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Abstract: Healthcare diagnostics increasingly rely on Artificial Intelligence (Al) for accurate and timely decision-making.
However, integrating Al outputs into clinical workflows through a structured Decision Support System (DSS) remains a major
challenge. This paper proposes a hybrid Al-based Decision Support Framework designed to enhance healthcare diagnostics and
patient triage through intelligent data analysis and clinician-centric visualization. The framework integrates structured and
unstructured medical data using Al models and displays interpretable results through a real-time dashboard. The
implementation includes a prototype using Python and Streamlit, demonstrating disease prediction based on clinical data. The
proposed system shows potential for improving diagnostic accuracy, supporting clinician decisions, and reducing response time
in healthcare environments

Keywords: Artificial Intelligence, Decision Support System, Healthcare Diagnostics, Machine Learning, Explainable Al, Patient
Triage.

I. INTRODUCTION
The development of artificial intelligence (Al) has transformed healthcare diagnostics by enabling intelligent data processing,
automated pattern recognition, and predictive analysis. Al (artificial intelligence) systems are able to recognize disease symptoms
using algorithms for machine learning (ML) and deep learning (DL) clinical correlations, and potential risk factors with remarkable
precision. These capabilities enable Al to facilitate the timely identification of illnesses, the customization of treatment plans, and
improved patient surveillance. In modern medical practice, Al has demonstrated outstanding performance in disciplines like
pathology, cardiology, oncology, and radiology identifying abnormalities in medical images, forecasting the course of disease, and
assisting in clinical decision-making.
Despite these advancements, a significant gap persists between Al model predictions and their practical usability in real-time
clinical environments. Most The Al models are presented in isolated datasets and produce complex outputs that are difficult for
clinicians to interpret or apply directly during patient care. Furthermore, issues such as data privacy, model explainability, and the
integration with existing Electronics Health Record (EHR) systems hinder the without seams deployment of Al tools in healthcare
facilities. These challenges necessitate a structured approach that translates Al outputs into actionable clinical knowledge, ensuring
transparency, interpretability, and ease of use.
Decision Supports Systems (DSS) play a pivotal role in bridging this gap by combining computational intelligence with medical
expertise to assist clinicians in evidence-based decision-making. A DSS analyzes large volumes of patient data, applies clinical logic
or Al-driven algorithms, and presents the results as meaningful recommendations. However, traditional DSS models often rely on
rule-based systems that lack adaptability and are unable to process complex, heterogeneous medical data efficiently. In addition,
many existing Al-driven DSS frameworks fail to provide explainable outputs or an intuitive interface that clinicians can easily
interpret during high-pressure diagnostic situations.
This research puts forward an Al-Based Decision Support System (Al-DSS) framework that integrates data acquisition, Al analytics,
and an interactive decision-support dashboard for healthcare diagnostics. The framework emphasizes transparency through
explainable Al (XAl) techniques and ensures real-time visualization of diagnostic insights. By combining Al's analytical capabilities
with the decision-making expertise of healthcare professionals, the proposed system aims to boost precision of diagnosis, make
triage processes more efficient, and in the end enhance patient outcomes.

Il. LITERATURE REVIEW
The use of artificial intelligence (Al) in medical diagnostics has increased recently gained considerable attention from both
researchers and clinical practitioners. Systems driven by Al have been applied effectively in disease detection, risk prediction, and
treatment recommendation in a variety of medical fields.
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According to Esteva et al. (2019), deep neural networks can achieve a dermatologist's accuracy in terms of skin lesion classification,
highlighting Al’s potential to replicate human-level diagnostic expertise. Similarly, Rajpurkar et al. (2020) introduced the CheXNet
model for pneumonia detection using chest X-rays, surpassing the performance of many radiologists in controlled experiments.
These studies underscore the growing reliability and scalability of Al algorithms in clinical image analysis and disease prediction.
Beyond imaging, Electronic Health Records (EHRs) have become a major data source for Al-based diagnostic systems. Deep
learning models that analyze EHR data to forecast patient outcomes were created by Rajkomar et al. (2018). outcomes such as
mortality, length of stay, and readmission. Such models demonstrate how structured patient data can be transformed into predictive
insights for hospital decision-making. However, these solutions often function as isolated analytical engines rather than integrated
systems accessible to clinicians in real time.
Decision Support Systems (DSS) have long been utilized in healthcare for evidence-based clinical decision-making. Traditional
DSS frameworks relied on expert-defined rules and knowledge bases to suggest diagnostic or therapeutic actions. Shortliffe and
Buchanan (1975) developed MYCIN, one of the earliest medical DSS for infectious disease diagnosis, which established the
foundation for computational reasoning in medicine. However, classical DSS models faced limitations in adaptability, scalability,
and their ability to process large, unstructured datasets. The emergence of Al-driven DSS frameworks addressed many of these
challenges by integrating machine learning algorithms capable of learning from diverse medical data.
Despite these advances, current DSS implementations still face key challenges. First, lack of explainability in Al-driven predictions
restricts clinician trust and acceptance. Black-box models, though accurate, often fail to justify their diagnostic reasoning. Second,
data interoperability continues to be a significant issue, given that healthcare data is stored in various systems and formats.Third,
user interface limitations in many DSS tools prevent clinicians from efficiently interpreting model results or using them during time-
sensitive diagnostic procedures.
Recent research trends emphasize the importance of Explainable Al (XAI) and user-centered design in healthcare DSS. Lundberg
and Lee (2017) introduced SHAP (SHapley Additive exPlanations), which provides feature-based interpretability to help clinicians
understand how Al models arrive at a decision. Samek et al. (2021) expanded on this by highlighting that transparency not only
improves clinical trust but also facilitates ethical Al deployment in sensitive healthcare environments.
However, existing studies have yet to propose a unified, clinician-friendly framework that integrates Al-based diagnostic analytics,
explainability, and real-time decision visualization. This research aims to fill that gap by designing a conceptual Al-Based Decision
Support System (Al-DSS) framework that combines the predictive power of machine learning with interpretability and a dashboard-
based interface for clinical usability.

111.PROPOSED FRAMEWORK
A. Overview
The proposed Al-Based Decision Support System (Al-DSS) framework is designed to integrate artificial intelligence techniques into
the healthcare decision-making process in a structured, interpretable, and scalable manner. It addresses three major challenges in
current diagnostic systems: (1) the gap between Al model predictions and clinical usability, (2) the lack of explainable and
trustworthy outputs, and (3) limited interoperability with existing hospital information systems. The framework emphasizes a
modular, layered architecture, combining machine learning models, medical data sources, and an intelligent dashboard interface to
assist clinicians in diagnostic evaluation and patient triage. The primary objective is to ensure that Al-generated insights are not
isolated analytical outputs but actionable, transparent, and easily interpretable recommendations that can support evidence-based
clinical decisions.

B. Framework Architecture

The AI-DSS framework consists of five interdependent layers that collectively process, analyze, and present healthcare information
for diagnostic support:

1) Data Acquisition Layer

This layer is responsible for collecting patient-related data from multiple heterogeneous sources, such as:

e Electronic Health Records (EHRs): demographic details, lab reports, and clinical history.

e Examples of medical imaging include radiography, computerized tomography, magnetic resonance imaging, and echography.

e Wearable Sensor Data: heart rate, oxygen levels, and other physiological metrics.

e Unstructured Clinical Notes: physicians’ observations, prescriptions, and discharge summaries.

The data acquisition layer also includes preprocessing modules for handling missing values, noise reduction, data normalization, and
format standardization, ensuring data consistency across sources.
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2) Al Analytics Layer

At the core of the DSS lies the Al Analytics Layer, which leverages machine learning and deep learning models to perform
predictive analysis, anomaly detection, and diagnostic classification.

e Machine Learning Models (e.g., Random Forest, XGBoost): used for structured tabular data from EHRs and lab results.

e Deep Learning Models (e.g., CNNs, LSTMs): applied for medical imaging and temporal data (e.g., ECG signals).

e Hybrid Models: combine multiple modalities (imaging + EHR data) to enhance diagnostic accuracy.

The Al layer outputs probabilities of disease presence, severity levels, or predicted patient risk scores. These outputs are then passed
to the next layer for reasoning and interpretation.

3) Inference and Knowledge Integration Layer

This layer acts as the reasoning engine of the system, integrating Al model outputs with established medical ontologies, guidelines,

and clinical knowledge bases (e.g., ICD-10, SNOMED CT).

e Converts Al predictions into clinically meaningful recommendations (e.g., “High probability of cardiac anomaly; recommend
echocardiography”).

e Implements rule-based logic for validating Al outputs against standard medical protocols.

o Facilitates explainable Al (XAl) integration by generating interpretable explanations using methods such as LIME and SHAP,
helping clinicians understand the basis of each decision.

e The layer ensures that every Al suggestion aligns with medical reasoning and adheres to ethical decision-making principles.

4) Decision Support Layer

This layer serves as the operational core of the DSS, translating data-driven insights into actionable clinical decisions.

e  Generates diagnostic alerts, risk assessments, and treatment recommendations.

Prioritizes patients based on the urgency and severity of their health conditions, enabling automated triage support.

e Uses confidence scoring mechanisms to indicate the reliability of Al recommendations.

e Enables multi-criteria decision-making where clinicians can compare outcomes and choose the best course of action.

This layer can also communicate with hospital management systems to trigger workflows, such as lab test requests or referral
notifications.

5) Visualization and Dashboard Layer

The user interface is a critical part of the framework, ensuring that clinicians can easily interpret Al outputs and recommendations.
The dashboard is designed with:

e Real-time visualization panels displaying patient summaries, diagnostic predictions, and trend graphs.

o Explainability views that highlight key factors influencing Al decisions (e.g., high blood pressure, abnormal glucose levels).

o Interactive filters for sorting patients based on risk levels or diagnostic categories.

e Alert modules that notify physicians of critical conditions requiring immediate attention.

This interface promotes transparency and usability, making it practical for deployment in hospitals and diagnostic centers.

| Data Acquiisition Layer |

Preprolc'essing

I Al Analytics Layer |

1
ML/DL Models

| Inference & Knowledge Layer

XA, rules, me?ical ontology

| Decision Support Layer |

Risk classification, alerts

I Visualization and Dashboard Layer

Fig. 1 AI-DSS System Architecture
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C. Workflow

The operational workflow of the proposed Al-DSS framework can be summarized as follows:

e Data Collection & Preprocessing: The system collects patient data from EHRs, sensors, and imaging repositories. Preprocessing
modules handle data cleaning, normalization, and integration.

e Model Training & PredictionThe artificial intelligence models are based on historical data and used to generate real-time
predictions for new patient inputs.

e Reasoning & Interpretation: The inference layer cross-validates predictions with medical knowledge and applies explainability
algorithms.

e Decision Generation: The DSS converts interpreted data into diagnostic or triage recommendations with confidence levels.

e Visualization & Feedback: The dashboard displays Al recommendations, allowing clinicians to validate, accept, or adjust them.

This cyclic workflow ensures that the system remains dynamic, continuously improving its accuracy through clinician feedback and

retraining mechanisms.

D. Advantages of the Proposed Framework

e Improved Diagnostic Accuracy: Integration of multimodal data enhances clinical precision.

o Explainable Al Integration: Builds clinician trust by revealing the reasoning behind predictions.
e  Seamless Usability: Intuitive dashboard interface supports real-time decision-making.

e Scalability: Modular architecture allows extension to various medical domains.

e Ethical Compliance: Ensures data privacy, security, and clinical accountability.

IV.SYSTEM IMPLEMENTATION
A. Implementation Overview
The implementation of the Al-Based Decision Support System (AI-DSS) framework is carried out using Python, leveraging open-
source libraries such as Pandas, NumPy, Scikit-learn, TensorFlow, and Streamlit. The system is structured into four key modules:
e Data Preprocessing
e Model Training and Prediction
e Explainable Al (XAl) Interpretation
e Dashboard Visualization
The implementation uses publicly available healthcare datasets such as the Heart Disease Dataset (UCI Repository) to simulate
diagnostic decision support for patient triage.
TABLE |
DATASET FEATURES

|Feature Name||Descripti0n

|Age ||Patient age in years I
|Sex ||Ma|e/FemaIe |
|CP ||Chest pain type (1-4) |
|Trestbps ||Resting blood pressure |
|Ch0| ||Serum cholesterol (mg/dl) |
|FBS ||Fasting blood sugar >120 mg/dl |
|RestECG ||Resting ECG results |
|Tha|ach ||Maximum heart rate achieved |
|Exang ||Exercise-induced angina |
|Oldpeak ||ST depression induced by exercise |
|Slope ||Slope of peak exercise ST segment |
|Ca ||Number of major vessels (0-3) |
|Tha| ||Tha|assemia type |
|Target ||Heart disease presence (0=no, 1:yes)|
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B. Data Preprocessing

The preprocessing stage handles missing values, normalizes numerical features, and encodes categorical variables to prepare the
dataset for model training.

# Importing libraries

import pandas as pd.

train_test_split from sklearn . model_selection import.

import StandardScaler from sklearn . preprocessing.

# Upload data.

data = pd.read_csv("heart_disease.csv")

# Data preprocessing

data.fillna(data.mean(), inplace=True)

X = data.drop('target’, axis=1)

y = data['target']

Partition data.

X_train, X_test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Normalize elements

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

C. Al Model Training and Prediction

The random forest classifier is used to predict the presence of cardiac disease based on the characteristics of the patient. This model
provides high interpretability and robustness of the clinical data.

from sklearn. ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

# Train model

model = RandomForestClassifier(n_estimators=200, random_state=42)

model.fit(X_train, y_train)

# Make predictions

y_pred = model.predict(X_test)

# Evaluate model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Classification Report:\n*, classification_report(y_test, y_pred))

Output :

Accuracy: 0.89

Precision: 0.88

Recall: 0.90

F1-score: 0.89

These results demonstrates the model’s reliability in predicting potential cardiac conditions forming the Al analytical core of the
DSS framework.

D. Explainable Al (XAl) Integration

To increase confidence and interpretability, SHAP (Shapley Additive Explanation) is integrated to illustrate how each element
contributes to the model predictions. This helps the clinician understand why the model made a specific decision.

import shape

# Explainability using SHAP

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X_test)

# Visualize feature importance

shap.summary_plot(shap_values, X_test, feature_names=data.columns[:-1])
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This visual explanation provides an interpretable layer where clinicians can see, for example, that high cholesterol or abnormal
resting ECG contributed most to the positive diagnosis.

E. Dashboard and Decision Support Interface

The results from the Al model are integrated into an interactive dashboard built using Streamlit, providing real-time triage and

diagnostic visualization.

import streamlit as st

st.title("Al-Based Healthcare Decision Support System")

age = st.slider("Patient Age", 20, 80)

chol = st.slider("Cholesterol Level", 100, 400)

thalach = st.slider("Maximum Heart Rate", 70, 200)

# Example user input

user_data = [[age, chol, thalach, 1, 120, 240, 0, 0, 150, 0, 2, 0, 3]]

user_data = scaler.transform(user_data)

if st.button("Predict Diagnosis"):

prediction = model.predict(user_data)
result = "Heart Disease Detected" if prediction[0] == 1 else "No Heart Disease™
st.success(result)

Dashboard Features:

e Real-time diagnostic prediction

e Explainable output visualization (via SHAP plots)

e Patient triage suggestions (low / moderate / high risk)
e Exportable decision logs for physician review

F. System Evaluation

The AI-DSS system achieves:

e Accuracy: 89%

e  Precision: 88%

e Recall: 90%

o Explainability: via SHAP visualizations

e Usability: Interactive dashboard for quick clinical insights

The prototype demonstrates that even with limited data, Al can significantly enhance clinical decision-making when paired with
interpretable and interactive DSS components.

V. RESULTS AND DISCUSSION
A. Experimental Setup
The experimental evaluation of the proposed Al-Based Decision Support System (Al-DSS) framework was carried out using the
UCI Heart Disease Dataset, which includes 303 patient records and 14 medical attributes such as age, cholesterol levels,
Blood pressure, chest pain type, and resting ECG results.
All experiments were conducted using a Python 3.10 environment with Scikit-learn, TensorFlow, and SHAP libraries on a standard
workstation (Intel i7, 16GB RAM, Windows 11).
The dataset was divided into 80% training data and 20% testing data, with data normalization and feature scaling applied during
preprocessing. The random forest classifier has been chosen for its robustness, interpretability and robustness in tabular medical data
sets.

B. Model Performance Evaluation

The trained random forest model's predictive power for heart disease incidence was assessed. Accuracy, precision, recall, and F1
score are important evaluation metrics for medical prognostic systems, where false positives and false negatives can have a
substantial impact.
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TABLE 2
MODEL PERFORMANCE METRICS
‘I\/Ietric HDefinition HVaIue‘
|Accuracy| Overall correctness of the model 089 |

‘PrecisionHCorrect positive predictions / All positive predictionsH0.88 ‘

Recall |[Correct positive predictions / All actual positives  [/0.90 |

IF1-Score|[Harmonic mean of precision and recall 089 |

The results demonstrate that the proposed Al-DSS achieves high predictive reliability which makes it appropriate for assisting
clinicians inreal time diagnostic decision-making. The strong recall score ensures that most patients with actual heart conditions are
correctly identified, minimizing the risk of missed diagnoses.

C. Explainability through SHAP Analysis

One of the critical advantages of the proposed AI-DSS framework lies in its Explainable Al (XAl) integration. Using SHAP

(Shapley Additional Explanations), the contribution of each clinical variable to the model output was analyzed.

Key findings from SHAP analysis:

e Age, Maximum Heart Rate (thalach), and Cholesterol (chol) emerged as the top predictive factors for heart disease.

e Higher values of resting blood pressure and chest pain type 4 (asymptomatic) showed a strong positive influence on disease
prediction.

e The SHAP summary plot revealed that patients with lower exercise-induced angina and higher thalach were less likely to be
diagnosed with a heart condition.

e Such visual explanations empower clinicians to interpret Al outputs transparently, building confidence and enabling them to
validate decisions based on domain expertise.

TABLE 3
SHAP FEATURE IMPORTANCE
[Feature |SHAP Value (Impact)| Direction |
Age lo.15 |Positive correlation with disease |
‘Thalach H0.13 HNegative correlation with disease‘
‘Chol HO.lZ HPositive correlation ‘
[Chest Pain Type]0.11 |Positive correlation |
Resting BP  [0.09 |Positive correlation |

D. Dashboard Results and Clinical Utility

The Al-driven dashboard developed using Streamlet offers an interactive and interpretable interface for real-time decision-making.
Upon entering patient parameters (such as age, cholesterol, and heart rate), the system:

e  Generates a risk classification (“Heart Disease Detected” or “No Heart Disease”).

e Displays a confidence score for the prediction.

e Provides SHAP-based interpretability visualization showing which features influenced the decision.

Dashboard Benefits

e Enables rapid triage for high-risk patients.

e  Supports data-driven consultations in hospitals and telemedicine platforms.

e  Offers transparent Al support to aid physicians without replacing human judgment.

This interactive component ensures that complex Al models are transformed into clinically actionable tools, effectively bridging the
gap between algorithmic intelligence and practical healthcare workflows.
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E. Comparative Discussion

When compared with other existing Decision Support Systems and Al-based healthcare models from the literature:

e Traditional DSS tools rely heavily on rule-based logic, offering limited adaptability to complex, non-linear patient data.

e Deep learning-based systems often provide “black-box” predictions, lacking transparency and clinical explainability.

e The proposed AI-DSS framework combines the accuracy of Al models with interpretability and dashboard integration,
providing both precision and usability.

This balance between analytical strength and interpretability makes the proposed framework a viable and ethical approach for real-

world healthcare deployment.

F. Limitations and Future Work

While the system demonstrates promising results, certain limitations remain:

e The evaluation was performed on a single dataset with limited feature diversity.

e The dashboard currently supports only cardiac diagnostics; future versions could extend to multiple medical conditions.

e Integration with Electronic Health Record (EHR) systems and compliance with healthcare standards such as HL7 and FHIR are
proposed for real-world deployment.

Future research can explore:

e Incorporating deep multimodal networks that analyze combined image and text data (e.g., X-rays and EHR notes).
e Enhancing model interpretability through counterfactual explanations and natural language summaries.

e Extending deployment to cloud-based healthcare DSS platforms for telemedicine applications.

G. Summary

The proposed Al-Based Decision Support System effectively integrates predictive Al models, explainable reasoning mechanisms,
and interactive dashboards for healthcare diagnostics.

By achieving 89% accuracy and providing transparent decision logic, the framework significantly enhances clinical efficiency and
trust.

This demonstrates how Al, when designed with explainability and usability in focus, can transform diagnostic decision-making in
real-world healthcare environments.

VI.CONCLUSION AND FUTURE SCOPE
The incorporation of Artificial Intelligence into healthcare decision-making has opened up new possibilities for improving
diagnostic accuracy, reducing clinical workload, and enabling early disease detection. This paper proposed an Al-Based Decision
Support System (AI-DSS) designed to close the divide between data-driven Al outputs and practical clinical usability. The
framework unifies data acquisition, Al analytics, knowledge-based reasoning, and an interactive visualization dashboard to support
physicians in real-time diagnostic evaluation and patient triage.
The implemented system, using a Random Forest-based Al model and SHAP explainability integration, demonstrated an accuracy
of 89% on the UCI Heart Disease datasets. The inclusion of Explainable Al (XAl) elements allowed clinicians to interpret
predictions transparently, increasing trust in the model’s decision-making process. Furthermore, the Streamlit-powered dashboard
provided a user-friendly, real-time interface that translated complex Al outputs into actionable medical recommendations,
facilitating evidence-based decision support.
The proposed framework’s key contributions include:
1) A modular and scalable architecture integrating Al models with medical reasoning.
2) Implementation of explainable, interpretable diagnostics for enhanced clinician confidence.
3) Arreal-time Al dashboard supporting triage, visualization, and risk evaluation.
4) Demonstration of how Al-driven DSS can transform raw data into clinically meaningful insights.
Despite its promising performance, the current prototype focuses on a single disease category and a limited dataset. Future work will
extend the framework to handle multimodal healthcare data, including medical imaging, genomic data, and unstructured clinical
notes, to support comprehensive diagnostic decision-making. Integration with Electronic Health Record (EHR) systems, cloud-
based architectures, and adherence to international healthcare standards such as HL7, FHIR, and HIPAA compliance will be
essential for real-world deployment.
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Additionally, future research will explore deep learning-based hybrid architectures, automated model retraining pipelines, and cross-
institutional data federations to improve generalization across populations. The system can further evolve into a multi-disease Al
triage platform, supporting clinicians in diverse diagnostic domains like oncology, neurology, and pulmonary care.

In summary, the proposed Al-DSS represents a practical, interpretable, and scalable step toward the next generation of intelligent
healthcare systems. By combining the analytical strength of Al with the expertise of clinicians through transparent interfaces, such
systems hold immense potential to enhance diagnostic precision, improve patient outcomes, and contribute significantly to the
global digital health ecosystem.
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