

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.76620>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Advances in Next Generation Ligand Binding Assay Technologies

Pallavi Badarala¹, Lalithya Teli², Lohitha Sri Pulapaka³, Naga Vaishnavi Ravuri⁴, Bhaskara Raju Vatchavai⁵

¹Assistant professor, Department of Pharmaceutical Analysis, Sri Vasavi Institute of Pharmaceutical sciences [SVIPS], Tadepalligudem, Andra Pradesh, India.

^{2, 3, 4} Students, Sri Vasavi Institute of Pharmaceutical sciences [SVIPS], Tadepalligudem, Andra Pradesh, India.

⁵ Professor & Principal, Sri Vasavi Institute of Pharmaceutical sciences [SVIPS], Tadepalligudem, Andra Pradesh, India.

Abstract: In contemporary drug discovery, lead optimization, and biotherapeutic characterisation, real-time ligand-target interaction quantification has become essential. Although they yield accurate affinity values, conventional endpoint assays including ELISA, radioligand binding, and fluorescence polarisation are unable to record kinetic data that are very essential for comprehending residence duration and mechanism of action. Under near-physiological settings, next-generation ligand binding assays (LBA) now enable label-free, continuous monitoring of association and dissociation events. Real-time kinetic, affinity, and thermodynamic data are provided by methods like surface plasmon resonance (SPR), bio-layer interferometry (BLI), microscale thermophoresis (MST), mass photometry (MP), electrochemical impedance spectroscopy (EIS), field-effect transistor (FET) biosensors, and nanopore sensing. With a focus on kinetic screening, binding selectivity, and integration with automation and computational modelling, this review examines the relevance of these new technologies in biopharma operations. We provide an overview of the transition from labelled endpoint assays to high-throughput, real-time systems, emphasising its benefits, drawbacks, and potential future developments.

Keywords: Ligand binding assays, Surface Plasmon resonance, AlphaLISA, NanoDLSay, Lab on a-chip.

I. INTRODUCTION

(NGLBAs) are a major improvement over conventional ligand binding assays (LBAs) in the study of biomolecular interactions, especially in the areas of pharmacokinetics, drug discovery, and biomarker quantification. Conventional LBAs, such as RIA and ELISA, measure and identify the binding of a ligand (such as a medication, hormone, or antibody) to a particular target, typically a protein. Both bioanalysis and clinical diagnostics make extensive use of these. Next-generation LBAs use new technology to enhance existing formats and overcome their limitations. Members of various pharmaceutical, instrument, and consulting firms with expertise in biotherapeutic bioanalysis make up the team. In order to bring awareness regarding bioanalytical methods in binding assays, they have introduced these six emerging technologies that have the potential to enhance LBA and deliver real-time findings. MaverickTM, MX96 SPRTM, NanoDLSayTM, AMMP®/ViBE®, SoPranoTM, and Lab-on-a-Chip (LoC) microfluidic devices are some of these technologies.

A. SPR (Surface Plasmon Resonance)

A phenomenon known as surface plasmon resonance (SPR) happens when light directed at a specific angle of incidence excites electrons in a thin metal sheet, causing them to move parallel to the sheet. It is an optical phenomenon that uses variations in the refractive index close to a metal surface to identify molecular interactions. Plasmons are the collective oscillations of electrons on the metal's surface, are excited when polarized light contacts a thin metal sheet (such as gold) at a particular angle under total internal reflection circumstances. Because a molecule's attachment to the surface influences the mass and, in turn, the refractive index of the surface layer, which changes the plasmon resonance angle and alters the signal, real-time, label-free monitoring of binding events is made feasible.

- Surface Plasmon When polarised light strikes a metal sheet at the interface of media with differing refractive indices, a phenomenon known as resonance takes place. Surface plasmons, or collective oscillations of free electrons, are excited and detected by SPR techniques using the Kretschmann configuration, which involves focussing light onto a metal sheet through a glass prism and then detecting the reflection that results. A metal film is exposed to light via a prism, and the reflected beam is gathered and examined.^[1]

- The plasmons are tuned to resonate with light at a specific incident angle (also known as the resonance angle), which causes light to be absorbed at that angle. As a result, the reflected beam has a dark line. A black line appears in the reflected beam as a result of surface plasmon excitation, and as a molecule binding event occurs, the dark line's angular location changes.^[2]
- There is a lot of information in that dark line. A dip in SPR reflection intensity can be helpful to analyze the resonance angle. A shift in the reflectivity curve indicates a conformational change in the molecules bound to the metal film or a molecular binding event occurring on or close to the film. Without having to deal with labels, researchers can examine molecule binding events and binding kinetics by tracking this shift against time. SPR Angle Response Scanning.^[3] The reflected light at the sensor surface experiences a decrease in intensity due to SPR.^[4]

1) Applications

The Strategic Petroleum Reserve (SPR), the largest emergency crude oil stockpile in the world, was created mainly to fulfill US obligations under the international energy program and lessen the effects of disruptions in petroleum product supplies. Figuring out how well proteins attach to ligand molecules like nucleic acids or other proteins.

- Evaluation of macromolecules:* Recombinant proteins are required in the majority of labs that examine biological issues at the molecular or cellular level. Demonstrating that the recombinant protein shares the same structure as its native equivalent is crucial. This is most simply accomplished by verifying that the protein binds its native ligands, with the possible exception of enzymes. Such interactions necessitate a well folded protein since they involve several residues, which are typically far apart in the core amino acid sequence.^[4]
- Equilibrium measurements:* Multiple consecutive injections of analyte at various concentrations (and temperatures) are necessary for equilibrium analysis. It is only feasible to conduct equilibrium analysis on interactions that reach equilibrium in roughly 30 minutes due to how time-consuming this process is. The dissociation rate constant, or k_{off} , is the main factor that decides how long it takes to attain equilibrium. As a general guideline, an interaction should reach 99% of the equilibrium level in 4.6/ k_{off} seconds.^[5]
- Analysis of mutant proteins:* The separation of proteins from crude mixes onto the surface of sensor can be shown using BIAcore. For the analysis of mutants produced by site-directed mutagenesis, this is highly practical.^[4,5] For properly purifying the mutant protein on the surface of the sensor, mutants can be produced as tagged proteins through transient transfection and then extracted from crude tissue culture supernatant using an antibody to the tag. The impact of the mutation on the immobilized protein's binding characteristics (affinity, kinetics, and even thermodynamics) may then be easily assessed.

2) Types

- Sensor
- NTA
- Protein A sensor kit
- Liposome
- Hydrophobic.

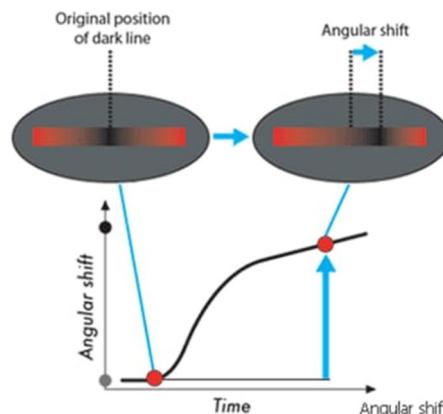


Fig.1

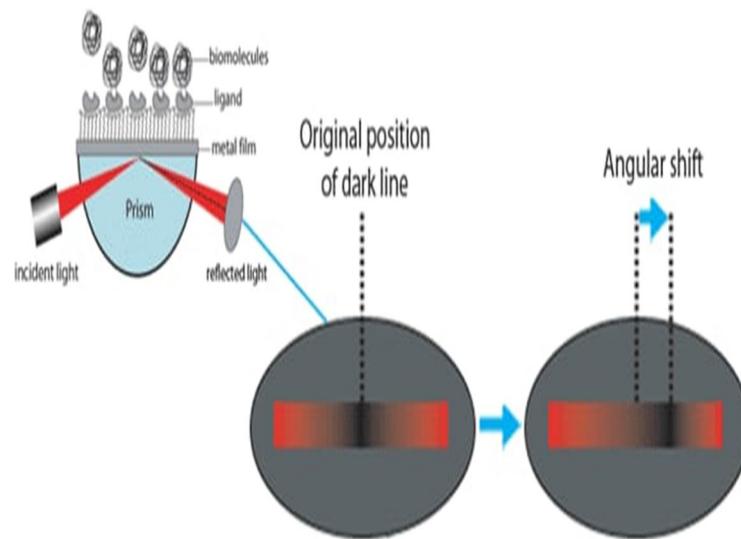


Fig.2

B. NanoDLSay

Dynamic light scattering (DLS) has been a standard laboratory method for measuring and analyzing particle size since it was first commercialized in the 1970s^[6]. Particle sizes between a few nanometers and three to five microns may be measured with 1 DLS. DLS was not previously thought to be appropriate for quantitative detection and analysis, despite its widespread usage as a particle characterisation method. The surface of microparticles like polymer beads can be coated with certain chemical ligands or biological sensing molecules like antibodies.

The polymer beads aggregate and form clusters when they interact with the target analytes. The average particle size of the test fluid rises as a result of the polymer beads clumping together. The concentration of the target analytes and the average particle size of the test solution should be quantitatively correlated. Thus, the target analyte may be found and its concentration can be ascertained by using DLS to measure the average particle size of the test fluid. Nevertheless, despite some early attempts to use this method for the immunoassay, it was swiftly abandoned and never found useful uses. The agglutination of microparticle probes is not the only factor reflected in the assay solution's average particle size. The particle probe's light scattering intensity must significantly outweigh the sample matrix's background scattering in order to prevent such interference.^[7] Biomolecular complexes, vesicles, and other colloidal particles with a light scattering intensity similar to polymer beads are frequently found in blood, blood serum/plasma, and urine.

1) How it Operates

- Step1: First, mix and coat. Gold nanoparticles coated with a particular surface probe, like an antibody or ligand, are combined with a sample.
- Step 2: Second step is target binding. The nanoparticle of gold changes size or aggregates when a target analyte in the sample binds to the probe.
- Step 3: Calculate the change in size. Dynamic light scattering (DLS) is then used to identify and quantify the size shift in order to obtain details about the target molecule.

2) Applications

- Cancer biomarker detection: To differentiate between malignant and healthy tissues, NanoDLSay has been used to examine protein biomarkers like as PAP (prostatic acid phosphatase), CA125, and CEA in tissue samples.[8]
- Protein research: It can be used for the study of protein interactions, aggregation, and complexes.[8]
- Protein conformation: As a protein transitions between various states, such as oxidised and reduced forms, its hydrodynamic size can be measured using this approach.^[9]

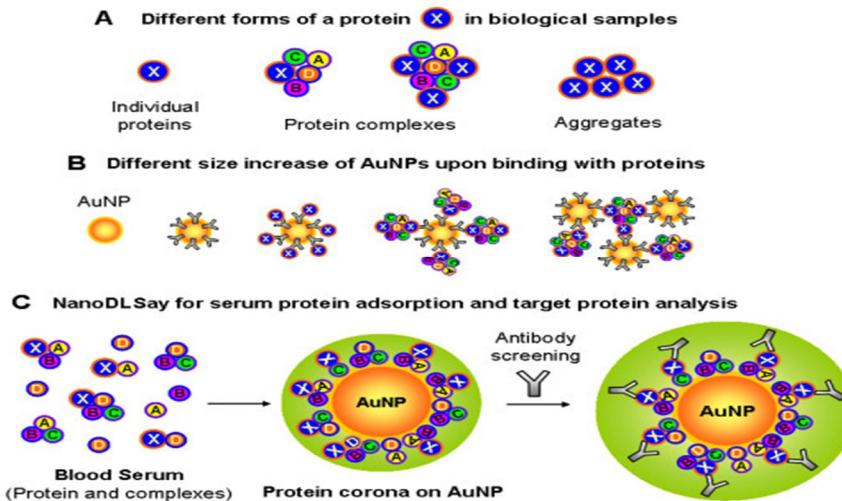


Fig. 3

C. Microfluidic Lab-On-A-Chip Technologies

In order to provide the fundamentals of modern ink-jet technology, attempts were undertaken in the early 1950s to dispense tiny volumes of liquids in the nano and subnanoliter ranges. This is where microfluidics got its start.^[10] The realization of a miniature gas chromatograph (GC) on a silicon wafer in 1979 marked a significant advancement in fluid propulsion within microchannels with a cross section of less than a millimeter.^[11] Manz et al. presented the first high-pressure liquid chromatography (HPLC) column device made with Si-Pyrex technology.^[12] The first silicon micromachining-based micro-valves and micro-pumps were introduced before the end of the 1980s. In the years that followed, a number of silicon-based analytic systems were introduced.^[13] The limitation of employing building blocks to make well-defined microfluidic platforms allows the application of biochemical tests in a much better, predictable, and less hazardous way than the production of individual and isolated lab-on-a-chip solutions. Assay miniaturization within a consistent manufacturing method is made possible by a microfluidic platform, which consists of an easily combinable collection of microfluidic unit activities.^[14]

1) Applications

- One possible use on the LSI platform is protein crystallization using the free interface diffusion method (FID).^[15] The technique relies on the counter-diffusion of two liquid phases at their contact interface: the precipitant solution and the protein solution. The concentration profile shifts during the diffusion process, and crystal formation begins as soon as the right circumstances are satisfied. A stable contact between the two liquids may be achieved within the tiny dimensions of the microfluidic crystallization structure, guaranteeing diffusion-based mixing between the two phases only. On the microfluidic LIS chip, the crystallization experiments are carried out in parallel within 48 unit cells, enabling 144 distinct simultaneous crystallization operations with just 3.0 mL of protein solution.^[16]
- The first area of use is biotransformation, which is the process by which molecules and products are broken down and created using bacteria, enzymes, or eukaryotic cell cultures. This includes fermentation, which breaks down and reassembles molecules (such as the fermentation of sugar to alcohol), and biosynthesis, which builds up complex molecules (such as hormones, insulin, antibiotics, and interferon).^[17] Managing a wide variety of liquids under controlled parameters, such as temperature or pH, in conjunction with accurate liquid management down to nL or even pL quantities, is particularly challenging in the field of process development.^[18] The manufactures of radiopharmaceuticals, antibody screening, phage and ribosome display technologies, and fermentation in microbioreactors are a few instances of microfluidic liquid handling platforms.^[19]
- One of the earliest microfluidic products to be successfully commercialized was lateral flow testing. Over the past 30 years, a vast number of assays have been created using the capillary test strip platform.^[20] Health biomarkers (pregnancy, heart attack, blood glucose, metabolic disorders), small molecules (drug abuse, toxins, antibiotics), infectious agents (anthrax, salmonella, viruses), immunodiagnostics, RNA applications, and even whole bacteria.^[21]

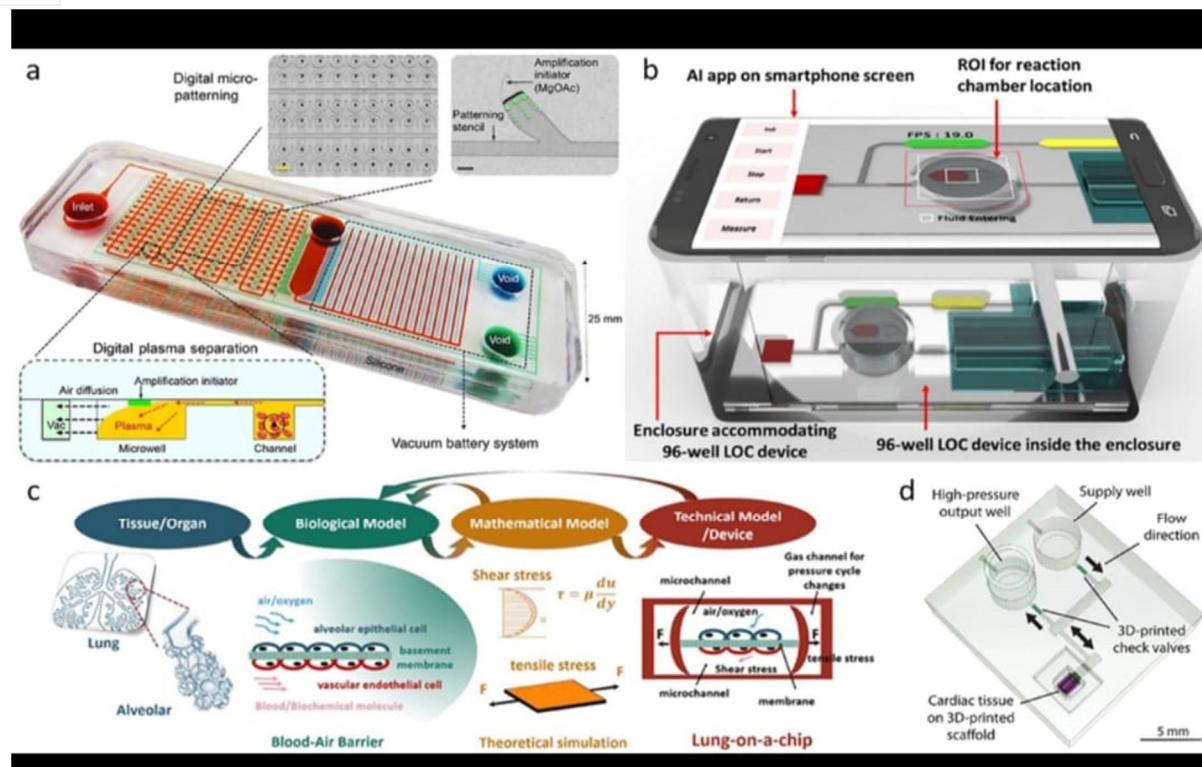


Fig.4

D. AlphaLISA

AlphaLISA is a bead-based immunoassay technique for high-throughput protein and biological molecule screening and detection. It's a "no-wash" test. Researchers have widely acknowledged the alphalisa immunoassay platform as an improved alternative to elisa testing. For years, elisa is the most widely used method for analyte detection and quantification in microplates. One drawback of Elisa in HTS is that when low-affinity antibodies must be utilized, the procedures' numerous wash steps negatively impact assay performance. Due to these constraints, a large number of drug discovery researchers are demonstrating a strong interest in alternative, cutting-edge assays that are reliable, HTS-friendly, affordable, and enable the detection and quantification of analytes in a high throughput format in order to expedite the discovery of novel drug candidates. The alphalisa bead-based technique uses oxygen channeling chemistry and is based on PerkinElmer's proprietary amplified luminescent proximity homogeneous assay (alphascreen).^[22]

1) How Does It Work?

- **Donor bead:** Has a photosensitiser that, when stimulated by light (680 nm), produces singlet oxygen.
- **Acceptor bead:** The chemiluminescent material in the acceptor bead produces light at 615 nm when it is activated by the singlet oxygen in the donor bead.
- **Bead proximity:** When the target molecule is present, the donor and acceptor beads are closer together (less than 200 nm), allowing energy to be transferred from the donor to the acceptor beads and light to be produced.
- **Binding:** A biotinylated antibody is attached to the donor bead (often streptavidin) in an immunoassay, while another antibody is attached to the acceptor bead.

2) Applications

- Protein-protein Interaction Studies: These can be used to observe how proteins interact with one another.
- Drug discovery: Used to find possible medicinal medications by screening vast compound libraries.
- Biomarker detection: Used to find biomarkers in fundamental and preclinical research.
- Immunogenicity assays: These are useful to create tests that identify antibody reactions to therapeutic proteins.

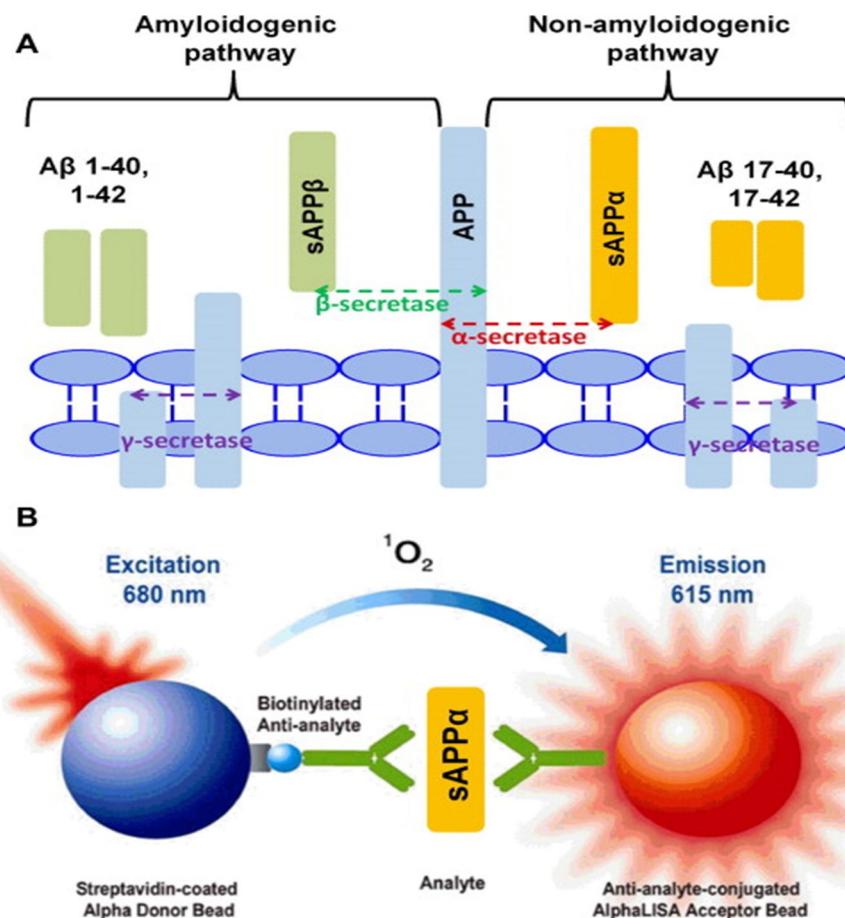
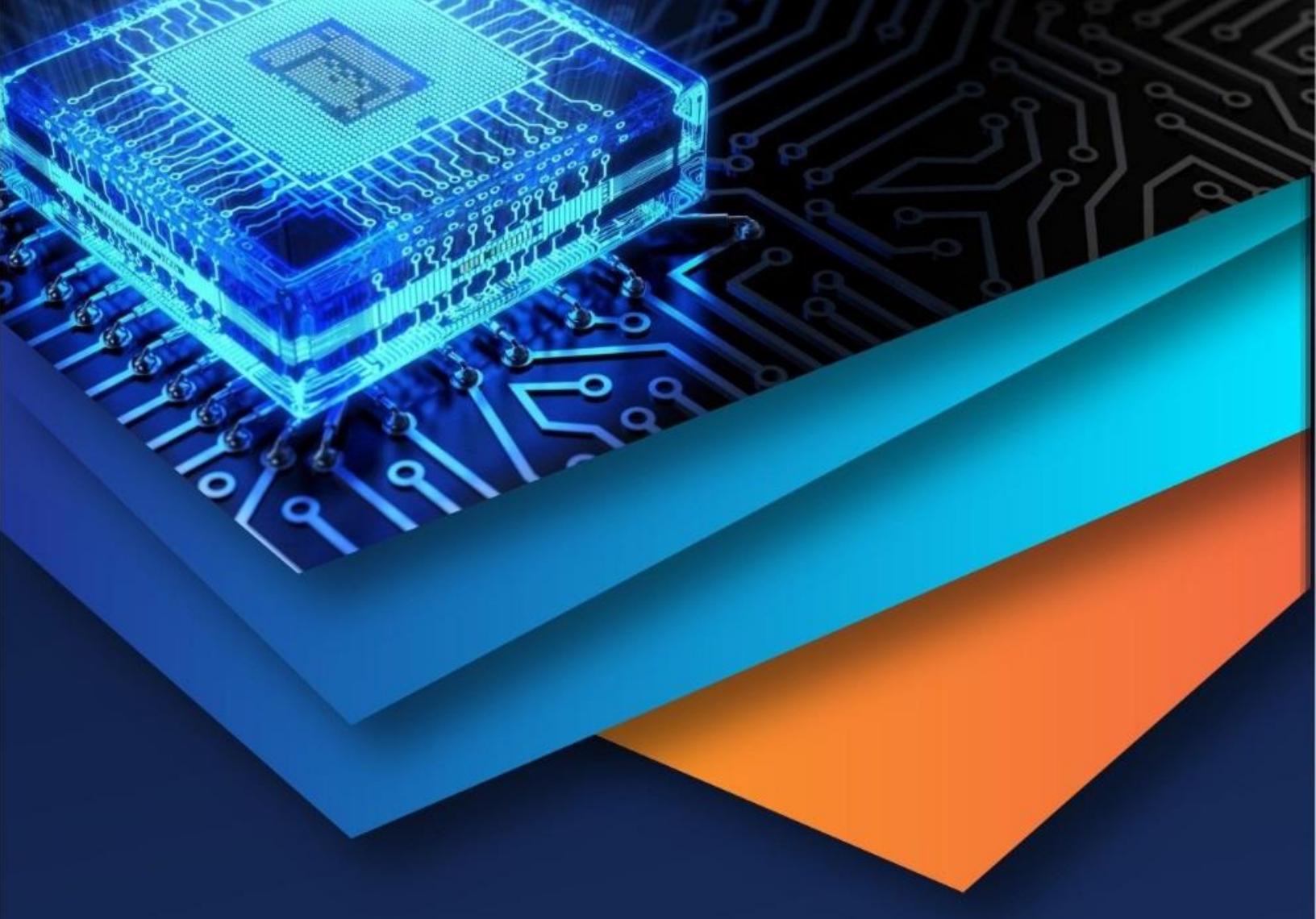


Fig.5

II. LIMITATIONS AND CHALLENGES

Despite significant advancements, a number of obstacles prevent real-time LBAs from being widely used. For smaller research organisations, instrument expense continues to be a hurdle, particularly for high-sensitivity SPR systems. When binding orientation or activity is disturbed, surface immobilisation artefacts may cause kinetic parameters to be distorted. Analysis at high ligand densities may be complicated by mass-transport constraints, resulting in apparent kinetic heterogeneity. Simple one-to-one binding models are rarely adequate for complex systems; data interpretation necessitates proficiency in model selection and fitting. Multi-epitope interactions and glycosylation heterogeneity challenge kinetic modelling in biologics characterisation. Achieving adequate signal-to-noise without non-specific adsorption is still a technical challenge for small-molecule binders. Lastly, uniform reporting standards are necessary for the integration of diverse datasets from various biosensor platforms. The goal of the MIAPARIS and Molecular Interaction Format (MI-TAB) projects is to standardize the curation of kinetic data.

III. FUTURE PERSPECTIVES


In all phases of drug discovery, real-time LBAs are set to become standard analytical techniques. Multi-modal detection (optical, electrical, and acoustic) will be integrated into single platforms in the next generation of devices. Comprehensive kinetic fingerprints will be produced using hybrid sensors that simultaneously record refractive-index, impedance, and temperature responses. Kinetic screening at the nanolitre scale will be made possible by integration with microfluidic droplet technologies. The time it takes to identify a hit and nominate a clinical candidate will be shortened by combining real-time data streams with AI-driven medication creation. Patient-derived biomaterials examined using label-free sensors may help guide customized dosage and treatment choices in personalised medicine. In the future, continuous treatment monitoring may be possible when wearable and implanted technology are combined with real-time biosensing.

IV. CONCLUSION

Technology suppliers and developers alike are faced with a difficult task in light of today's constrained capital budgets: how to promote innovative technology buy-up and provide cutting-edge advantages to the groups most in need of them? Finding technological investments that will yield the best possibilities and outcomes throughout time is only one of the many issues that scientists face due to their restricted funding. Our objective in putting together this article on real-time measurement technologies was to highlight information on a number of novel technologies that we think have the potential to help bio analysis and might, with further development, have considerable bio analytical value.

REFERENCES

- [1] Rivas G, Tangemann K, Minton AP, Engel J. Binding of fibrinogen to platelet integrin α IIb β 3 in solution as monitored by tracer sedimentation equilibrium. *Journal of Molecular Recognition*. 1996 Jan;9(1):31-8..
- [2] Wyer,J.R.,Willcox, B.E.,Gao,G.F.,Gerth,U.C.,Davis,S.J.,Bell, J.I.,van der merwe, P.A., and Jakobsen, B.K.(1999) *Immunity* 10,357.
- [3] Willcox BE, Gao GF, Wyer JR, Ladbury JE, Bell JI, Jakobsen BK, Van der Merwe PA. TCR binding to peptide-MHC stabilizes a flexible recognition interface. *Immunity*. 1999 Mar 1;10(3):357-65.
- [4] Van der Merwe PA, Crocker PR, Vinson M, Barclay AN, Schauer R. Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. *Journal of Biological Chemistry*. 1996 Apr 19;271(16):9273-80.
- [5] Van der Merwe PA, McNamee PN, Davies EA, Barclay AN, Davis SJ. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. *Current Biology*. 1995 Jan 1;5(1):74-84.
- [6] Berne BJ, Pecora R. *Dynamic light scattering: with applications to chemistry, biology, and physics*. Courier Corporation; 2000.
- [7] Cohen RJ, Benedek GB. Immunoassay by light scattering spectroscopy. *Immunochemistry*. 1975 Apr 1;12(4):349-51.
- [8] Cohen RJ, Benedek GB. Immunoassay by light scattering spectroscopy. *Immunochemistry*. 1975 Apr 1;12(4):349-51.
- [9] Von Schulthess GK, Cohen RJ, Benedek GB. Laser light scattering spectroscopic immunoassay in the agglutination-inhibition mode for human chorionic gonadotropin (hCG) and human luteinizing hormone (hLH). *Immunochemistry*. 1976 Dec 1;13(12):963-6.
- [10] Le HP. Progress and trends in ink-jet printing technology. *Journal of imaging science and technology*. 1998 Jan 1;42(1):49-62.
- [11] Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer. *IEEE transactions on electron devices*. 1979 Dec 31;26(12):1880-6.
- [12] Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K. Design of an open-tubular column liquid chromatograph using silicon chip technology. *Sensors and actuators B: Chemical*. 1990 Jan 1;1(1-6):249-55.
- [13] Shoji S, Esashi M, Matsuo T. Prototype miniature blood gas analyser fabricated on a silicon wafer. *Sensors and actuators*. 1988 Jun 1;14(2):101-7.
- [14] Van Lintel HT, van De Pol FC, Bouwstra S. A piezoelectric micropump based on micromachining of silicon. *Sensors and actuators*. 1988 Oct 1;15(2):153-67.
- [15] Krksa R, Molinelli A. Rapid test strips for analysis of mycotoxins in food and feed. *Analytical and bioanalytical chemistry*. 2009 Jan;393(1):67-71.
- [16] Xie H, Ma W, Liu L, Chen W, Peng C, Xu C, Wang L. Development and validation of an immunochemical assay for rapid multi-residues detection of cephems in milk. *Analytica Chimica Acta*. 2009 Feb 16;634(1):129-33.
- [17] Xie H, Ma W, Liu L, Chen W, Peng C, Xu C, Wang L. Development and validation of an immunochemical assay for rapid multi-residues detection of cephems in milk. *Analytica Chimica Acta*. 2009 Feb 16;634(1):129-33.
- [18] Ho JA, Zeng SC, Tseng WH, Lin YJ, Chen CH. Liposome-based immunostrip for the rapid detection of *Salmonella*. *Analytical and bioanalytical chemistry*. 2008 May;391(2):479-85.
- [19] Edwards KA, Baeumner AJ. Liposome-enhanced lateral-flow assays for the sandwich-hybridization detection of RNA. *InBiosensors and Biodection: Methods and Protocols: Electrochemical and Mechanical Detectors, Lateral Flow and Ligands for Biosensors* 2009 Jan 1 (pp. 185-215). Totowa, NJ: Humana Press.
- [20] Gervais L, Delamarche E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. *Lab on a Chip*. 2009;9(23):3330-7.
- [21] Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?. *Lab on a Chip*. 2022;22(4):665-82.
- [22] Bielefeld-Sevigny M. AlphaLISA immunoassay platform—the “no-wash” high-throughput alternative to ELISA. *Assay and drug development technologies*. 2009 Feb 1;7(1):90-2.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)