

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74621

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Advances in Piezoelectric Energy Harvesting for Power Generation

Dr. Pritee R. Rane¹, Piyush D. Wargantiwar², Pratik S. Raut³, Gaurav R. Halade⁴, Divya A. Bhagade⁵, Aishwarya P. Rathod⁶, Samiksha S. Bhatkule⁷

¹Asst. Professor, Department of Electrical Engineering, Amravati, M.S, India ^{2, 3, 4, 5, 6, 7}UG Students, Department of Electrical Engineering, Amravati, M.S, India P. R. Pote Patil College of Engineering & Management, Amravati, M.S, India

Abstract: The escalating global energy demand is driving research into harvesting ambient energy, with piezoelectric materials offering a compelling method to convert mechanical vibrations, particularly from human footsteps, into electrical energy. This review consolidates recent advances in piezoelectric energy harvesting, focusing on material science, structural optimization, and practical application in footstep power generation.

The developments across piezoelectric materials (PZT, PVDF, and nanocomposites), power electronics (rectification, supercapacitors), and complementary technologies like Triboelectric Nanogenerators (TENGs). Challenges like low current output, durability, and cost are discussed. This work highlights the path toward scaling this sustainable, decentralized technology for real-world urban and IoT applications.

Keywords: Piezoelectric materials, PZT, PVDF, nanocomposites, rectification, supercapacitors, Triboelectric Nano-generators (TENGs), durability, cost, IoT.

I. INTRODUCTION

The rising energy demand, coupled with the depletion of fossil fuels and the environmental hazards associated with conventional energy systems, necessitates alternative energy sources. Piezoelectric energy harvesting has emerged as a sustainable and eco-friendly approach.

By exploiting the piezoelectric effect—where certain materials generate electrical charge under mechanical stress—researchers are exploring ways to capture energy from daily human activity. Human footsteps, as a ubiquitous and repetitive source of pressure, present an ideal candidate for such applications.

Recent works have highlighted the potential of piezoelectric tiles and footstep power generation systems in crowded urban spaces, railway stations, airports, and pedestrian pathways.

Piezoelectric generators (PEGs) convert mechanical stress into electrical charge and can directly power low-energy devices or extend battery life of IoT nodes. Historically, PEGs were constrained by two major challenges:

- (1) material trade-offs ceramics (e.g., PZT) give high output but are brittle and often contain lead, while polymers (e.g., PVDF) are flexible and biocompatible but exhibit lower piezoelectric coefficients
- (2) storage and conditioning harvested energy is typically low-magnitude and irregular, requiring efficient rectification and storage solutions to be useful.

Advances in materials engineering (lead-free ceramics, nanocomposites, reinforced PVDF) and compact storage technologies (supercapacitors, solid-state micro batteries) are overcoming these bottlenecks, enabling practical micro energy solutions for distributed sensing and awareness in built environments.

This work consolidates these developments and demonstrates their application in a staircase energy-harvesting system that also logs user entries via RFID/BLE and uploads records to a cloud dashboard for analytics. The goals are: (i) design and build piezoelectric floor-tile prototypes and conditioning electronics; (ii) evaluate how tile design and placement affect energy output; and (iii) implement an edge node that timestamps and associates entries with identity (optional) so that footfall analytics can be correlated with harvested energy.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

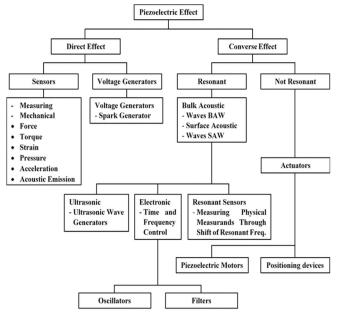


Fig. 1.1: Systemic Classification of Piezoelectric Devices

II. THEMATIC STUDY

A. Fundamentals of Piezoelectric Energy Harvesting

Piezoelectric energy harvesting (PEH) is based on the conversion of vibrational or pressure energy into electricity. The energy flow involves three main stages:

- (1) mechanical-to-mechanical conversion, where vibrations induce stress in the piezoelectric material;
- (2) mechanical-to-electrical conversion through the direct piezoelectric effect
- (3)electrical-to-electrical conversion, which includes rectification, impedance matching, and storage in capacitors or batteries.

Materials used in PEH are broadly categorized into ceramics (e.g., PZT), polymers (e.g., PVDF), composites, and single crystals. Ceramics offer high piezoelectric coefficients but are brittle and environmentally hazardous due to lead content. Polymers, although flexible, have lower piezoelectric efficiency. Composites attempt to merge the benefits of both, offering flexibility and improved energy output.

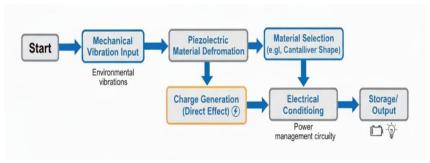


Fig 2.1: Principal Operation of Piezo-electric harvesting

B. Human Footstep Power Generation Systems

Human footsteps can exert forces ranging from 500 N to over 1000 N, making them viable for piezoelectric energy harvesting. Research prototypes have demonstrated practical approach to implementing this concept:

Piezoelectric Tiles: Mahmud et al. (2019) designed tiles consisting of piezoelectric discs sandwiched between acrylic sheets for uniform pressure distribution. A prototype using 12 discs produced up to 13.4 V and ~128 mW of power under varying loads.

Series and Parallel Configurations: Connecting multiple piezoelectric elements in series increases voltage output, while parallel connections enhance current. Simulation and hardware implementation showed that larger arrays could scale the power to practical levels human footsteps or power generation.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

System Integration: Pawar et al. (2020) proposed integrating piezoelectric footstep systems with microcontrollers (Arduino UNO) and IR sensors to count steps and display power generated. Their design emphasized emergency power generation and public utility in highly populated areas.

C. Advances in Materials & Storage

PZT (Lead Zirconate Titanate): High piezoelectric coefficients (high output) but brittle and lead-containing — suitable when protected mechanically and when high output is required.

BaTiO₃ (Barium Titanate): Lead-free ceramic offering improved environmental profile with acceptable piezoelectric and dielectric properties.

PVDF (Polyvinylidene Fluoride): Flexible polymer with lower d₃₃ but useful for conformal, wearable, and tile applications where mechanical compliance is needed.

Nanocomposites: PVDF reinforced with ceramic nanoparticles (BaTiO₃, KNN, BCZT) or conductive nanofillers (graphene, CNTs) has demonstrated improved piezoelectric response and mechanical robustness.

Fabrication methods such as electrospinning, thin-film deposition, and 3D printing allow tailored architectures and enhanced performance.

D. Triboelectric Nanogenerator (TENG)

TENGs convert mechanical energy via triboelectrification and electrostatic induction and are especially effective at low frequencies (1–3 Hz) typical of walking. They use inexpensive polymers (PTFE, PDMS, nylon) and metals, producing high open-circuit voltages but pulsed low currents; they are, however, sensitive to humidity and wear. For footstep harvesting, TENGs are an attractive complementary or alternative approach; hybrid systems (TENG + PENG + electromagnetic) can broaden spectral response and increase total yield.

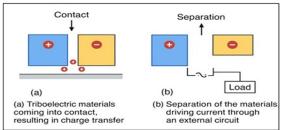


Fig. 2.2: Working of Triboelectric Effect

The contact-separation mode of a Triboelectric Nanogenerator (TENG), is a key mechanism in footstep energy harvesting. In this mode, two materials with different electron affinities come into contact (a), leading to charge transfer and accumulation of positive and negative charges on the respective surfaces (triboelectrification). When the materials are subsequently separated (b) by mechanical motion (like a footstep), the electrostatic potential difference drives electrons through an external circuit to balance the charges, thus generating a pulsed current to power a load.

Table 2.1: Comparison of Triboelectric & Piezoelectric Nanogenerators

Feature	TENGs (Triboelectric Nanogenerators)	PENGs (Piezoelectric Nanogenerators)
Operating Principle	Triboelectric effect + electrostatic induction	Piezoelectric effect (strain-induced polarization)
Best Suited For	Low-frequency motions (walking, running, daily activities)	High-frequency vibrations (machines, acoustic waves)
Performance at Low Frequency	High efficiency	Less effective (weak output at slow motions)
Performance at High Frequency	Moderate	High efficiency
Application Focus	Human-centric energy harvesting, wearable electronics	Industrial vibration harvesting, sensors
Futuristic Potential	Considered highly promising for wearables and personal electronics	Limited for human motion harvesting

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

E. Optimization Strategies

Structural Enhancements: Using acrylic sheets and corrugated boards improves stress distribution and enhances energy conversion. Macro fiber composites provide durability and flexibility for repeated stress conditions.

Circuit Integration: Employing bridge rectifiers converts AC to DC, while DC-DC converters (boost or buck) can optimize voltage and current for storage. Supercapacitors have been suggested for efficient storage of intermittent energy.

III. CHALLENGES & FUTURE SCOPE

Despite promising results, several challenges remain:

- 1) Low Current Output: While voltage levels are significant, current remains low, limiting applications without energy storage enhancements.
- 2) Durability: Piezoelectric materials, especially ceramics, may degrade under repetitive stress. Composite materials and protective housing are essential.
- 3) Cost and Scalability: Large-scale implementation requires cost-effective materials and designs.

Future research should focus on advanced materials (nanostructured composites), hybrid systems combining piezoelectric and electromagnetic harvesting, and smart electronics for energy management. Integration with Internet of Things (IoT) systems could further enhance usability in urban settings.

IV. APPLICATIONS

Footstep power generation systems can be deployed in urban environments with heavy pedestrian traffic. Potential application include:

Emergency Lighting and Safety Systems: Providing localized, off-grid power for emergency exit signs or low-level pathway lighting in areas prone to power outages, such as underground tunnels or stairwells in busy public buildings.

Environmental Monitoring: Powering air quality sensors, noise pollution monitors, or traffic flow counters embedded in pedestrian walkways, contributing to a denser and more continuous data collection network for smart cities.

Interactive Public Displays: Operating small, dynamic advertisement boards, interactive informational kiosks, or art installations in high-traffic areas, making the power source directly proportional to audience engagement.

V. CONCLUSION

Piezoelectric energy harvesting from human footsteps is a promising pathway toward sustainable and decentralized power generation. While current implementations are limited to small-scale applications, optimization of materials, structural designs, and circuit integration could scale this technology to real-world urban environments. The reviewed works demonstrate that piezoelectric footstep systems can contribute significantly to green energy initiatives while fostering innovation in smart infrastructure.

REFERENCES

- [1] D. G. Wakshume and M. Ł. Płaczek, "Optimizing Piezoelectric Energy Harvesting from Mechanical Vibration for Electrical Efficiency: A Comprehensive Review," Electronics, vol. 13, no. 987, 2024.
- [2] S. M. I. Mahmud, M. R. Ruman, and M. Das, "Human Footsteps for Energy Generation by Using Piezoelectric Tiles," in 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019.
- [3] S. Pawar, P. Hole, and P. Gophane, "Footstep Power Generation Using Piezo Electric Sensor," Int. Res. J. Eng. Technol. (IRJET), vol. 7, no. 3, 2020.
- [4] A. Zahid, "Design, Modeling, and Analysis of Piezoelectric Energy Harvesters," Ph.D. dissertation, Aalborg Univ., Aalborg, Denmark, 2021. [Online]. Available: https://vbn.aau.dk/en/publications/design-modeling-and-analysis-of-piezoelectric-energy-harvesters
- [5] Y. Wang, L. Zhang, Y. Song, K. Han, Y. Zhang, Y. Zhu, and L. Kang, "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renew. Sustain. Energy Rev., vol. 189, p. 113835, 2024.
- [6] S. B. Kim et al., "A synergetic effect of piezoelectric energy harvester to enhance thermoelectric power: An effective hybrid energy harvesting method," Energy Convers. Manag., vol. 298, p. 1174, 2023. (Note: Authors over six are abbreviated to "et al." in IEEE style.)
- [7] Y. Cao and H. Huang, "Performance optimization and broadband design of piezoelectric energy harvesters based on isogeometric topology optimization framework," Eur. J. Mech. A/Solids, vol. 97, p. 104800, 2023.
- [8] "Piezo Tiles-Generate Electricity by Walking," Instructables. [Online]. Available: http://www.instructables.com/id/Piezo-Tiles-Generate-Electricity-by-Walking.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)