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Abstract: Weather nowcasting, defined as forecasting weather phenomena on time scales from minutes to several hours, is
critical for mitigating the impacts of high-impact events such as flash floods, severe convective storms, and extreme
precipitation. Traditional nowcasting approaches based on radar extrapolation and convection-permitting numerical weather
prediction (NWP) exhibit fundamental limitations in representing rapid storm evolution, convective initiation, and localized
extremes at short lead times. Recent advances in artificial intelligence (Al) and deep learning have enabled a new generation of
nowcasting systems that learn complex spatiotemporal relationships directly from high-resolution radar, satellite, lightning, and
NWP data. This paper provides a comprehensive review of Al-based precipitation nowcasting, covering data sources, model
architectures, and evaluation methodologies. We discuss deterministic and probabilistic approaches, including convolutional
recurrent networks, encoder—decoder convolutional neural networks, transformers, generative adversarial networks, diffusion
models, and emerging physics-informed and hybrid AI-NWP systems. Opportunities such as improved short-lead forecast skill,
multi-sensor fusion, probabilistic decision support, and enhanced forecast equity are examined alongside key challenges related
to data quality, class imbalance, generalization, interpretability, and operational deployment. Finally, we highlight current
research frontiers and methodological trends, outlining open challenges and promising directions for future Al-driven
nowcasting systems at the PhD level and beyond.

Keywords: Weather nowcasting; precipitation forecasting; deep learning; radar and satellite data; probabilistic forecasting;
physics-informed machine learning; diffusion models; numerical weather prediction.

I. INTRODUCTION
Weather nowcasting —forecasting on time -scales from a few minutes up to roughly six hours —is critical for protecting life,
infrastructure, and economic activity. Many of the most dangerous hazards, such as flash floods, severe convective storms, and
microbursts, evolve on these short time -scales. Over the last half-century, a large fraction of weather-related disasters and fatalities
has been linked to extreme precipitation events [1][2]. Improving short-lead-time forecasts therefore has high societal value for
emergency management, aviation, road safety, agriculture, renewable energy, and urban drainage systems. However, nowcasting is
particularly challenging. Hazardous convective storms can initiate, intensify, split and decay on time -scales of tens of minutes.
Even modern convection-permitting numerical weather prediction (NWP) models struggle to represent the exact timing, location
and intensity of localized heavy rainfall [3]. Data assimilation cycles are typically 1 h or longer, which means that valuable
high-frequency observations (e.g. radar volumes every 5 min) are not fully exploited in real time [13]. For these reasons, nowcasting
has been described as one of the most difficult problems in hydrometeorology [4]. Recent advances in artificial intelligence (Al) and
deep learning offer a promising new path. Deep neural networks can learn complex, non-linear relationships directly from large
archives of radar, satellite and NWP data, potentially overcoming some limitations of traditional extrapolation and NWP approaches
[5][6]. Pioneering systems such as DeepMind’s deep generative model of radar rainfall (DGMR) have already demonstrated that
Al-based nowcasts can be judged more accurate and useful than existing operational products in blind evaluations by expert
meteorologists [3][7]. At the same time, these models are new, sometimes opaque, and not yet universally trusted in operations. This
report provides a scholarly review of Al-based nowcasting, focusing on opportunities, challenges, and directions for research at the
PhD level and beyond.
1l. BACKGROUND AND DEFINITIONS

The World Meteorological Organization (WMO) typically defines nowcasting as providing detailed description of current weather,
plus forecasts up to about 0 —6 h, emphasizing local detail and rapid update cycles [8]. Short-range forecasts (roughly 6 —24 h) and
medium-range forecasts (several days to two weeks) focus increasingly on larger-scale atmospheric dynamics and are more
naturally produced by NWP on coarser grids.
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In practice, operational nowcasts place particular emphasis on phenomena that evolve quickly and have large local impacts:
convective cells, squall lines, mesoscale convective systems, urban thunderstorms, hail storms, and localized heavy rainfall.
Short-range NWP remains indispensable beyond ~3 —6 h, but in the “nowcast window” Al models can exploit the latest
high-resolution observations to add value where NWP is weakest.

A. Traditional Nowcasting Methods

Table 1 Comparison of traditional nowcasting vs Al-based nowcasting (typical characteristics and performance)

Aspect Traditional nowcasting (radar Al-based nowcasting (deep
extrapolation / NWP) learning models)
Mechanism Extrapolates recent radar echoes  Learns a spatiotemporal mapping
using an estimated motion field  from recent radar, satellite and/or
(optical flow / cross-correlation) ~ NWP fields to future
or integrates NWP equations for  precipitation using neural
1-6 h on fixed grids.[10][21][22] networks (RNNs, CNNs,
transformers, diffusion
models).[3][4][6][12][13][14][18]
Strengths Very fast and cheap; radar Captures non-linear storm
extrapolation can update every growth/decay and environmental
5-10 min; NWP provides context; can blend multiple
physically consistent multi- sensors; once trained, inference is
variable fields and synoptic- very fast and scales well over
scale guidance.[10][21][22] large
domains.[1][2][3][6][13][16][18]
Limitations Assumes storms persist and Requires large high-quality

simply move; cannot represent
new convective initiation or
rapid dissipation; skill decays
sharply beyond ~1-2 h,
especially for
convection.[10][21][22]

datasets and heavy training
compute; can blur fine-scale
extremes; may generate
unphysical fields if not
constrained; generalization and
interpretability are active research
challenges.[4][6][71[11][27]

Typical skillful lead time

Good skill for ~0-30 (sometimes
up to ~60) min at convective
scales; NWP becomes more
useful beyond ~2-3 h for larger-
scale systems.[10][21][22]

State-of-the-art radar nowcasting
shows clear added value out to
~2-3 h for convective rainfall;
probabilistic large-context
models extend useful
precipitation skill to ~8-12 h for
moderate events.[1][2][3][16][18]

Representative systems

Radar extrapolation systems
such as STEPS, MAPLE and
open-source PySTEPS;
convection-permitting rapid-
update NWP systems (e.g.
HRRR, UKV).[10][21][22]

DGMR GAN nowcasting system
[3]; MetNet and MetNet-2 large-
context CNNs [13][18];
PredRNN family of
spatiotemporal RNNs [14];
RainNet CNN baseline [25];
Rainformer hybrid transformer—
CNN [28]; diffusion-based
PreDiff models [27].
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Before the Al era, operational nowcasting relied primarily on extrapolation of recent observations. The simplest baseline is
persistence, assuming conditions remain unchanged over the forecast period. More sophisticated systems perform Lagrangian
advection of radar reflectivity, estimating a motion field (often via optical flow or cross-correlation between successive radar images)
and then translating echoes forward in time [9][10]. Frameworks

such as STEPS and the open-source PySTEPS library add stochastic perturbations and simple growth/decay models, which partially
respect conservation and yield probabilistic nowcasts [10][11].

These advection methods are surprisingly skillful at very short leads (~0 —1 h), because they preserve observed storm structures and
simply advect them. However, they cannot predict initiation of new convection, rapid upscale growth, splitting or sudden dissipation
beyond what can be inferred from recent motion [12]. Skill typically drops sharply after ~1 -2 h, especially for convective
precipitation.

Another strand of “traditional” nowcasting is to use high-resolution NWP in rapid-update mode. For example, the U.S. HRRR
model runs hourly at ~3 km grid spacing out to ~18 h.

Such models provide physically consistent multi-variable fields and can, in principle, simulate storm growth and environmental
interactions. Yet they remain computationally expensive, have spin-up issues, and often misrepresent small-scale convective
structures at very short lead times [3][13]. In practice, many centers blend radar extrapolation for the first 0-2 h with NWP beyond
that.

B. Data sources for nowcasting

Effective nowcasting requires dense, frequent observations:

1) Weather radar is the workhorse for precipitation nowcasting, providing volumetric reflectivity scans every 2 —-10 min at
horizontal resolutions of order 1 km [14]. Radar captures the evolving structure of rain and snow fields and is well suited as
both input and verification for Al systems. However, radar coverage is uneven globally, and radars see precipitation but not
pre-convective cloud development.

2) Geostationary satellites provide near-global coverage with scan intervals of 5 —15 min. Infrared (IR) and visible channels give
information on cloud-top temperature, texture and growth, which are valuable precursors of convective initiation [15]. Al
models can learn relationships between satellite features and surface rainfall, particularly when trained in regions with both
radar and satellite.

3) Surface rain gauges, automatic weather stations, lightning detection networks and crowdsourced observations provide
additional constraints on precipitation intensity and severe weather. Lightning in particular is a strong indicator of deep
convection and has been used in multi-task deep learning models for concurrent rainfall and lightning nowcasting [17].

Environmental fields from global reanalyses or NWP (e.g. instability indices, vertical wind shear, moisture flux convergence)

provide large-scale context that helps Al models distinguish environments favorable for sustained convection from those where

showers quickly decay [16][18].

Table 1 Example datasets used for Al-based precipitation nowcasting

Dataset (region) Data source(s) Resolution (space  Time span Notes and typical use
/ time) (approx.)

HKO-7 (Hong C-band weather ~1 km grid, 5-min ~ 2009-2015 (~7 Classic benchmark for deep

Kong) radar reflectivity frames years) learning nowcasting; used in Shi
et al.’s benchmark and TrajGRU
work.[23]

Shanghai radar S-band radar ~0.5 km, ~6-min 2014-2015 Used in the original ConvLSTM

(China) reflectivity (single  frames (subset) paper for 10-frame radar

site) prediction experiments.[12][23]

lowa Rain / NEXRAD ~1 km, 5-min 2016-2019 (multi- Used by Lebedev et al. for

CONUS subset national radar frames year) satellite-aided nowcasting and as a

(USA) mosaic benchmark for radar extrapolation
vs Al.[24]
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MRMS (USA, Multi-radar / 1 km grid, 2-5- 2017—present High-resolution national

national) multi-sensor min products composite widely used in
(MRMS) mosaic stochastic nowcasting frameworks

such as PySTEPS.[10]

SEVIR (USA) Co-located radar, 1 km, 5-min 2017-2019 Public benchmark for multi-modal
satellite and (radar/satellite) severe-weather prediction and
lightning nowcasting; curated events for

deep learning.[26]

OPERA (Europe)  Pan-European ~2 km grid, 15- ~2011-2019 Used in European nowcasting
radar composite min (operational) research and

EUMETNET/OPERA products;
often a source for regional

composites.
RainNet National radar 1 km grid, 5-min 2015-2018 Basis of the RainNet CNN
(Germany) mosaic (DWD frames baseline for radar-based
network) nowcasting; open dataset for
method comparison.[25]
MeteoNet Radar + NWP- 1 km, 5-minradar 2016-2018 Dataset released for the MeteoNet
(France) derived fields (challenge period) challenge by Météo-France; used

to test radar+NWP fusion.

Multi-sensor fusion is non-trivial because different datasets have distinct spatial/temporal resolutions, coverage, and noise
characteristics. Nevertheless, combining radar’s high-resolution rainfall view with satellites’ broad cloud view and NWP
environment has emerged as a key strategy for robust Al nowcasting [15][16][18].

I111. Al AND DEEP LEARNING METHODS FOR NOWCASTING
A. Deterministic vs. probabilistic models
Early deep learning nowcasting systems typically framed the problem as supervised video prediction: given a sequence of past radar
images, predict future images by minimizing a pixel-wise loss such as mean squared error (MSE). This yields a single “best-guess”
deterministic forecast. A well-known drawback is that MSE encourages “averaging” over many plausible futures, leading to overly
smooth, blurry forecasts, especially at longer lead times [5].
To address this, the community has increasingly shifted to probabilistic models that represent uncertainty. Instead of one
deterministic forecast, a generative model produces an ensemble of possible future radar sequences consistent with the recent past.
DeepMind’s DGMR is a prominent example: a conditional generative adversarial network (GAN) that outputs an ensemble of
high-resolution radar scenarios up to 90 min ahead [3]. The adversarial loss encourages realistic, sharp structures that better match
observed convective cells [3][7]. More recently, diffusion models have emerged as a competitive alternative. Leinonen et al. (2023)
applied a latent diffusion model (LDM) to precipitation nowcasting, showing improved sharpness and more reliable uncertainty
compared to both GAN-based DGMR and traditional extrapolation [6][19]. Diffusion models iteratively “denoise” random noise
into a forecast conditioned on past observations, naturally producing ensembles whose spread can be calibrated to match forecast
uncertainty [20].
Probabilistic nowcasts can be evaluated using metrics such as the continuous ranked probability score (CRPS) [21] and reliability
diagrams, and they have clear advantages for decision-making because users can base actions on forecast confidence rather than a
single deterministic scenario [22].

B. Convolutional Recurrent Networks (ConvLSTMs, PredRNN)

One of the earliest deep learning approaches to nowcasting was the Convolutional LSTM (ConvLSTM) of Shi et al. (2015) [12].
ConvLSTM extends standard LSTMs by replacing fully connected operations with convolutions, allowing the network to model
spatio-temporal evolution of radar images. In an encoder —forecaster configuration, ConvLSTM learns both motion and intensity
changes and was shown to outperform optical-flow-based extrapolation for short-term precipitation prediction in Hong Kong [12].
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Subsequent work introduced variants such as Trajectory GRU (TrajGRU), which learns dynamic connection structures that better
follow advecting rain cells, and PredRNN, which adds additional memory cells to better capture long-term dependencies [14].
PredRNN and its successors (e.g. PredRNN-v2, MIM) have achieved strong performance on benchmark radar datasets and,
importantly, have seen early operational adoption. For example, the China Meteorological Administration has deployed a
PredRNN-type system for short-term precipitation guidance [14].

ConvLSTM-family models are relatively lightweight and well suited to GPU inference in real time. However, when trained with
simple pixel-wise losses they still tend to blur small-scale, intense features at longer lead times. Hybrid training strategies (e.g.
combining MSE with structural or threshold-based losses) and integration with generative objectives partially mitigate this, but
many state-of-the-art systems now combine recurrent backbones with GAN or diffusion modules [1][3][6].

C. Encoder —decoder CNNs and Vision Transformers

Fully convolutional encoder —decoder networks, often in U-Net form, provide another widely used architecture for nowcasting.
These models treat a stack of recent radar (and sometimes satellite) images as input channels and predict multiple future frames in a
single feed-forward pass. Skip connections help preserve fine spatial detail, and 3-D convolutions over space — time can capture
motion implicitly. With sufficient data, U-Net-type models have been shown to rival or surpass ConvLSTM in some settings [4].
Attention-based architectures, such as Vision Transformers (ViTs) and spatio-temporal transformers, have recently entered the field.
Google’s MetNet[13] and MetNet-2[18] are examples that combine convolutional backbones with attention mechanisms over large
spatial contexts to produce probabilistic precipitation forecasts up to 8 —12 h ahead.

Transformer-style self-attention allows the model to link distant upstream features with local rainfall, a key advantage for
longer-lead nowcasts where remote precursors become relevant.

The main trade-off is computational cost: pure transformers scale poorly with resolution and domain size. Modern systems therefore
use hybrids (e.g. CNN encoders plus local —global attention blocks) and hierarchical, multi-scale tokenization to keep inference fast
enough for operational use [4][18].

D. GANs and diffusion models

Generative adversarial networks (GANSs) and diffusion models explicitly target the realism and uncertainty representation of
nowcasts. DGMR uses a U-Net generator and a discriminator that evaluates entire radar sequences, producing sharp, high-resolution
ensembles that human forecasters often prefer over extrapolation and NWP in the 0 -2 h range [3][7]. However, first-generation
GAN systems tended to under-predict very rare extremes and did not guarantee calibrated probabilities [3][18].

Diffusion models, including LDM-type architectures, address some of these issues. Their iterative denoising structure produces
ensembles that can be tuned for reliability and supports conditioning on additional inputs (e.g. NWP fields, satellite features) via
“guided diffusion” [6][19][20]. For instance, Physical-Driven Diffusion Networks (PDDN) condition the diffusion process on fields
from a limited-area NWP model (WRF), leading to improved 6-h precipitation nowcasts that outperform both pure ML and pure
NWP baselines in several case studies [8].

E. Graph neural networks and geometric deep learning

Most nowcasting architectures operate on regular latitude —longitude or Cartesian grids. Graph neural networks (GNNs) provide a
way to represent precipitation fields and observation networks on irregular meshes or learned adjacency graphs. Zhao et al. (2023)
proposed a geometric deep learning framework in which each grid cell is treated as a node, and the model learns an adjacency
matrix that captures dynamic, flow-dependent relationships rather than fixed local neighborhoods [7]. Temporal graph convolutions
then propagate information along these learned edges, improving representation of complex advection and deformation patterns.
GNNs also offer a natural way to fuse heterogeneous data sources such as radar pixels, rain gauges, and lightning sensors into a
single graph. While still an emerging area, geometric approaches align well with recent global forecasting models like GraphCast
[19], and similar ideas are likely to be applied at nowcasting scales.

F. Physics-informed and Hybrid Models

A major research trend is to embed physical knowledge into Al architectures, creating hybrid physics-Al systems. Pure data-driven
models can produce unphysical outputs (e.g. non-conservative rain fields, unrealistic storm growth), which raises concerns for
high-impact applications. Physics-informed designs aim to incorporate constraints such as mass conservation, approximate
continuity equations, or known advection operators directly into the network or loss function.
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NowcastNet, a physics-conditioned generative model, is a leading example [1]. It embeds differentiable operators inspired by the
precipitation continuity equation into a GAN-style framework, encouraging realistic advection and growth of storms while still
allowing flexible learning of non-linear processes. Evaluations over the U.S. and China show that NowcastNet outperforms both
DGMR and high-resolution NWP for extreme precipitation thresholds, with much higher critical success index (CSI) for very heavy

rain [1][2].

Hybrid diffusion models such as PDDN go a step further by directly conditioning on NWP fields [8]. In these systems, Al and NWP
complement each other: NWP provides dynamically consistent large-scale context, while Al learns fine-scale structures and corrects
systematic NWP errors. This hybridization improves robustness, extends useful lead times to 3 -6 h, and can enhance
interpretability because some components have explicit physical meaning.

Table 2 Representative deep learning models for radar nowcasting (selected examples, approaches, and reported highlights)

Model (year) Type / approach Key idea(s) Example dataset References
& performance
(approximate)
ConvLSTM ConvLSTM Adds convolutions Demonstrated [12]
(2015) encoder—decoder inside LSTM improved
RNN gates so the MSE/CSI vs
hidden state is a optical-flow
feature map, well-  extrapolation on
suited to radar Shanghai radar
image sequences.  10-frame
nowtcasting tasks.
TrajGRU (2017) Trajectory-aware  Learns location- On HKO-7 radar,  [23]
GRU (recurrent) variant recurrent reduces MSE and
connections that improves CSI
move with flow, relative to vanilla
enabling better ConvLSTM at 1-h
representation of lead times.[23]
advection.
PredRNN Spatiotemporal Uses dual Strong results on [14]
(2017/2022) LSTM (RNN) memories and a generic video (e.g.
“gradient Moving-MNIST)
highway” to and improved
mitigate blurring structural
over long similarity for radar
sequences in video  nowcasts.
/ radar prediction.
RainNet (2020) U-Net-style CNN  Fully On German 5-min  [25]
convolutional radar, outperforms
encoder—decoder persistence at 30—
taking a short 90 min; CSI = 0.5
radar history and for light rain at 1-
predicting future h lead.[25]
frames in one
pass.
MetNet (2020) Large-context Aggregates avery  Over CONUS, [13]
CNN with large spatial provides skillful
attention context and 8-h precipitation
(probabilistic) produces probabilities vs
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calibrated operational
probability baselines.
distributions for
rain rates.
DGMR (2021) GAN (deep Uses a generative  For 90-min UK [3]
generative radar adversarial radar, ~89% of 50
model, network to Met Office
DeepMind) produce forecasters
ensembles of preferred DGMR
realistic radar over the
futures, tuned for ~ operational
extremes. system.
Rainformer (2022) Hybrid Swin-style On Chinese radar, [28]
transformer + transformer blocks improves CSI for
CNN capture long-range  moderate rain and
dependencies; better preserves
CNN layers refine  small convective
local convective cells vs
structure. ConvLSTM.
MetNet-2 / large-  Deep CNN with Extends MetNet Shows improved [13][18]
context CNNs larger context + with larger spatial  precipitation skill
NWP conditioning context and NWP  compared with
inputs to 12-h high-res NWP
horizons; (e.g. HRRR)
produces across 0-12 h
probabilistic leads.
“cubes”.
NowcastNet Hybrid physical-  Embeds explicit Demonstrates [11[2]
family (2023- ML nowcasting advection / skilful extreme-
2024) warping inside a precipitation
neural architecture  nowcasts and
and focuses on hybrid physics-Al
extremes and gains over NWP
interpretability. and pure ML.
PreDiff / diffusion  Latent diffusion Models full On SEVIR and [61[27]
models (2023+) generative models  predictive related datasets,

distributions via
iterative denoising
in a learned latent
space; sharp,
realistic radar
fields.

produces sharper,
more realistic rain
structures than
GAN baselines
while giving
calibrated
uncertainty.

IV.OPPORTUNITIES
Al-based nowcasting creates several major opportunities:
1) Improved short-lead forecast skill: Deep learning models consistently outperform optical-flow extrapolation and often
outperform NWP for 0 —2 h convective precipitation [2][3][13]. Gains are particularly large for localized extremes, where
additional 30-60 min of reliable lead time can translate directly into saved lives and reduced damage.
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2) Multisensor fusion and global coverage: Al architectures naturally ingest heterogeneous inputs, enabling quantitative fusion of
radar, satellite, lightning, gauges and NWP environment [4][5][15][16]. Satellite-driven Al systems can provide useful
nowcasts in radar-sparse regions, significantly improving forecast equity worldwide [5].

3) Probabilistic, user-oriented products: Generative models and ensembles provide full probability distributions rather than single
deterministic forecasts [3][6][19]. This supports risk-based decision-making and more transparent communication of
uncertainty.

4) Application-specific nowcasts: Al models can be tailored to aviation, hydrology, renewable energy, urban flooding and other
sectors by optimizing for sector-specific targets (e.g. probability of runway lightning, probability of exceedance of a flood
threshold) [16][17].

Because the same core architectures can be re-trained on different targets, this opens a large space of targeted decision-support

products.

Synergy with physics-informed learning: Hybrid physics-Al models such as NowcastNet and PDDN show that coupling ML with

NWP and physical constraints can extend useful lead times to 3 —6 h while retaining dynamical consistency [1][2][8]. This suggests

a pathway toward seamless integration of nowcasting and short-range forecasting.

V. CHALLENGES
Despite rapid progress, significant challenges must be addressed before Al nowcasting can be fully relied upon in operations.

A. Physics-informed and hybrid models

Al models inherit all the imperfections of their training data. Radar fields can contain ground clutter, bright -band artifacts, beam
blockage and calibration drifts; satellite rainfall estimates are noisy and biased; gauge networks are sparse and uneven [10][14]. If
these issues are not carefully handled, models may learn spurious patterns (e.g. always predicting rain near a radar range edge)
rather than true meteorology.

Global coverage is highly uneven. Large parts of Africa, South America and the oceans lack dense radar networks [5]. Models
trained in data -rich mid -latitude regions may not generalize to tropical regimes or sparsely observed areas. Satellite -based Al helps,
but satellite retrievals themselves are uncertain and climate -dependent.

Non-stationarity is another concern: climate change is altering the frequency and intensity of extreme events, and observing systems
evolve in time. A model trained on historic data may become sub -optimal as the underlying distribution shifts. Continual learning,
transfer learning and routine re -training are promising but operationally non -trivial.

B. Models Class Imbalance and Extremes

Precipitation fields are extremely imbalanced: most pixels at most times have zero or light rain, while the high -impact extremes
occupy a tiny fraction of space —time [4][11]. Standard losses like MSE or MAE focus on minimizing average error and under -
emphasize rare heavy rainfall. As a result, naive deep learning nowcasts often smooth out or miss intense convective cores.

To address this, researchers use weighted losses, focal losses, threshold -oriented losses (e.g. Maximizing CSI for specific rain
thresholds), and specialized distributions such as Tweedie or compound Poisson losses tailored to zero -inflated, heavy -tailed
rainfall [11]. Data -level techniques such as oversampling rainy cases or augmenting extreme events are also applied.

Nevertheless, accurately predicting the location and timing of extremes remains very difficult, both because they are rare in training
data and because they are inherently less predictable.

C. Generalization and transferability

Many Al nowcasting models are trained on a specific region, season or radar network. Domain shifts —different climate regimes,

orography, observing systems or microphysical characteristics —can markedly degrade performance. A model trained on U.S. Great

Plains convection may struggle with tropical cyclones, monsoon convection or winter stratiform precipitation.

Possible strategies include:

e Global or multi -regional training with regional conditioning [5][13]. Transfer learning: pretraining on large global datasets then
fine -tuning on local data [15][19].

e  Self -supervised learning on massive unlabelled archives to learn general weather representations [15].

Developing models that are both globally applicable and locally adaptable is key research frontier.
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D. Interpretability and trust

Operational meteorologists must understand, to some degree, why a model is predicting a hazardous event in order to trust it and
diagnose failures. Traditional extrapolation is conceptually simple, and NWP provides physically interpretable fields (e.g. CAPE,
shear, convergence). In contrast, most deep networks are black boxes with millions of parameters.

Explainable Al tools —saliency maps, feature attribution, analog -based retrievals —can help illuminate which input regions or
features drive a given forecast [4]. Physics -informed architectures also provide partial interpretability because some components
correspond to recognizable physical operators [1][8]. Nonetheless, building trust will require extensive validation, careful
documentation of failure modes, and training for end -users.

E. Evaluation, Metrics and Benchmarks

Precipitation nowcasting is difficult to evaluate because small spatial displacement errors can lead to large pointwise errors (the
“double penalty” problem). Simple metrics such as MSE and correlation are therefore inadequate for high -resolution precipitation
fields. The community increasingly relies on threshold -based scores (CSI, POD, FAR), scale -aware metrics (fractions skill score,
SAL), and probabilistic scores (CRPS, Brier score, reliability diagrams) to fully characterize performance [4][21][22].

A major challenge is lack of standardization. Different studies use different datasets, thresholds, scales and metrics, hindering fair
comparison. Recent surveys call for open benchmarks and shared testbeds for Al nowcasting [4]. Libraries like PySTEPS already
provide baseline extrapolation methods and verification tools [10], but consistent, widely accepted benchmark datasets are still
emerging.

F. Evaluation, Metrics and Benchmarks

Deploying Al nowcasting in real time raises practical and ethical questions:

1) Latency and cost: Some advanced transformer or diffusion models are computationally intensive. Operational centers must
ensure that inference can keep pace with observation updates using available hardware [6][18].

2) Robustness: Models must behave sensibly in edge cases (e.g. missing radar tiles, sensor glitches). Fallback strategies and sanity
checks are needed to avoid implausible outputs entering warning systems.

3) Human —Al interaction: Forecasters need guidance on when and how to use Al nowcasts, and how to integrate them with NWP
and conceptual models [7].

4) Fairness and equity: Systems should perform adequately across all regions and populations, not just data -rich urban centers [5].

Transparency and accountability: For high -impact decisions, agencies must understand model limitations, version changes, and

responsibilities if Al guidance contributes to missed events or false alarms.

VI.METHODOLOGICAL TRENDS AND RESEARCH FRONTIERS

Al for nowcasting is evolving rapidly. Key research directions include:

1) Foundation models and self -supervised learning: Large, generic “weather foundation models” trained on heterogeneous global
data (e.g. ClimaX, FourCastNet, GraphCast, Pangu -Weather) demonstrate that a single architecture can support many tasks
after fine-tuning [15][19][20]. Extending such models down to nowcasting scales is an active area.

2) Multimodal and multi -sensor fusion: Architectures that jointly ingest radar, satellite, lightning, gauges and NWP fields using
cross -attention, multi -branch encoders or graph structures aim to exploit complementary strengths of each dataset
[4][5][16][17].

3) Physics -informed deep learning: Embedding conservation laws, symmetry constraints, differentiable advection operators or
NWP -like modules into Al architectures promises better generalization and physical consistency [1][2][6][8].

4) Uncertainty quantification and extremes: Generative models, Bayesian techniques and tailored loss functions are being explored
to deliver well -calibrated probabilities and improved representation of extreme events [6][11][19].

5) Continual and transfer learning: Methods that allow models to update incrementally as new data arrive, while avoiding
catastrophic forgetting, are crucial for adapting to changing climates and observing systems.

6) Benchmarks and open science: Community datasets, leaderboards and open -source reference implementations are increasingly
recognized as vital infrastructure for progress [4][10][19].

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue | Jan 2026- Available at www.ijraset.com

VIlI.  AlI'VS. TRADITIONAL NOWCASTING

It is useful to compare Al nowcasting qualitatively against two traditional approaches: optical -flow extrapolation and convection -

permitting NWP.

1) Forecast skill (0 —2 h): Deep learning systems generally outperform extrapolation and often outperform NWP for high -
resolution convective precipitation, especially on structural and threshold -based metrics [2][3][13].

2) Forecast skill (>3 -6 h): Purely data -driven nowcasts typically lose skill beyond a few hours as chaos and large -scale
dynamics dominate. NWP, with full physical equations and data assimilation, remains superior at these lead times [18][19][20].

3) Physical consistency: NWP enforces conservation and dynamical balance by design. Optical -flow extrapolation preserves
observed reflectivity but does not simulate physics. Al models may violate physical constraints unless specifically regularized,
though hybrid systems mitigate this [1][8].

4) Computational cost: Once trained, Al models are very fast at inference, often much cheaper than running a full NWP cycle,
particularly at very high resolution [3][5][13]. Extrapolation is cheapest but less capable; NWP is the most expensive.

5) Interpretability: Extrapolation and NWP provide clear, physically grounded reasoning pathways. Al models are currently less
interpretable, though physics -aware designs and XAl tools help.

6) Global equity: Satellite -driven Al can provide high -frequency, higher -resolution guidance in data-sparse regions where local
NWP and radar networks are limited [5]. Traditional radar -based extrapolation is not possible where radars do not exist.

In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, Al nowcasts for 0 -2

(or 0 =3) h, and gradually transition to NWP beyond that, possibly with Al assisting in blending and post -processing. Human

forecasters remain central in synthesizing guidance and managing warnings.

VIIl. DISCUSSION
In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, Al nowcasts for 0 -2
(or 0 =3) h, and gradually transition to NWP beyond that, possibly with Al assisting in blending and post -processing. Human
forecasters remain central in synthesizing guidance and managing warnings. The emergence of Al nowcasting has generated both
excitement and hype. High -profile results from DGMR, MetNet, NowcastNet and others demonstrate real, substantial gains in short
-range precipitation skill [1][2][3][5][13]. At the same time, operational uptake is still in early stages. Most national weather
services are cautiously experimenting with Al guidance alongside established methods rather than replacing them.

A. Key Themes in the Current Discourse Include

1) Practical impact vs. hype: While Al has produced impressive case studies, widespread operational transformation will depend
on sustained validation, robust engineering, and user training.

2) Standardization and reproducibility: The community needs shared benchmarks, clear baselines and open code/data where
possible to compare methods fairly and avoid redundant effort [4][10].

3) Interdisciplinary collaboration: The most successful systems have arisen from close collaboration between meteorologists,
hydrologists and ML researchers [1][2][8][16][17].

4) Responsible deployment: Issues of equity, transparency, and accountability must be addressed explicitly when Al nowcasts
influence public warnings and disaster risk management [5].

IX.CONCLUSION AND FUTURE DIRECTIONS

In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, Al nowcasts for 0 -2
(or 0 =3) h, and gradually transition to NWP beyond that, possibly with Al assisting in blending and post -processing. Human
forecasters remain central in synthesizing guidance and managing warnings. The emergence of Al nowcasting has generated both
excitement and hype. High -profile results from DGMR, MetNet, NowcastNet and others demonstrate real, substantial gains in short
-range precipitation skill [1][2][3][5][13]. At the same time, operational uptake is still in early stages. Most national weather
services are cautiously experimenting with Al guidance alongside established methods rather than replacing them. Al-based
nowcasting has rapidly progressed from proof -of-concept ConvLSTMs to sophisticated hybrid diffusion and transformer systems.
These models leverage large archives of radar, satellite and NWP data to produce detailed, frequently updated, and increasingly
probabilistic precipitation forecasts. Evidence from multiple studies indicates that, for 0 —2 h convective rainfall, Al systems can
deliver higher skill than both optical -flow extrapolation and high -resolution NWP in many settings [2][3][13]. Physics -informed
and hybrid architectures extend useful lead times and improve robustness for extremes [1][2][6][8].
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At the same time, Al is not a magic bullet. Data limitations, non -stationarity, class imbalance, generalization issues, interpretability
challenges and operational constraints remain active research and engineering problems. To fully realize the promise of Al
nowcasting, the community should:

1) Invest in high -quality, multi -sensor datasets and open benchmarks.

2) Embrace hybrid physics -Al designs that respect known dynamics.

3) Develop standardized verification practices, especially for probabilistic products and extremes.

4) Focus on interpretability, user training, and human —Al teaming in forecast offices.

5) Prioritize equity, ensuring that advances benefit data -sparse, vulnerable regions as well as data-rich ones [5].

6) Design governance frameworks that clarify responsibilities and manage model updates transparently.

For PhD -level research, open questions include optimal multi -sensor fusion strategies, foundation -model approaches for high -
resolution nowcasting, principled physics -ML coupling, robust uncertainty quantification, continual learning under climate change,
and human -centric design of decision -support products. Progress on these fronts could yield Al nowcasting systems that are not
only more accurate, but also more trustworthy, interpretable and impactful.
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