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Abstract: Diffusion models (DMs) have revolutionized the field of generative modelling, delivering exceptional results in tasks 

such as image synthesis, inpainting, and super-resolution. Despite their success, the reliance on pixel-space processing in these 

models has imposed substantial computational challenges, requiring hundreds of GPU days for training and significant 

resources for inference. In this work, we introduce Latent Diffusion Models (LDMs), an innovative framework that addresses 

these limitations by operating within a perceptually compressed latent space derived from a pretrained autoencoder. This 

paradigm shift significantly reduces the computational complexity of both training and inference while maintaining the high 

fidelity and diversity of the generated outputs. LDMs leverage a two-stage approach: a pretrained autoencoder for efficient 

latent-space representation and a diffusion model trained directly within this space. By introducing cross-attention layers into 

the architecture, LDMs also support flexible conditioning on various modalities such as text descriptions, semantic maps, or low-

resolution images. This versatility enables the model to perform a range of tasks, including text-to-image generation, class-

conditional image synthesis, and high-resolution super-resolution. Our experiments demonstrate that LDMs achieve competitive 

or state-of-the-art performance across multiple benchmarks, including CelebA-HQ, ImageNet, and MS-COCO, while requiring 

significantly fewer computational resources than pixel-space diffusion models. For instance, LDMs reduce training time by up 

to 2.7× and inference memory requirements by 50%, all while improving sample quality. This work highlights the potential of 

latent-space generative models to democratize access to advanced generative AI technologies, making them feasible for 

researchers and practitioners with limited computational resources. At the same time, we discuss the ethical considerations of 

using such models, including their potential misuse for creating manipulated content. Latent Diffusion Models pave the way for 

efficient, scalable, and high-quality image synthesis, providing a robust foundation for future advancements in generative 

modelling. 

I. INTRODUCTION 

The field of generative modelling has witnessed tremendous progress in recent years, with methods like Generative Adversarial 

Networks (GANs), Variational Autoencoders (VAEs), and autoregressive models producing high-quality images. However, these 

methods face limitations: GANs often suffer from mode collapse, VAEs struggle with sample quality, and autoregressive models are 

computationally prohibitive for high-resolution images. Diffusion models overcome many of these challenges by modelling data 

distributions through iterative denoising processes. Despite their robustness and superior sample diversity, diffusion models 

operating in pixel space demand significant computational resources for both training and inference, often requiring hundreds of 

GPU days. This limits their accessibility and environmental sustainability. 

We propose Latent Diffusion Models (LDMs) as a solution. By transitioning the generative process to a lower-dimensional latent 

space, we achieve a favourable balance between computational efficiency and output quality. Key contributions include: 

1) A two-stage architecture combining autoencoders for latent compression and diffusion models for generative tasks. 

2) Cross-attention mechanisms for multimodal conditioning, enabling diverse applications such as text-to-image synthesis. 

3) Significant reductions in computational costs while maintaining or surpassing state-of-the-art performance in key benchmarks. 

 
Figure 1. Boosting the upper bound on achievable quality with less aggressive down sampling. 
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II. FOUNDATIONS AND PROGRESS IN GENERATIVE MODELLING 

A. Generative Modelling Approaches 

Generative models can be broadly categorized into three classes: 

1) GANs: Known for producing high-quality images but suffer from training instabilities and limited mode coverage. 

2) VAEs: Efficient but often generate blurry samples due to their reliance on maximum-likelihood objectives. 

3) Autoregressive Models: Strong in density estimation but computationally infeasible for large images due to their sequential 

nature. 

 

B. Diffusion Models 

Diffusion models have emerged as a powerful class of generative models due to their ability to learn complex data distributions 

through iterative denoising processes. These models simulate a Markov chain where noise is incrementally added to data in the 

forward process, and the reverse process, learned by the model, reconstructs the data from pure noise. Unlike GANs, which often 

suffer from mode collapse and training instability, diffusion models exhibit robust training dynamics and achieve excellent mode 

coverage. Their effectiveness is particularly evident in tasks like image synthesis, inpainting, and super-resolution, where they 

consistently set new benchmarks for quality. However, operating directly in pixel space comes with significant challenges. 

Processing high-dimensional image data, such as megapixel-level resolutions, results in substantial computational overhead for both 

training and inference. Training powerful diffusion models can require hundreds of GPU days, and their sequential nature further 

complicates efficient sampling, making them resource-intensive and less accessible. While advancements like cascaded and 

hierarchical diffusion models address some of these inefficiencies, they often require additional architectural complexity and 

computational resources. The computational intensity of pixel-space diffusion models not only limits their adoption but also raises 

concerns about their environmental impact. These challenges highlight the need for approaches like Latent Diffusion Models 

(LDMs), which retain the generative strengths of diffusion models while significantly reducing computational demands by operating 

in a compressed latent space. 

 

C. Latent Space Models 

Latent space models represent a crucial evolution in generative modeling, offering a method for efficiently compressing high-

dimensional data while retaining the essential features necessary for generation. These models, such as VQ-VAE and VQGAN, rely 

on encoding input data into a discrete latent space where each image is represented by a set of learned latent variables. The primary 

benefit of working in latent space is the drastic reduction in computational complexity, as the latent representation typically has a 

much lower dimensionality than the raw pixel space. This compression allows models to operate more efficiently, requiring fewer 

parameters and less computational power to train. However, despite these advantages, earlier latent space models often faced trade-

offs in terms of quality, as aggressive compression could lead to the loss of fine-grained details, resulting in blurry or less sharp 

outputs. Additionally, many of these models utilized discrete latent spaces, which restricted the model's ability to capture continuous 

variations in the data, limiting their flexibility. In contrast, continuous latent space models, which combine the benefits of both 

generative compression and fine-grained detail preservation, have the potential to overcome these challenges. Recent advancements 

in latent diffusion, particularly with Latent Diffusion Models (LDMs), take advantage of these continuous latent representations to 

strike a balance between computational efficiency and high-quality generation. By operating in a latent space that still retains rich 

semantic information but reduces the dimensionality of the data, LDMs offer a more scalable solution for high-resolution image 

synthesis while mitigating the quality loss associated with aggressive compression. This approach not only improves efficiency but 

also enhances the fidelity of the generated samples, making latent space models a promising direction for future generative AI 

research. 

 

III. INNOVATIVE FRAMEWORK AND TECHNIQUES 

A. Perceptual Compression via Autoencoders 

We begin with an autoencoder trained to map high-dimensional image data into a compact latent space. The encoder compresses the 

image into a latent representation z, and the decoder reconstructs x from z. 

1) Objective 

……………..(1) 
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2) Advantages 

a) Reduces computational complexity by processing in a lower-dimensional space. 

b) Preserves essential details for downstream generative tasks. 

 

B. Diffusion in Latent Space 

The core innovation of Latent Diffusion Models (LDMs) lies in their ability to perform the generative process within a compressed 

latent space rather than directly in high-dimensional pixel space. Traditional diffusion models operate by adding Gaussian noise to 

the input image over multiple steps, followed by a reverse process where a neural network is trained to denoise and recover the 

image. While this method is highly effective for generating high-quality samples, the computational cost is significant when applied 

to pixel-level data, especially for high-resolution images. 

In contrast, LDMs shift this process to a lower-dimensional latent space by first encoding the input images into a more compact 

representation using a pretrained autoencoder. The encoder compresses the image into a latent vector, which captures the essential 

features of the image while ignoring unnecessary high-frequency details. The diffusion model is then applied to this latent 

representation rather than the raw pixel data, significantly reducing the dimensionality of the problem. This lower-dimensional latent 

space is easier to process, requiring far less computational power for both training and inference. 

During the forward process, noise is added to the latent vector instead of the pixel space, and the diffusion model learns to 

iteratively denoise the latent representation during the reverse process. The denoising process in latent space allows the model to 

capture and generate high-level semantic structures, preserving crucial features while filtering out noise. The decoder of the 

autoencoder is then used to map the generated latent code back to the image space, reconstructing the final image with high visual 

fidelity. 

 

This approach effectively decouples the image synthesis task into two phases: 

1) Latent-space diffusion, where the model operates efficiently with a compressed version of the data. 

2) Decoding from the latent space back into pixel space, which allows for high-quality, high-resolution output. 

The key advantage of this method is that it retains the inductive biases of diffusion models, such as the ability to model complex 

distributions, while dramatically reducing the computational burden. Furthermore, by working in latent space, LDMs avoid the need 

for aggressive compression or excessive down sampling, maintaining fine-grained details and high-resolution features in the 

generated images. This enables LDMs to achieve state-of-the-art performance across various tasks, including image synthesis, 

inpainting, and super-resolution, without the extensive computational cost typically associated with pixel-based diffusion models. 

 

 
Figure 2.  We condition LDMs either via concatenation or by a more general cross-attention mechanism. 
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C. Conditioning Mechanisms 

One of the significant advancements in Latent Diffusion Models (LDMs) is their ability to handle various types of conditioning 

inputs, which allows for more flexible and powerful image generation. Conditioning is the process of guiding the generative model 

to produce outputs based on specific input information, such as text prompts, class labels, or spatial maps. LDMs incorporate cross-

attention mechanisms, which enable them to seamlessly integrate multiple types of conditioning data. The key conditioning 

mechanisms in LDMs are as follows: 

1) Cross-Attention Layers for Multimodal Conditioning 

LDMs utilize cross-attention mechanisms, which are a form of attention mechanism that allows the model to focus on relevant parts 

of different input modalities simultaneously. This approach enables the model to combine information from different sources, such 

as a textual description or a semantic map, alongside the image generation process. The model is able to "attend" to these different 

inputs during each stage of the generation, ensuring that the output is consistent with the desired conditioning. 

a) Text Conditioning: For tasks like text-to-image synthesis, cross-attention enables the model to condition the image generation 

process based on a given textual description. The text is encoded using a transformer-based model (such as BERT or GPT) to 

obtain a rich embedding, which is then used to guide the latent diffusion process, ensuring the generated image matches the 

semantics of the input text. 

b) Image-to-Image Conditioning: In cases like image translation or inpainting, the model can condition the diffusion process on 

other images or semantic maps. For example, in semantic segmentation tasks, the model can generate a realistic image based on 

a low-resolution or incomplete input by focusing on the semantic layout provided by the conditioning. 

 
Fig 3: Cross attention mechanisms 

 

2) Flexible Input Modalities 

Cross-attention is flexible, allowing LDMs to work with a wide variety of conditioning inputs, including: 

a) Textual Descriptions: As in text-to-image generation, where the model learns to generate an image based on an arbitrary textual 

description. For example, a prompt like "A red apple on a wooden table" would guide the model to generate an image of a red 

apple in a specific context. 

b) Bounding Boxes or Object Layouts: The model can also accept spatial information in the form of bounding boxes or other 

layouts. This can be useful for tasks like object localization or scene synthesis, where specific objects need to be placed in 

predefined regions of the image. 

c) Semantic Maps: LDMs can generate images conditioned on semantic maps, which represent different objects or regions in an 

image as labelled segments. This is particularly useful in tasks like semantic image synthesis, where the goal is to generate 

images with specific content and structure, such as landscapes or cityscapes with defined features. 
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Figure 4. Illustrating perceptual and semantic compression: Most bits of a digital image correspond to imperceptible details. 

 

3) Conditional Denoising Process 

During the denoising process in the reverse diffusion phase, the model integrates the conditioning information at each timestep. In 

traditional diffusion models, the process is focused solely on restoring the pixel or latent representation of the image. In LDMs, the 

conditioning information is incorporated at each step to guide the denoising in a way that aligns with the given input, whether it's a 

text prompt or an image structure. This results in highly controlled and guided image generation, ensuring that the final output 

conforms to the desired characteristics. 

 

4) General-Purpose Conditioning Architecture 

The design of the cross-attention mechanism in LDMs allows for scalability across different conditioning types. Whether the task 

involves text, images, or other forms of conditioning data, the same underlying architecture can be adapted to various input 

modalities. This flexibility is a significant advantage, enabling LDMs to be applied to a wide range of tasks beyond just image 

synthesis, such as image editing, style transfer, and interactive design tools. 

 

5) Increased Control and Diversity in Generation 

Conditioning in LDMs enhances the model's ability to generate images that are not only high in quality but also diverse and 

contextually accurate. By integrating cross-attention, the model can condition the output on specific aspects of the input, such as 

object placement, stylistic elements, or contextual details. This allows for a higher degree of control over the image generation 

process, enabling users to fine-tune outputs based on their requirements. 

 

IV. PERFORMANCE EVALUATION AND CASE STUDIES 

A. Efficiency Analysis 

We evaluate LDMs with varying compression levels (e.g., down sampling factors). Results show that LDMs achieve a 2.7x speedup 

in training and reduce memory requirements by up to 50% compared to pixel-space models. 

 

B. Application Benchmarks 

1) Unconditional Image Generation: On datasets like CelebA-HQ and ImageNet, LDMs surpass GANs and autoregressive models 

in FID and precision-recall metrics. 

2) Text-to-Image Synthesis: Using LAION-400M and MS-COCO datasets, LDMs generate diverse and high-quality images from 

user-defined prompts. 
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Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on 

theLAION [78] database. Samples generated with 200 DDIM steps and _ = 1:0. We use unconditional guidance [32] with s = 10:0. 

 

3) Inpainting and Super-Resolution: LDMs excel in completing missing image regions and upscaling low-resolution images. On 

ImageNet 4x super-resolution, LDMs achieve a new state-of-the-art FID of 2.8. 

 
Figure 6. Samples from LDMs trained on CelebAHQ [39], FFHQ [41], LSUN-Churches [102], LSUN-Bedrooms [102] and class 

conditional 

ImageNet [12], each with a resolution of 256 _ 256. Best viewed when zoomed in. For more samples cf . the supplement. 

 

V. KEY ACHIEVEMENTS AND INSIGHTS 

A. Competitive Performance Across Benchmarks 

Latent Diffusion Models (LDMs) achieve state-of-the-art or competitive results across multiple standard benchmarks, including 

CelebA-HQ, ImageNet, and MS-COCO. In terms of FID (Fréchet Inception Distance) scores, LDMs outperform traditional pixel-

based diffusion models, GANs, and other generative models, demonstrating their ability to generate high-quality images with 

minimal computational resources. 

 

B. Significant Reduction in Computational Requirements 

LDMs offer substantial improvements in computational efficiency, reducing training time by up to 2.7x and memory usage by 50% 

compared to pixel-space diffusion models. This reduction in resource demand makes LDMs more accessible, enabling faster 

experimentation and deployment of generative models, even for users with limited computational power. 
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C. High-Resolution Image Synthesis with Detail Preservation 

LDMs excel at high-resolution image synthesis by operating in a compressed latent space, which maintains fine-grained details 

while enabling the generation of images with resolutions of up to 1024×1024 px. This high fidelity is achieved without the need for 

excessive down sampling, ensuring that both global structures and fine textures are captured effectively. 

 
Figure 7. A LDM trained on 2562 resolution can generalize to larger resolution (here: 512_1024) for spatially conditioned tasks such 

as semantic synthesis of landscape images. 

 

D. Superior Text-to-Image Generation 

In text-to-image synthesis tasks, LDMs exhibit exceptional performance in generating coherent and visually accurate images based 

on textual descriptions. For example, prompts such as “A futuristic cityscape at sunset” or “A red apple on a wooden table” are 

translated into detailed, contextually accurate images, showcasing LDMs' ability to integrate multimodal conditioning inputs 

effectively. 

 
Fig 8: Generated images from text inputs 
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E. Enhanced Flexibility in Image Editing and Conditional Generation 

The cross-attention mechanism enables LDMs to handle complex image-to-image tasks such as inpainting, semantic image 

synthesis, and super-resolution. LDMs can seamlessly generate images from partial inputs (e.g., incomplete images or semantic 

maps) and refine them according to specific conditions, offering high flexibility in content creation and image manipulation. 

 
Figure 9. Layout-to-image synthesis with an LDM on COCO [4], Quantitative evaluation in the supplement D.3. 

 

 
 

VI. CHALLENGES AND ETHICAL CONSIDERATIONS 

A. Limitations 

While LDMs improve efficiency, their sequential sampling remains slower than GANs. Additionally, latent-space compression may 

lose fine-grained details critical for some applications. 
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B. Societal Considerations 

The accessibility of generative models raises ethical concerns, including misuse for misinformation and privacy violations. Efforts 

must be made to mitigate these risks, such as implementing watermarking systems or robust training data anonymization. 

 
Figure 10. ImageNet 64!256 super-resolution on ImageNet-Val. LDM-SR has advantages at rendering realistic textures but SR3 can 

synthesize more coherent fine structures. See appendix for additional samples and cropouts. SR3 results from. 

 

VII. CONCLUSION 

The development of Latent Diffusion Models (LDMs) represents a significant advancement in the field of generative modelling, 

addressing the computational inefficiencies and scalability challenges inherent in traditional pixel-space diffusion models. By 

leveraging a compressed latent space derived from a pretrained autoencoder, LDMs achieve a unique balance between 

computational efficiency and high-quality image synthesis. This innovation drastically reduces training time and memory 

requirements without compromising on fidelity, thus making state-of-the-art generative modeling more accessible and sustainable. 

A key strength of LDMs lies in their versatility, enabled by the integration of cross-attention mechanisms that support multimodal 

conditioning. This feature allows LDMs to excel in a diverse range of applications, including: 

1) Text-to-Image Synthesis: Generating high-quality images guided by textual descriptions, with applications in creative design 

and content creation. 

2) Super-Resolution: Enhancing low-resolution images to high fidelity, critical for applications in medical imaging, surveillance, 

and media. 

3) Image Inpainting: Seamlessly filling missing or corrupted regions in images, offering solutions for restoration and editing tasks. 

 

In quantitative and qualitative evaluations, LDMs consistently outperform or match existing state-of-the-art models across 

benchmarks like CelebA-HQ, ImageNet, and MS-COCO. Moreover, the reduction in computational demands—such as a 2.7× faster 

training time and 50% lower inference costs—highlights the potential of LDMs to democratize access to generative AI technologies. 

This makes advanced image synthesis feasible even for users with limited resources, expanding the reach of these tools to smaller 

research teams, startups, and creative industries. 

Despite their strengths, LDMs are not without limitations. While the latent space compression approach reduces computational 

overhead, it can occasionally compromise fine-grained details, especially in tasks requiring pixel-level precision. Additionally, the 

sequential sampling process, though optimized compared to previous models, remains slower than GAN-based approaches. These 

challenges offer directions for future research, such as further optimizing latent-space representations and improving sampling 

speed. 

From a broader perspective, the adoption of LDMs must be accompanied by responsible use. Generative models, including LDMs, 

have the potential for misuse, such as creating deceptive or harmful content. Researchers and developers should focus on 

implementing safeguards like watermarking systems and ethical guidelines to ensure these technologies are used responsibly. 

In conclusion, Latent Diffusion Models represent a transformative step forward in generative modeling, providing a robust 

framework for efficient and high-quality image synthesis. By addressing critical bottlenecks in training and inference, LDMs open 

up new possibilities for research and practical applications. As the field continues to evolve, LDMs offer a solid foundation for 

future advancements, contributing to the broader goal of accessible and ethical generative AI. 

Figures: Placeholder links for images can be replaced with actual diagrams or visualizations derived from the original paper. 
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