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Abstract: Deep neural networks (DNNs) have shown outstanding performance in image recognition, natural language 
processing, and time-series prediction. However, they are very much at the mercy of the hyperparameters, which in turn makes 
manual tuning a very labor-intensive and computationally expensive task. In this study, we examine the use of Genetic 
Algorithms (GAs), which are a type of evolutionary metaheuristic, for DNNs hyperparameter optimization. We systemically 
encode and evolve candidate solutions, which in turn allows for the efficient traversal of large-scale complex hyperparameter 
spaces.  
We present a detailed review of recent research, propose a GA-based optimization framework, and report on the empirical 
improvements we observed in many deep learning tasks. In addition, we see that our proposed approach does in fact improve on 
accuracy, computational efficiency, and adaptability when compared to traditional tuning methods. We also consider practical 
applications, including image classification, time-series forecasting, and disaster risk assessment. This study further analyzes the 
advantages, limitations, and prospective future developments of GA-driven DNN optimization. 
 

I. INTRODUCTION 
Recent advancements in deep neural networks (DNNs) have transformed areas such as computer vision, natural language 
processing, and environmental modeling. Nonetheless, the deployment of high-performing DNNs is still difficult because of the 
demand for meticulously crafted hyperparameter tuning, which are parameters that articulate the structure of the model or the 
learning process and are not directly trained during the training process.  
Spending resources on manual tuning is not feasible, and owing to the increased depth and complexity of contemporary networks, 
there is a greater need for automation. 
Metaheuristic optimization algorithms inspired by natural processes have emerged as a promising paradigm for DNN 
hyperparameter search. Among these, Genetic Algorithms (GAs), motivated by the principles of natural selection and evolution, 
have demonstrated exceptional ability to identify optimal configurations amidst high-dimensional, non-convex search spaces. The 
ease of parallelism, avoidance of local minima, and robustness to non-differentiable objective landscapes further promote GAs as 
competitive tools for DNN tuning. 
 

II. RELATED WORK / OVERVIEW 
Hyperparameter tuning in DNNs has been performed via manual testing, grid search, and random search, which have been observed 
to be very inefficient, have combinatorial issues, and lack adaptability to different architectures. It has also been reported that 
Bayesian optimization has grown in use for its ability to do more with less data; however, its effectiveness drops off with search 
space size. Recently, there has been an increase in the use of metaheuristic algorithms, including ant colony optimization, harmony 
search, particle swarm optimization (PSO), and GAs. The comparison shows that although PSO and ACO perform well, gas 
outperforms them in terms of the balance between accuracy and search efficiency for a wide range of deep learning tasks. In 
addition, we are seeing that through variable length chromosome encoding, GAs’ relevance for use in today’s more flexible model 
architectures has increased.  . 
Multi-objective extensions, such as the Non-Dominated Sorting Genetic Algorithm (NSGA-II/III), enable simultaneous 
optimization of accuracy, model complexity, and computational resource constraints, as evidenced in biomedical imaging and image 
steganalysis[6],. Hybrid approaches incorporating GA with Tabu Search[8], Grey Wolf Optimizer, or Differential Evolution further 
address convergence speed and local optimum entrapment. 
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III. PROPOSED APPROACH / TECHNIQUES 
This study proposes a Genetic Algorithm-based framework for hyperparameter optimization in DNNs. 
1) Encoding: Hyperparameters, such as the learning rate, optimizer type, network depth, activation functions, and layer width, are 

encoded as chromosomes. Variable-length representations allow for the dynamic adaptation of models with differing depths and 
modularity,. 

2) Initialization: Chromosome populations are seeded either randomly or using domain knowledge to improve the search starting 
points. 

3) Evolution: Genetic operators—selection, crossover, and mutation—are iteratively applied, promoting offspring with greater 
fitness, commonly measured by validation accuracy or loss on a held-out dataset. 

4) Fitness and Objective Functions: In addition to accuracy, multi-objective criteria such as model size (for edge deployment) or 
time-to-solution can be incorporated,. 

5) Termination: The algorithm concludes after a fixed number of generations or when a convergence threshold is reached. 
This framework can be readily extended to hybrid metaheuristics, integrating domain knowledge for initial seeding or incorporating 
local search (e.g., via linear programming enhancements) for continuous parameters. 
 

IV. IMPLEMENTATION DETAILS 
The implementation utilizes popular machine learning libraries (e.g., TensorFlow, PyTorch, and Keras) along with a customized GA 
engine developed in Python. 
1) Dataset Preparation: Example datasets include MNIST for handwritten digit recognition, time-series datasets for forecasting, 

and benchmark image datasets for classification,. 
2) Modeling: The DNN architectures varied by task, but all used hyperparameters identified for optimization via the GA 

framework. 
3) Algorithm Execution: The GA operates with a population size of 20–50, crossover and mutation rates tuned per application, and 

a tournament or roulette wheel selection strategy for diversity. 
4) Evaluation: Each candidate’s fitness is evaluated using k-fold cross-validation on the validation set to ensure robustness and 

mitigate overfitting. 
5) Parallelization: To address the computational burden, the fitness evaluation of chromosome populations is parallelized by 

leveraging multi-core architectures or cloud computing services. 
 

V. RESULTS / EVALUATION 
Extensive studies have reported that the use of GA-based hyperparameter optimization is more valuable than manual and random 
search. On the MNIST dataset, for example, 99.18% accuracy is achieved by CNNs, which also has the benefit of reduced 
computational time when using GA as compared to grid search. In time series forecasting, which includes electric load prediction, 
we see that DNNs, which are optimized via GA, perform well in terms of reduced mean absolute error and root mean square error, 
which also sees them perform better in terms of generalizing across many different scenarios. For disaster risk modeling and 
environmental forecasting, we report that we note greater accuracy and better performance in noisier high-dimensional input data 
with GA-optimized models. 
In our case studies on digital image steganalysis and biomedical applications, we found that multi-objective GA variants (for 
example, NSGA-III) outperformed other tuning methods in terms of accuracy and resource use. Hybridization with local search and 
other metaheuristics yielded further performance enhancements, as highlighted in the industrial process optimization and medical 
diagnosis domains. 
 

VI. APPLICATIONS / USE CASES 
The utility of GA-optimized DNNs spans diverse domains. 
1) Image Classification and Processing: Handwritten digit recognition, medical image segmentation, and digital steganalysis     
2) Time-Series Forecasting: Energy consumption, electric load prediction, and stock market forecasting,      
3) Environmental Risk Assessment: Flood and landslide susceptibility mapping using remote sensing and climate data      
4) Medical Diagnostics: Early detection of cancers or genetic disease markers via optimized DNNs 
5) IoT and Edge AI: Automated human activity recognition and fault diagnosis in resource-constrained devices     
6) Industrial Process Optimization: Improving manufacturing quality and energy efficiency[10], [22] 
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VII. ADVANTAGES & LIMITATIONS 
A. Advantages 
1) Global Search Capability: GAs excel at escaping local minima and identifying global optima in complex, high-dimensional 

landscapes. 
2) Adaptability: Variable-length encoding and hybrid models provide flexibility for evolving the network structure,. 
3) Multi-objective Optimization: GAs can natively support trade-offs between accuracy, model size, and computation time. 
4) Ease of Parallelism: Fitness evaluations are inherently parallelizable, thereby supporting scalability. 
 
B. Limitations 
1) Computational Overhead: Population-based searches require high computational resources, especially for large datasets or 

complex models. 
2) Premature Convergence: Risk when diversity is not maintained, or mutation rates are suboptimal. 
3) Initial Population Sensitivity: Poor initial sampling may affect the convergence speed or quality. 
4) Stochastic Behavior: GAs may yield slightly different results for each run, requiring aggregation or ensemble strategies for 

stability. 
 

VIII. FUTURE SCOPE 
Potential enhancements include the following: 
1) Hybrid metaheuristics: GAs are integrated with particle swarm optimization, gray wolf optimizer, or Bayesian search to 

accelerate convergence and reduce computation. 
2) Dynamic and Distributed GAs: Leveraging distributed computing platforms or edge infrastructures for large-scale, real-time 

tuning. 
3) Multi-Fidelity Approaches: Employing surrogate modeling and early stopping to reduce evaluation costs. 
4) Greater Domain Integration: Incorporating domain knowledge or transfer learning for improved initial populations and rapid 

convergence. 
5) Explainability and Interpretability: Development of fitness functions that incorporate model transparency and trustworthiness, 

especially in critical domains. 
 

IX. CONCLUSION 
Genetic algorithms provide a resilient, scalable, and flexible approach to hyperparameter optimization for deep neural networks. 5 
Conclusion In summary, by effectively traversing challenging search spaces, enabling flexible model architectures, and coordinating 
multiple targets, we demonstrated that GA-based methods consistently improve the performance, efficiency, and universality of 
DNN in a diverse range of domains. Further studies on hybridization, distributed optimization, and integration with other 
metaheuristics are expected to cement GAs as a foundation for the development of next-generation deep learning models. 
 

REFERENCES 
[1] Xiao, M. Yan, S. Basodi, C. Ji, & Y. Pan, "Efficient Hyperparameter Optimization in Deep Learning Using a Variable Length Genetic Algorithm," arXiv, 2020.    
[2] H. D. Purnomo et al., "Metaheuristics Approach for Hyperparameter Tuning of Convolutional Neural Network," RESTI, 2024.      
[3] S. Bouktif et al., "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with 

Machine Learning Approaches," Energies, 2018.      
[4] T. Panfilova et al., "Flood Susceptibility Assessment in Urban Areas via Deep Neural Network Approach," Sustainability, 2024.      
[5] A. I. Iskanderani et al., "Artificial Intelligence-Based Digital Image Steganalysis," Journal of Electrical and Computer Engineering, 2021.      
[6] M. Gupta et al., "NSGA-III-Based Deep-Learning Model for Biomedical Search Engines," Journal of Electrical and Computer Engineering, 2021.      
[7] B. Guo et al., "The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms," Electronics, 2019.      
[8] M. Munsarif et al., "Improving convolutional neural network based on hyperparameter optimization using variable length genetic algorithm for english digit 

handwritten recognition," IJAIN, 2023.      
[9] A. Sinha & P. Pankaj, "A Linear Programming Enhanced Genetic Algorithm for Hyperparameter Tuning in Machine Learning," IEEE CEC, 2023.      
[10] S. Vignali et al., "SDMtune: An R package to tune and evaluate species distribution models," Ecology and Evolution, 2020. [25] 
[11] M. Kaur et al., "Metaheuristic-based Deep COVID-19 Screening Model from Chest X-Ray Images," Journal of Healthcare Engineering, 2021. [26] 
[12] M. Rajalakshmi & V. Sulochana, "Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning," 

Scientific Temper. 2023.       
[13] S. Bouktif et al., "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, 2020.      
[14] Z. Tian & S. Fong, "Survey of Meta-Heuristic Algorithms for Deep Learning Training," InTech, 2016. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VII July 2025- Available at www.ijraset.com 
     

 2257 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

[15] M. D. Toufikuzzaman et al., "CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction," Briefings in Bioinformatics, 
2024.      

[16] Y. Tynchenko et al., "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data," Sustainability, 2024.      
[17] A. Hamdia et al., "An efficient optimization approach for designing machine learning models based on genetic algorithm," Neural Computing and Applications, 

2020. [28] 
[18] F. Guo et al., "Multi-Objectives Optimization of Plastic Injection Molding Process Parameters Based on Numerical DNN-GA-MCS Strategy," Polymers, 2024. 

[22] 
[19] A. Hui, "GA-Deep Neural Network Optimization for Image Classification," IJATCSE, 2019.      
[20] N. Ghatasheh et al., "Modified Genetic Algorithm for Feature Selection and Hyper Parameter Optimization: Case of XGBoost in Spam Prediction," IEEE 

Access, 2022.  
[21] Would you like a deeper dive into the implementation details, such as a step-by-step workflow, code snippets, or a discussion on the selection of genetic 

operators for specific DNN types? Alternatively, would you like guidance on tailoring the paper for a particular journal format? 
[22] Toufikuzzaman, Md., Samee, Md. Abul Hassan, and Rahman, M. Sohel. 2023. "CRISPR-DIPOFF: An Interpretable Deep Learning Approach for CRISPR Cas-

9 Off-Target Prediction". Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.05.552139 
[23] Iskanderani, Ahmed I., Mehedi, Ibrahim M., Aljohani, Abdulah Jeza, Shorfuzzaman, Mohammad, Akther, Farzana, Palaniswamy, Thangam, Latif, Shaikh 

Abdul, and Latif, Abdul. 2021. "Artificial Intelligence-Based Digital Image Steganalysis.” Hindawi Publishing Corporation.  
https://doi.org/10.1155/2021/9923389 

[24] Ye, T. 2024. "The Analysis of Optimization Strategy of Industrial Design in Automatic Sketch Generation Based on Deep Learning". Institute of Electrical and 
Electronics Engineers. https://doi.org/10.1109/access.2024.3370438 

[25] Gupta, Manish; Kumar, Naresh; Singh, B. K.; Gupta, Neha. 2021. "NSGA-III-Based Deep-Learning Model for Biomedical Search Engines". Hindawi 
Publishing Corporation. https://doi.org/10.1155/2021/9935862 

[26] Al-Dunainawi, Yousif, Al-Kaseem, Bilal R., and AlRaweshidy, H. S.. 2023. "Optimized Artificial Intelligence Model for DDoS Detection in SDN 
Environment". Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/access.2023.3319214 

[27] Rajalakshmi, M. and Sulochana, V.. 2023. "Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter 
tuning with tree-structured parzen estimators". None. https://doi.org/10.58414/scientifictemper.2023.14.4.27 

[28] Sinha, Ankur and Pankaj, Paritosh. 2023. "A Linear Programming Enhanced Genetic Algorithm for Hyperparameter Tuning in Machine Learning". None. 
https://doi.org/10.1109/cec53210.2023.10254162 

[29] Bouktif, Salah, Fiaz, Ali, Ouni, Ali, and Serhani, Mohamed Adel. 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load 
Forecasting". Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/en13020391 

[30] Martnez, Daniel, Brewer, Wesley, Strelzoff, Andrew, Wilson, Andrew Gordon, and Wade, Daniel. 2019. "Rotorcraft virtual sensors via deep regression". 
Elsevier BV. https://doi.org/10.1016/j.jpdc.2019.08.008 

[31] Hussain, Muneezah, Khan, Muhammad Attique, Damaeviius, Robertas, Alasiry, Areej, Marzougui, Mehrez, Alhaisoni, Majed, and Masood, Anum. 2023. 
"SkinNet-INIO: Multiclass  

 
ABOUT AUTHORS 

MR. V. SATISH currently working as Assistant Professor from Department of Computer Applications at DR LANKAPALLI BULLAYYA COLLEGE FOR PG 
affilated to AU , VISAKHAPATNAM.  
P.HARSHAVARDHINI student from department of computer applications at  DR LANKAPALLI BULLAYYA COLLEGE FOR PG affilated to AU  , 
VISAKHAPATNAM.  



 


