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Abstract: This research explores the development of an Al model capable of detecting the refractive index (RI) of a person's eyes
using a smartphone camera. Traditional methods for measuring refractive errors require specialized ophthalmic equipment,
which may not be accessible to all. The proposed method leverages deep learning and computer vision techniques to analyse eye
images and predict the refractive index, providing a cost-effective and widely accessible alternative. Additionally, this paper
discusses the advantages, challenges, and potential future improvements of the proposed approach.
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I. INTRODUCTION
Vision is one of the most critical senses for human interaction with the world. Yet, according to the World Health Organization
(WHO), over 2.2 billion people globally suffer from vision impairment or blindness, and at least 1 billion of these cases are
preventable or remain unaddressed due to lack of timely diagnosis and affordable treatment options [5]. Among these visual
impairments, refractive errors—including myopia (near-sightedness), hyperopia (farsightedness), and astigmatism—are the most
common and easily correctable causes. These errors occur when the eye's optical system is unable to focus light accurately on the
retina, resulting in blurred vision and reduced visual acuity [1], [6].
The impact of uncorrected refractive errors goes beyond vision loss. Studies have shown that poor eyesight can lead to decreased
academic performance in children, reduced work productivity in adults, and a decline in quality of life, particularly for elderly
individuals [2]. In developing nations and rural areas, where access to specialized ophthalmic care is limited, these conditions often
go undiagnosed, leading to lifelong challenges for affected individuals [3], [7].
Traditional vision screening and prescription generation methods rely heavily on physical visits to optical clinics, where specialists
utilize expensive equipment such as autorefractors, phoropters, and retinoscopes to diagnose refractive errors [6], [7]. These manual
methods, although clinically reliable, are time-consuming, costly, and logistically unfeasible for mass screenings or remote
populations [4], [5].
In contrast, the digital health revolution has introduced new possibilities for Al-powered diagnostics that leverage the capabilities of
widely available technologies. With the proliferation of smartphones equipped with high-resolution cameras, there is a growing
opportunity to create accessible and scalable healthcare tools [8], [15]. Concurrently, artificial intelligence (Al)—particularly deep
learning through convolutional neural networks (CNNs)—has shown remarkable performance in medical image analysis, including
retinal disease detection, glaucoma screening, and diabetic retinopathy diagnosis [10], [11].
Motivated by these technological advancements and the global need for democratized vision care, this research proposes a maobile-
based, Al-enabled system for automated refractive error detection and digital spectacles prescription generation. Using just a
smartphone camera and minimal user input, the system can analyze eye images captured in natural lighting and generate a clinically
relevant prescription [9], [14].
The key innovation lies in combining photorefraction techniques, image preprocessing using computer vision algorithms, and a
lightweight, mabile-optimized CNN to assess refractive index values with high precision [12], [13]. Unlike traditional digital vision
test apps that require hardware add-ons or only provide basic screening, the proposed system delivers personalized and prescription-
grade analysis without any additional equipment, making it ideal for rural outreach, school screenings, and home-based diagnostics
[7], [14], [15].
This research aims to bridge the gap between clinical accuracy and everyday accessibility, offering a solution that could
revolutionize teleophthalmology and promote equitable eye care worldwide. By reducing the dependence on physical infrastructure
and expert intervention, the proposed system can play a pivotal role in expanding access to vision health services across
geographically and economically challenged regions [3], [6].
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Figure 1:Eye Anatomy
A. Background and Motivation
1) Growing Need for Home-Based Eye Testing: The increasing global burden of vision impairment highlights the necessity for
remote, Al-driven diagnostic tools. Vision disorders, if undetected, can significantly impact daily activities and productivity [4],
[5].
2) Limitations of Traditional Methods: Optical clinics require physical visits, making vision care inaccessible for many individuals
due to travel constraints and high consultation fees [3], [5].

B. Problem Statement

Current spectacles prescription methods involve manual eye examinations conducted by professionals. However, challenges include:
1) Limited Accessibility: Many individuals lack easy access to optometrists [3].

2) High Cost: Routine eye tests can be expensive for economically disadvantaged populations[4], [7].

3) Manual Process: Traditional testing is time-consuming and requires specialized equipment[6], [7].

4) Subjective Testing: Self-reported vision issues often lead to inaccurate results [1].

This research aims to develop an Al-powered maobile application that offers an accessible and automated solution for vision testing by
leveraging deep learning models and real-time image processing techniques.

C. Challenges in the Existing System

1) Limited Accessibility: Many individuals lack access to optometrists due to geographical and economic constraints [3], [4].
2) High Costs: Traditional eye exams can be expensive, making them inaccessible to low-income individuals [4], [7].

3) Manual Process: Optical examinations are often subjective and dependent on user feedback [6].

4) Lack of Personalized Solutions: Current vision testing methods do not adapt to individual user needs effectively [2].

D. Obijective

1) To automate vision testing using Al algorithms [9].

2) To improve accessibility for users in remote regions [5].

3) To reduce dependence on physical visits to optometrists [3].

4) rovide a cost-effective and user-friendly maobile application [7].

E. Proposed Solution
The proposed system employs smartphone cameras, Al algorithms, and deep learning models to process visual data and determine
refractive errors. It aims to provide a low-cost, accessible, and scalable solution for vision testing [8], [9], [14].
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Il. LITERATURE REVIEW
Prior studies have demonstrated the feasibility of using Al in medical imaging and ophthalmology. Deep learning-based models such
as convolutional neural networks (CNNs) have been successfully applied in diagnosing retinal diseases, glaucoma, and diabetic
retinopathy [6], [10], [11].
A study by Gulshan et al. (2016) demonstrated that deep learning could achieve diagnostic accuracy comparable to ophthalmologists
in detecting diabetic retinopathy [10]. Similarly, Ting et al. (2017) developed an Al model for glaucoma detection using fundus
images. These studies highlight the potential of Al in ophthalmology [11]. However, there has been limited research on utilizing Al
for refractive index prediction. This research extends the application of Al in ophthalmology by focusing on refractive index
prediction through smartphone-based image processing [9], [15].
He et al. (2016) introduced residual learning (ResNet), which drastically improved deep learning performance in image classification
tasks [12]. Their architecture has influenced numerous medical imaging applications [6].
Recent work by Chaurasia et al. (2023) implemented lightweight CNNs on mobile phones for disease classification, showing the
potential of real-time health monitoring [14]. Another study by Zhang et al. (2022) explored smartphone optics in biochemical
refractive index measurement, providing a technical foundation for hardware-assisted image capture [15].

Table 1: Summary of Related Work in Al for Ophthalmology

. . Relevance
Author & | Application | Technique v .
Year Area Used to This
Study
Gulshan et Diabetic rSer;i(:ﬂVt\)lisli'tA\Is
Retinopathy | Deep CNN | . y
al., 2016 . in eye
Detection . .
diagnosis
Related to
. Fundus .
Ting et al., | Glaucoma Imade retinal
2017 Detection g . feature
Analysis .
extraction
Closely
Smartphone .
Zhang et RI P Opticalare related to
al., 2022 . + Al mobile RI
Detection
systems
. Shows
. Moabile . . .-
Chaurasia Heallh Lightweight | feasibility
etal., 2023 L CNN of real-time
Monitoring .
inference

Several digital eye test applications exist, including:
1) Essilor’s Eye-Ruler:Provides an online vision test but lacks Al-driven accuracy and adaptability [7].
2) Zeiss Vision Screening App:Offers basic vision screening but does not generate prescriptions and lacks personalized assessment

features [7].
3) EyeQue Personal Vision Tracker: Uses a hardware attachment, limiting accessibility and increasing costs [7].
While these platforms provide some level of assistance, they lack comprehensive Al integration for prescription accuracy. Our
proposed system bridges this gap using Al-powered assessment techniques that adapt to various user demographics and conditions[8],
[9], [14].

Table 2: Comparison between Existing System

Al Prescription
Integration | Accuracy

System Features

Essilor Basic

. No Moderate
Eye-Ruler | Vision
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Test
Zeiss Basic
Vision Vision No Low
Screening | Screening
Eye Que
Personal Requires .
Vision Ha?dware Yes High
Tracker
Al-
Proposed Powe_zred .
System M_oplle Yes High
Vision
Test

Existing Technologies and Their Limitations

1) Traditional Optical Tests: These rely on expensive equipment and trained professionals, making them inaccessible for many
[4], [3], [6]-

2) Mobile-Based Vision Tests: Many existing applications provide basic vision screening but lack the accuracy required for
precise prescription determination [7].

I1l. PROPOSED SYSTEM ARCHITECTURE

The mobile application follows a multi-layered architecture:

1) User Interface Layer:Interactive Ul for test selection, guidance, and result display [7].

2) Image Processing Module:Uses smartphone cameras to analyse eye focus, alignment, and contrast sensitivity [9], [15].

3) Al-Based Analysis:Deep learning models process vision test results to determine prescription strength with high precision [6],
[8].

4) Cloud Database:Secure storage of user data, allowing historical tracking of vision health [4].

5) Integration with AR/VR Systems: Augments traditional vision tests with interactive, immersive elements [14].

Figure 1 illustrates the end-to-end operational workflow of the proposed Al-based system designed to facilitate remote vision testing

and automated prescription generation. This modular and scalable approach is tailored to provide accessibility, especially in remote

or under-resourced regions [3], [9].

Step-by-Step Workflow Description:

1) User Access:The user initiates the process by interacting with a mobile or web-based application. The interface is intuitive and
designed for all age groups, providing access to both image-based and interactive eye testing modules [7].

2) Data Input Options:

e Photorefraction Image Upload (Optional)- Users can optionally upload a close-up image of their eye taken under specific
lighting conditions using a smartphone. The system supports guidelines to help users capture the right kind of photorefraction
image[9], [15].

e Interactive Eye Test Module- The application provides a built-in vision testing module with commonly used charts like the
Snellen chart or astigmatism dials. It dynamically adjusts the test based on user responses and tracks accuracy [7].

3) Image Processing (Using OpenCV):Once the eye image is captured via the smartphone camera, the raw image often contains
noise, uneven lighting, and irrelevant background features. To ensure high-quality feature extraction and model accuracy, the
image undergoes several preprocessing steps using OpenCV, a powerful computer vision library [2], [9]. These include:

e Grayscale conversion

» Purpose: Simplify the image by reducing the number of channels (from 3 RGB channels to 1 grayscale channel), making
subsequent processing faster and more efficient.

» How it works: Each pixel’s color is converted into a single intensity value using a weighted average of the RGB components.

» Why important: Grayscale images are sufficient for edge and contour detection. Color is not essential in refractive index
analysis from pupil shape.
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e Histogram equalization

» Purpose: Improve contrast in the grayscale image, especially under low-light or overexposed conditions.

» How it works: Redistributes pixel intensity values to span the full available range, enhancing details in dark or bright regions.

» Why important: Makes faint features like crescents or reflections more visible, helping the model distinguish meaningful
patterns [15].

e Region of Interest (ROI) detection around the pupil

» Purpose: Focus the processing and model input on the pupil/iris area, excluding background elements like eyelids or skin.

» How it works:

+«+ Detects the circular region using techniques like Hough Circle Transform or Haar Cascades.

+«+ Crops a fixed or dynamic bounding box around the detected pupil [12].

» Why important: Reduces noise and ensures the deep learning model focuses on critical biometric patterns inside the eye.

e Edge detection to identify crescents (in photorefraction)

» Purpose: Highlight the boundary of crescents formed by light reflection due to refractive error — a key visual indicator in

photorefraction.

» How it works: Applies edge detection techniques (e.g., Canny Edge Detector) to extract the shape and edges of light crescents.

» Why important: The size, shape, and position of these crescents vary with the refractive index. Highlighting them aids the deep
learning model in accurate predictions [9].

These steps are critical for enhancing the image before feeding it to the deep learning model[2], [14].

1) Al-Based Vision Analysis and Prediction: A pre-trained Convolutional Neural Network (CNN) is at the core of the diagnostic
engine. It analyzes the preprocessed eye image or data derived from the user’s responses in the Eye Test Module[6], [10], [13].

a) Photorefraction Image Analysis: The CNN identifies and interprets critical visual patterns such as crescent shapes, light
reflection intensity, and pupil symmetry, which are indicative of refractive errors [9], [10].

b) Eye Test Response Analysis: In scenarios where an image is unavailable or inconclusive, the system utilizes supervised
learning algorithms to analyze structured input (e.g., blur perception, line distortion) collected from user-interactive vision tests
[14].

The Al model then classifies the refractive error into one of three categories:

e Myopia (nearsightedness)

e Hyperopia (farsightedness)

e Emmetropia (normal vision)

It also predicts precise SPH (Spherical), CYL (Cylindrical), and Axis values required for corrective lenses[9], [8].

2) Prescription Generator:Once prediction is complete, the system formats the Al output into a comprehensive digital
prescription, adhering to optical standards [8].

a) Eye-Specific Correction Values: For both left and right eyes, it includes SPH, CYL, and Axis values necessary for spectacle
lens customization.

b) Lens Recommendations: Based on the severity and nature of the error, suggestions such as single-vision, bifocal, or progressive
lenses are offered.

c) Advisory Notes: The system can also generate optional clinical advice (e.g., “Consider regular follow-up if symptoms persist”
or “Consult a specialist for possible astigmatism correction”) [4].

This automated process replicates the outcome of a manual eye exam, saving time and improving accessibility [3].

3) Output Delivery:To ensure user convenience and accessibility, the system supports multiple modes of result sharing:

a) Downloadable PDF: A clear, professionally formatted prescription is made available for direct download, suitable for printing
or presenting at optical stores.

b) Email Dispatch: Users can instantly send the report to themselves or a registered optician for follow-up, optical fitting, or
second opinion [4], [7].

The output is formatted to resemble standard clinical prescriptions used by optometrists. Security and privacy of health data are

maintained using standard encryption protocols [4].

This workflow not only automates the testing process but also decentralizes vision care, empowering users to assess their visual

health from the comfort of their homes [5], [14].
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Figure 2: System Workflow of the Al-Based Eye Testing and Prescription Generation Application

IV. METHODOLOGY
A. Research Design
1) Requirement Analysis: Gathering input from optometrists and users to refine features [3], [7].
2) Design Phase: Defining Ul, Al models, and backend system, ensuring accessibility for users with varying literacy levels [4].
3) Implementation: Integrating vision tests with Al algorithms to enable accurate and adaptive prescription determination [9], [14].
4) Testing & Validation: Ensuring accuracy through comparison with professional eye exams, followed by real-world pilot studies

[7]1.

B. System Framework

1) User Interface Layer: A mobile application guiding users through vision tests [7], [14].
2) Image Processing Module: Uses smartphone cameras for eye analysis [9], [15].

3) Al-Based Analysis: Deep learning models predict prescription strength [6], [10].

4) Cloud Database: Stores user data for historical tracking [4].

5) AR/VR Integration: Enhances vision testing through interactive elements [14].

C. Al Model Selection

We employ a convolutional neural network (CNN) trained on a dataset of retinal images and vision test results [6], [10].

1) Input: Eye images captured by smartphone camera.

2) Processing: Image enhancement, segmentation, and refractive error detection [9], [15].

3) Output: Predicted prescription strength.

Figure 3 depicts the architecture of the deep convolutional neural network used to classify refractive error based on photorefraction
images. The input image is processed through a series of convolutional layers, followed by RelLU activation and max-pooling
operations. Residual blocks are incorporated for deeper feature learning while preserving spatial integrity. A fully connected (dense)
layer follows the final convolutional stage, outputting class probabilities for different refractive error categories. Grad-CAM
heatmaps generated from intermediate layers help highlight the most informative regions used in classification [13].
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Figure 3: Deep CNN Architecture for Refractive Error Classification
D. Data Collection
Figure 4 illustrates six simulated photorefraction eye images, each representing a different refractive error class. The images mimic
real-world visual cues observed in pupillary reflexes, particularly the size and location of the bright crescent. These visual cues—
representing varying diopter values—serve as crucial input features for the convolutional neural network (CNN) model used in
classification. The variation in crescent brightness and placement is directly correlated with the level of refractive error, forming a
visually interpretable pattern for model training [9].

lass: <-5,0Dand =-3,0D Class: >-3,0 D and =

Jdass: >0,50Dand =£+0,5D Class: > +0,5D and

Class: >+0,56Dand =+3,0D

Figure 4: Photorefraction Image Examples Across Refractive Error Classes

The quality and diversity of the dataset used to train any Al model are critical to its accuracy and generalizability. For this research,
the dataset development process involved both collecting existing labelled data and curating it carefully to suit the problem of
refractive error prediction.

1) Data Collection Process:

We began with publicly available datasets from ophthalmic research repositories. The two primary sources were the ODIR (Ocular
Disease Intelligent Recognition) dataset and selected samples from the EyePACS database. These datasets contain high-resolution
images of human eyes, originally intended for disease classification such as diabetic retinopathy or glaucoma. However, a subset of
these images also includes valuable metadata and refractive power values in dioptres [9].
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Figure 6: EyePACS Datasets

To create a task-specific dataset, we filtered the original images to extract only those with clear refractive power annotations. In
cases where refractive error was not directly labelled, we referenced related clinical indicators and cross-validated with published
studies. Additionally, data was collected through voluntary crowd-sourcing, where a small number of participants shared
anonymized eye photographs along with their optometrist-issued prescriptions (e.g., -1.25 D or +2.00 D). This small supplementary
set helped validate model predictions against real-world refractive values [15].

Each image in the final dataset is associated with labels including:

o Left/Right Eye

e  Spherical Equivalent (SE) in Dioptres (primary label)

o Age

e  Gender

e Device used (smartphone or fundus camera)

e Lighting condition (manual tagging)

o The final dataset consisted of 10,000 total images:

e 8,000 for training

e 2,000 for testing and validation [9]

These were divided in a stratified manner based on the range of refractive errors to avoid class imbalance (e.g., over-representation
of normal vision).

2) Preprocessing:

Each image was resized to 224x224 pixels for compatibility with CNN input requirements. The preprocessing pipeline included:

e Eye region extraction using Haar cascades and Dlib’s facial landmark detection

o Normalization (pixel intensity scaling)

e Histogram equalization (to correct lighting imbalance) [2], [9].
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By ensuring quality preprocessing and diverse image representation, we built a dataset that is both balanced and robust for training a
general-purpose Al model for eye power estimation.

3) Data augmentation: rotation, flipping, brightness changes (to simulate different capture conditions)[9], [14].

By ensuring quality preprocessing and diverse image representation, we built a dataset that is both balanced and robust for training a
general-purpose Al model for eye power estimation.
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Figure 7: Ocular Disease Intelligent Recognition Through Deep Learning Architectures

a) Model Training & Testing

e Dataset Split: 80% training, 10% validation, 10% testing.

e Performance Metrics: Accuracy, precision, recall, F1-score, confusion matrix [6].

b) Mathematical Formulation

The Al model estimates refractive error using:

P =a™* (dret/ diest) Where:

e P isthe predicted prescription,

e aisacalibration constant,

e dis the reference distance,

o  dq is the measured distance of the test object [15].

c) Model Architecture

The predictive power of the SmartVision system depends on a carefully selected deep learning model optimized for mobile
performance without sacrificing accuracy. After testing multiple architectures—including VGG16, ResNet50, and DenseNet121—
we selected MobileNetV2 as the base model due to its efficient design and proven performance on edge devices [14], [15].

Why MobileNetV/2?

MobileNetV2 is a lightweight Convolutional Neural Network (CNN) architecture designed specifically for mobile and embedded
vision applications. It uses depthwise separable convolutions, which drastically reduce computational cost and model size while
preserving spatial feature quality. The inclusion of inverted residual blocks with linear bottlenecks allows the network to learn
complex relationships in the image with fewer parameters [14], [15].

Given that the final model would be deployed on a smartphone, MobileNetVV2 was ideal because it:

e Has fewer than 4 million parameters (compared to 138 million in VGG16)

e Runs inference in under 250ms on modern Android phones

e  Offers high accuracy on image-based tasks with minimal energy usage

Model Implementation Steps:

» Transfer Learning:

We initialized MobileNetVV2 with pre-trained weights from ImageNet, allowing the model to benefit from previously learned
general image features (edges, textures, shapes) [13].

» Fine-Tuning:

We replaced the final classification head with a regression output layer (i.e., a Dense layer with a single neuron and linear
activation). This allows the model to output continuous values (dioptres) instead of classifying into categories [14].

% Model Structure:

= Input: 224x224x3 image

= Base: MobileNetV2 (excluding top layers)
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=  Global Average Pooling

= Dense Layer (128 units, ReLU)

= Dropout Layer (rate = 0.3 for regularization)

= Qutput Layer: Dense(1), Linear Activation (for diopter output)

+«+ Training Configuration:

= Loss Function: Mean Squared Error (MSE), ideal for regression
= Optimizer: Adam (learning rate = 0.0001)

= Metrics Tracked: RMSE, MAE, R? score

«+ Training Setup:

= Epochs: 50

= Batch Size: 32

=  Early Stopping: Enabled (monitoring validation RMSE)

= Checkpoints: Best model weights saved based on validation loss

Mobile Integration: After training, the model was converted to TensorFlow Lite (.tflite) format. This made it compatible with
Android Studio and allowed for direct integration into the smartphone app, enabling offline predictions using the device’s camera
[15].

The final deployed model achieved an RMSE of 0.32 diopters, which is within clinically acceptable error margins for preliminary
vision screening. Thanks to MobileNetV2’s efficiency, the system delivers rapid predictions while consuming minimal battery and
memory [8].

V.EXPERIMENTAL EVALUATION
A. Testing Environment
Testing was conducted on a controlled server environment, simulating typical user interactions with the system [8].

B. Performance Metrics
To assess the platform’s effectiveness, testing focused on core areas: matching accuracy, response time,user experience, and false
positive and negative rates.Initial results showed:
1) Matching Accuracy: Comparison with professional prescriptions showed an 88%+ accuracy rate [3], [9].
2) Response Time: Test completion within 3-5 minutes, with real-time Al analysis [14].
3) User Experience: 90% of participants found the system user-friendly and reliable [7].
4) False Positive/Negative Rates: Error margins below 5% compared to traditional eye exams [9].
Table 3: Performance Metrix

Metric Score
Matching Accuracy 88%
F1 Score 91.8%
False Positives 3.2%
False Negatives 4.1%

These results confirmed the platform’s reliability in matching, security, and ease of use, with adjustments made to optimize user
satisfaction and efficiency.

Confusion Matrix

While the model predicts a continuous value (regression task), we can evaluate it categorically by segmenting refractive index (RI)
ranges into labeled classes:

e Class A: Normal Vision (Rl = 0)

e Class B: Mild Myopia/Hyperopia (RI between +0.25 to £2.00)

e Class C: Moderate to Severe Refractive Error (Rl beyond +2.00)

We then discretize the model's predictions and compare them to the labelled classes for a confusion matrix[6], [8].
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python

sklearn.metrics confusion_matrix, ConfusionMatrixDisplay

np

sop_plot(cmp=-Blucs")
Interpretation:

e High accuracy for Class A and B.

e Minor misclassification between Class B and C, which can be resolved with a larger training dataset[9], [15].

ROC Curve Analysis

To analyze model performance in a classification-like scenario, we can consider multiple binary ROC analyses (e.g., detecting if the
person has any refractive error or not).

plt.plot(fpr, tpr, label=
plt.plot([®, 11, [, 1]. linestyle= )
plt.xlabel( )
plt.ylabel( )
plt.title(

plt.legend(loc—

plt.show()

Outcome:
e AUC of 0.91 indicates excellent sensitivity and specificity in distinguishing refractive error cases from normal[10], [11], [14].
User Testing & Feedback
We conducted user trials to evaluate the system's usability and real-world reliability:
Participants:
e 10 volunteers aged 1840
e Devices used: Android phones (budget and flagship models)[7], [14].
Process:
e  Users captured eye images using the mobile app in both indoor and outdoor settings.
o Compared app predictions with actual eye exam results from an optometrist.
Table 4: Feedback Table

Aspect Average Rating (out of 5)
Ease of Use 4.7
Prediction Accuracy 4.5
Interface Clarity 4.8
Image Capture Guidance 4.3
Speed of Result 4.6

Observations:

e  Users appreciated real-time feedback and simplicity.

e Accuracy dipped slightly in low-light conditions, suggesting need for flash guidance.
o Positive sentiment about potential in rural healthcare[9], [15].

VI. DISCUSSION
This section evaluates the practical significance and potential of the system:
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e Performance: The CNN model performs well in controlled settings but shows reduced accuracy with poor image lighting or
excessive motion blur [9].

e Trade-offs: A balance between model complexity and mobile efficiency was necessary. A smaller model size slightly reduced
precision but improved speed [14].

e Comparison: Unlike traditional autorefractors, this Al-based system is portable and cheaper but requires calibration [7], [8].

e Limitations: Dataset bias, dependence on smartphone camera quality, and lack of infrared-based validation can impact results
[15].

Future Work:

» Include multimodal inputs (video, infrared imaging) [6], [8].

» Explore AR integration for user feedback [14].

» Conduct clinical trials for standardization [4].

VII.CONCLUSION
This paper introduces an innovative mobile application for spectacles prescription determination using Al and computer vision. The
system enhances accessibility, reduces costs, and enables early detection of vision issues. Future work will focus on refining Al
models, addressing challenges in edge cases, and expanding global usability by incorporating multi-language support and regulatory
compliance [8].The proposed Al-based mobile application enables users to conduct remote eye tests and obtain prescriptions
accurately. The system integrates computer vision, deep learning, and real-time image processing to enhance accessibility and cost-
effectiveness in vision care [6], [9], [14].
Future improvements include:
e Enhancing model precision through additional training data [9].
e  Optimizing AR/VR integration for immersive vision testing [14].
e Expanding multi-language support for global usability [8], [4].
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