, SVM, and Neural Net compared to that of the remaining models
indicate that they should be preferred especially when real-time capability is required.

H. Feature Importance
In order to achieve the results shown above, not all features are of equal importance to the classification model. Some features are
of greater use in order to differentiate between categories than others. From an economic perspective, it is particularly interesting
which features contribute only marginally towards the overall result as it allows the sensors to be dispensed with while maintaining
comparable performance. For the following investigation only the results of the MLP are used as it yields the best overall
performance and meets 26

Table 9: Mean computation time of the different models and standard deviation carried out on an Intel® Core™i7-2600 CPU.

model runtime mean std. dev. unit
Baseline 0.02 0.001 ms
AdaBoost 1.29 0.14 ms
Random Forest 5.60 2.27 ms
Gradient Boost 0.16 0.02 ms
SV 0.20 0.004 ms
Neural Net 0.05 0.002 ms

the requirements. To find the most important features for ANNSs, permutation-based feature importance is calculated by performing a
number k of sample interchanges in individual features ¢ and computes the resulting accuracy score of the corrupted dataset. For
each iteration k € {1, ..., n} samples of column c are interchanged and the resulting score sk,c is evaluated. A final measure ic for
the importance of feature c is given by

n
: 1
le = 8 — — Sk a.
n
k=1

where s marks the score on the uncorrupted dataset [5]. The contribution of individual features is presented in Fig. 11 in progressive
order so that in the case that feature dimension is limited, the features to omit are highlighted. The permutation feature importance
ranks that of the motorcycle body’s linear acceleration (moto) highest, which intuitively appears reasonable. After all, a common
condition that all crash scenarios share is an excessive (negative) acceleration of the system due to a more or less severe impact.
However, as shown by [20], the frame acceleration sensor alone is not a sufficiently agile crash indicator as it responds with a
considerable time delay. The delay is mostly due to the deformation that occurs before the frame is actually decelerated.
Furthermore, the model assigns a critical weight to the approximated tire pressure fFW, which is derived from the contact force.
Front and rear wheel, as well as frame angular acceleration, are also among the top-ranked signals. Signals that only seem to
contribute marginally are the suspensions position and velocity both front (sFS, sFS) and rear (GRW, cRW). The contact sensors that
are attached to both sides (cleft, : right) of the frame also do not particularly enhance the performance. Concluding the feature
importance investigation, it can be established that acceleration signals generally are of greater benefit towards the overall decision-
making quality.
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Figure 11: Permutation feature importance for the Neural Net model.

A fact that is particularly convenient, as accelerometers are among the most widely used sensors. In contrast, position and velocity
signals do not contribute equally as much. This also serves as a potential explanation for the prolonged mean decisional delay that is
observed in grazing accidents for all five models. Since in grazing accidents, the induced (negative) acceleration is not as
pronounced as in other types of accidents, the acceleration-dominant classifiers fail to respond in due time. This forfeit, however, is
admissible since it implies that severe accidents with more pronounced acceleration are reliably detected.

IX. DESIGN CONSIDERATIONS FOR AIRBAG SYSTEMS

Size and Placement The effectiveness of airbag systems in motorcycle safety depends largely on their size and placement within the
rider’s gear. Frontal airbag modules, for example, must be strategically positioned to provide adequate coverage for the rider’s chest,
abdomen, and spine while avoiding interference with other protective gear such as helmets and body Armor. Manufacturers
carefully design airbag vests and jackets to ensure optimal placement and coverage of airbag modules. This often involves
conducting extensive testing and evaluation to determine the most effective configuration for protecting vital body parts while
minimizing bulk and discomfort for the rider. Additionally, the size and shape of airbag modules must be carefully tailored to
accommodate a wide range of rider sizes and body types. Adjustable straps and fasteners allow riders to customize the fit of their
airbag gear for maximum comfort and protection. Deployment Speed Another important design consideration for airbag systems is
deployment speed. In the event of a crash, airbags must inflate rapidly to provide immediate protection for the rider. Delayed
deployment or slow inflation can significantly reduce the effectiveness of airbag systems and increase the risk of injury.
Manufacturers employ various mechanisms and inflation systems to ensure rapid deployment of airbag modules.
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Some systems utilize compressed gas cartridges or pyrotechnic actuators to inflate the airbags within milliseconds of a crash, while

others rely on mechanical triggers or electronic sensors to initiate inflation. Regardless of the deployment mechanism used, the goal

is to ensure that airbag systems activate quickly and reliably in the event of an accident, providing riders with immediate protection
when they need it most. Durability and Reliability Durability and reliability are essential considerations in the design of airbag
systems for motorcycle safety gear. Motorcycle riders often encounter challenging environmental conditions, including exposure to
heat, cold, moisture, and debris. Airbag vests and jackets must withstand these conditions while maintaining their effectiveness and
performance. Manufacturers use high-quality materials and construction techniques to ensure the durability and reliability of airbag
gear. Reinforced stitching, abrasion-resistant fabrics, and impact-resistant materials are commonly used to enhance the structural
integrity of airbag vests and jackets, ensuring they can withstand the rigors of daily use. Additionally, regular maintenance and
inspection are essential to ensure the continued reliability of airbag systems. Riders should follow manufacturer guidelines for care
and maintenance, including checking for signs of wear or damage, replacing expired components, and servicing the inflation system
as needed.

X. TESTING AND EVALUATION OF AIRBAG SYSTEMS

1) Crash Simulation Tests Crash simulation tests are a crucial component of the testing and evaluation process for airbag systems
in motorcycle safety gear. These tests involve replicating real-world crash scenarios in controlled environments to assess the
performance and effectiveness of airbag systems under various conditions. During crash simulation tests, researchers use
advanced computer modelling and simulation software to recreate the dynamics of motorcycle crashes, including factors such
as vehicle speed, impact angle, and surface conditions. Crash test dummies equipped with sensors and data recording devices
are used to measure the forces experienced by the rider and assess the performance of the airbag system. By subjecting airbag
systems to simulated crash scenarios, researchers can evaluate their ability to deploy rapidly, inflate to the correct pressure, and
provide adequate protection for the rider’s body. This allows manufacturers to identify any design flaws or performance issues
and make improvements before bringing the product to market.

2) Impact Force Measurements In addition to crash simulation tests, impact force measurements are used to evaluate the
effectiveness of airbag systems in reducing the severity of injuries sustained by motorcycle riders. These measurements involve
quantifying the forces experienced by the rider’s body during a crash and comparing them to established safety standards and
guidelines. Impact force measurements are typically conducted using specialized equipment such as force plates,
accelerometers, and pressure sensors. Crash test dummies equipped with these sensors are subjected to controlled impacts to
simulate real-world crash scenarios, allowing researchers to quantify the forces transmitted to the rider’s body and assess the
performance of the airbag system. By analysing impact force data, researchers can determine the extent to which airbag systems
reduce the severity of injuries and improve overall rider safety. This information is critical for evaluating the effectiveness of
airbag systems and informing future design improvements.

3) Performance Analysis Performance analysis involves evaluating various metrics and parameters to assess the overall
effectiveness of airbag systems in motorcycle safety gear. This includes factors such as deployment speed, inflation pressure,
coverage area, and reliability under different conditions. Researchers use a combination of laboratory testing, field evaluations,
and real-world crash data to analyse the performance of airbag systems in actual riding scenarios. By collecting and analysing
data from a wide range of sources, researchers can gain valuable insights into the strengths and weaknesses of airbag systems
and identify opportunities for improvement. Performance analysis also involves comparing the performance of different airbag
systems and configurations to determine which designs offer the best combination of protection, comfort, and usability for
motorcycle riders. This helps manufacturers refine their products and develop new innovations to enhance rider safety.

XI. CHALLENGES AND LIMITATIONS

1) Cost and Affordability One of the primary challenges facing the widespread adoption of airbag systems in motorcycle safety
gear is cost and affordability. The development and manufacturing of airbag vests and jackets require specialized materials,
components, and technologies, which can drive up production costs. Additionally, the inclusion of sophisticated sensors,
inflation systems, and other features further increases the price of airbag gear. As a result, airbag systems for motorcycles are
often significantly more expensive than traditional protective gear such as helmets and body Armor. This high cost can be a
barrier to adoption for many riders, particularly those on a tight budget or who prioritize other motorcycle accessories and
equipment. To address this challenge, manufacturers are working to reduce the cost of airbag systems through advancements in
materials, manufacturing techniques, and economies of scale. Additionally, some companies offer rental or leasing options for
airbag gear, allowing riders to access the safety benefits of airbag systems without the upfront investment.
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2) User Acceptance and Adoption Another challenge facing the widespread adoption of airbag systems in motorcycle safety gear is
user acceptance and adoption. Despite the proven benefits of airbag technology in reducing injuries and fatalities, some riders
may be hesitant to embrace this new technology due to concerns about comfort, fit, and ease of use. Airbag vests and jackets are
bulkier and heavier than traditional protective gear, which can impact rider comfort and mobility, particularly during long rides
or in hot weather. Additionally, some riders may find the process of donning and doffing airbag gear cumbersome and time-
consuming, leading to reluctance to wear it regularly. To overcome these challenges, manufacturers are focusing on improving
the comfort, fit, and usability of airbag systems through innovative design features and materials. This includes incorporating
lightweight and breathable fabrics, ergonomic designs, and adjustable straps and fasteners to enhance rider comfort and
mobility. Additionally, education and outreach efforts are critical for increasing awareness and understanding of the benefits of
airbag technology among motorcycle riders. By providing information and resources on the safety advantages of airbag systems
and addressing common misconceptions and concerns, manufacturers can help encourage greater acceptance and adoption of
this life-saving technology.

3) Technical Constraints Technical constraints pose significant challenges to the widespread adoption of airbag systems in
motorcycle safety gear. These constraints include limitations in sensor technology, integration with existing motorcycle
systems, and compatibility with different riding styles and environments. One of the primary technical constraints is the need
for reliable and responsive sensors to detect crashes and trigger the deployment of airbag systems. Current sensor technologies
may not always accurately detect crashes or may be prone to false positives, leading to inadvertent inflation of airbags or failure
to deploy in genuine crash scenarios. Additionally, integrating airbag systems with existing motorcycle systems, such as braking
and stability control systems, can be complex and challenging. Ensuring seamless communication and coordination between
different components requires sophisticated engineering and software development, which may not always be feasible or cost-
effective. Furthermore, designing airbag systems that are compatible with a wide range of riding styles and environments
presents additional technical challenges. Motorcycle riders engage in a variety of activities, from commuting to work to long-
distance touring to offroad adventure riding, each of which presents unique safety considerations and requirements for airbag
systems. Addressing these technical constraints requires ongoing research and development efforts to advance sensor
technology, improve integration with motorcycle systems, and enhance the versatility and adaptability of airbag systems.
Collaboration between manufacturers, researchers, and regulatory agencies is essential to overcome these challenges and
accelerate the adoption of airbag technology in motorcycle safety gear.

XII. FUTURE TRENDS AND INNOVATIONS

1) Advanced Sensor Technologies Advancements in sensor technology hold promise for addressing many of the technical
constraints associated with airbag systems in motorcycle safety gear. Emerging sensor technologies, such as artificial
intelligence, machine learning, and advanced computer vision, offer improved accuracy, reliability, and responsiveness in
detecting crashes and triggering the deployment of airbags. By leveraging these advanced sensor technologies, manufacturers
can develop nextgeneration airbag systems that are more intelligent, adaptive, and effective in protecting motorcycle riders. For
example, sensors equipped with machine learning algorithms can learn to distinguish between normal riding behaviour and
emergency situations, reducing the risk of false positives and improving overall system performance. Additionally,
advancements in sensor miniaturization and integration enable the development of smaller, lighter, and more discreet sensors
that can be seamlessly integrated into motorcycle gear without compromising comfort or mobility. This allows for greater
flexibility in design and placement of sensors, enhancing the effectiveness and usability of airbag systems.

2) Machine Learning and Predictive Algorithms (Continued) Machine learning algorithms can be trained to recognize these
patterns and predict the likelihood of a crash based on various factors, such as rider behaviour, road conditions, and
environmental variables. By incorporating predictive algorithms into airbag systems, manufacturers can enhance their ability to
pre-emptively deploy airbags in anticipation of an imminent crash, providing riders with even greater protection. For example,
predictive algorithms could analyse data from onboard sensors to detect signs of impending loss of control, such as sudden
changes in acceleration, braking, or steering inputs. If the algorithm determines that a crash is likely to occur, it could trigger
the deployment of airbags before the impact, potentially reducing the severity of injuries sustained by the rider. Additionally,
machine learning algorithms can continuously adapt and improve over time as they are exposed to new data and real-world
scenarios. This adaptive capability enables airbag systems to evolve and become more effective at detecting and responding to
emerging safety threats, such as new types of crashes or changing road conditions.
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3) Integration with Smart Bike Systems The integration of airbag systems with smart bike systems represents another exciting
trend in motorcycle safety technology. Smart bike systems, which encompass a range of connected technologies and sensors
embedded within the motorcycle itself, offer opportunities for enhancing rider safety and improving the performance of airbag
systems. By integrating airbag systems with smart bike systems, manufacturers can leverage real-time data from onboard
sensors to enhance the functionality and effectiveness of airbag deployment. For example, sensors that monitor vehicle
dynamics, such as acceleration, lean angle, and wheel speed, can provide valuable insights into the rider’s behaviour and the
current operating conditions of the motorcycle. This data can be used to inform the deployment decision of airbag systems,
ensuring that they activate at the optimal moment to provide maximum protection for the rider. Additionally, smart bike systems
can facilitate communication between the motorcycle and other vehicles or infrastructure, enabling advanced safety features
such as collision avoidance and automatic emergency braking. Furthermore, integration with smart bike systems opens up
possibilities for enhanced post-crash communication and emergency response. In the event of a crash, airbag systems equipped
with GPS and communication capabilities can automatically transmit the rider’s location and vital information to emergency
services, enabling faster response times and potentially saving lives.

XI1l.  CONCLUSION

In conclusion, airbag systems represent a significant advancement in motorcycle safety technology, offering riders an additional
layer of protection in the event of a crash. By reducing impact forces, protecting vital body parts, and preventing fatal injuries,
airbag systems have the potential to save lives and improve the overall safety of motorcycle riders. Despite the challenges and
limitations associated with their adoption, ongoing research and development efforts are driving innovation in airbag technology;,
with advancements in sensor technology, machine learning, and integration advancements in sensor technology, machine learning,
and integration with smart bike systems. These advancements hold promise for further enhancing the effectiveness and usability of
airbag systems, making them an indispensable tool for improving motorcycle safety in the future. As the technology continues to
evolve and mature, it is essential for manufacturers, researchers, and regulatory agencies to work together to address technical
constraints, overcome barriers to adoption, and accelerate the integration of airbag systems into motorcycle safety gear. By
collaborating and innovating, we can ensure that airbag technology realizes its full potential in saving lives and preventing injuries
in motorcycle accidents.
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