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Abstract: Weather nowcasting, defined as forecasting weather phenomena on time scales from minutes to several hours, is 
critical for mitigating the impacts of high-impact events such as flash floods, severe convective storms, and extreme 
precipitation. Traditional nowcasting approaches based on radar extrapolation and convection-permitting numerical weather 
prediction (NWP) exhibit fundamental limitations in representing rapid storm evolution, convective initiation, and localized 
extremes at short lead times. Recent advances in artificial intelligence (AI) and deep learning have enabled a new generation of 
nowcasting systems that learn complex spatiotemporal relationships directly from high-resolution radar, satellite, lightning, and 
NWP data. This paper provides a comprehensive review of AI-based precipitation nowcasting, covering data sources, model 
architectures, and evaluation methodologies. We discuss deterministic and probabilistic approaches, including convolutional 
recurrent networks, encoder–decoder convolutional neural networks, transformers, generative adversarial networks, diffusion 
models, and emerging physics-informed and hybrid AI–NWP systems. Opportunities such as improved short-lead forecast skill, 
multi-sensor fusion, probabilistic decision support, and enhanced forecast equity are examined alongside key challenges related 
to data quality, class imbalance, generalization, interpretability, and operational deployment. Finally, we highlight current 
research frontiers and methodological trends, outlining open challenges and promising directions for future AI-driven 
nowcasting systems at the PhD level and beyond. 
Keywords: Weather nowcasting; precipitation forecasting; deep learning; radar and satellite data; probabilistic forecasting; 
physics-informed machine learning; diffusion models; numerical weather prediction. 
 

I. INTRODUCTION 
Weather nowcasting —forecasting on time -scales from a few minutes up to roughly six hours —is critical for protecting life, 
infrastructure, and economic activity. Many of the most dangerous hazards, such as flash floods, severe convective storms, and 
microbursts, evolve on these short time -scales. Over the last half‑century, a large fraction of weather‑related disasters and fatalities 
has been linked to extreme precipitation events [1][2]. Improving short‑lead‑time forecasts therefore has high societal value for 
emergency management, aviation, road safety, agriculture, renewable energy, and urban drainage systems. However, nowcasting is 
particularly challenging. Hazardous convective storms can initiate, intensify, split and decay on time -scales of tens of minutes. 
Even modern convection‑permitting numerical weather prediction (NWP) models struggle to represent the exact timing, location 
and intensity of localized heavy rainfall [3]. Data assimilation cycles are typically 1 h or longer, which means that valuable 
high‑frequency observations (e.g. radar volumes every 5 min) are not fully exploited in real time [13]. For these reasons, nowcasting 
has been described as one of the most difficult problems in hydrometeorology [4]. Recent advances in artificial intelligence (AI) and 
deep learning offer a promising new path. Deep neural networks can learn complex, non‑linear relationships directly from large 
archives of radar, satellite and NWP data, potentially overcoming some limitations of traditional extrapolation and NWP approaches 
[5][6]. Pioneering systems such as DeepMind’s deep generative model of radar rainfall (DGMR) have already demonstrated that 
AI‑based nowcasts can be judged more accurate and useful than existing operational products in blind evaluations by expert 
meteorologists [3][7]. At the same time, these models are new, sometimes opaque, and not yet universally trusted in operations. This 
report provides a scholarly review of AI‑based nowcasting, focusing on opportunities, challenges, and directions for research at the 
PhD level and beyond. 

II. BACKGROUND AND DEFINITIONS 
The World Meteorological Organization (WMO) typically defines nowcasting as providing detailed description of current weather, 
plus forecasts up to about 0 –6 h, emphasizing local detail and rapid update cycles [8]. Short‑range forecasts (roughly 6 –24 h) and 
medium‑range forecasts (several days to two weeks) focus increasingly on larger‑scale atmospheric dynamics and are more 
naturally produced by NWP on coarser grids. 
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In practice, operational nowcasts place particular emphasis on phenomena that evolve quickly and have large local impacts: 
convective cells, squall lines, mesoscale convective systems, urban thunderstorms, hail storms, and localized heavy rainfall. 
Short‑range NWP remains indispensable beyond ~3 –6 h, but in the “nowcast window” AI models can exploit the latest 
high‑resolution observations to add value where NWP is weakest. 
 
A. Traditional Nowcasting Methods 
 

Table 1 Comparison of traditional nowcasting vs AI-based nowcasting (typical characteristics and performance) 
Aspect Traditional nowcasting (radar 

extrapolation / NWP) 
AI-based nowcasting (deep 
learning models) 

Mechanism Extrapolates recent radar echoes 
using an estimated motion field 
(optical flow / cross-correlation) 
or integrates NWP equations for 
1–6 h on fixed grids.[10][21][22] 

Learns a spatiotemporal mapping 
from recent radar, satellite and/or 
NWP fields to future 
precipitation using neural 
networks (RNNs, CNNs, 
transformers, diffusion 
models).[3][4][6][12][13][14][18] 

Strengths Very fast and cheap; radar 
extrapolation can update every 
5–10 min; NWP provides 
physically consistent multi-
variable fields and synoptic-
scale guidance.[10][21][22] 

Captures non-linear storm 
growth/decay and environmental 
context; can blend multiple 
sensors; once trained, inference is 
very fast and scales well over 
large 
domains.[1][2][3][6][13][16][18] 

Limitations Assumes storms persist and 
simply move; cannot represent 
new convective initiation or 
rapid dissipation; skill decays 
sharply beyond ~1–2 h, 
especially for 
convection.[10][21][22] 

Requires large high-quality 
datasets and heavy training 
compute; can blur fine-scale 
extremes; may generate 
unphysical fields if not 
constrained; generalization and 
interpretability are active research 
challenges.[4][6][7][11][27] 

Typical skillful lead time Good skill for ~0–30 (sometimes 
up to ~60) min at convective 
scales; NWP becomes more 
useful beyond ~2–3 h for larger-
scale systems.[10][21][22] 

State-of-the-art radar nowcasting 
shows clear added value out to 
~2–3 h for convective rainfall; 
probabilistic large-context 
models extend useful 
precipitation skill to ~8–12 h for 
moderate events.[1][2][3][16][18] 

Representative systems Radar extrapolation systems 
such as STEPS, MAPLE and 
open-source PySTEPS; 
convection-permitting rapid-
update NWP systems (e.g. 
HRRR, UKV).[10][21][22] 

DGMR GAN nowcasting system 
[3]; MetNet and MetNet-2 large-
context CNNs [13][18]; 
PredRNN family of 
spatiotemporal RNNs [14]; 
RainNet CNN baseline [25]; 
Rainformer hybrid transformer–
CNN [28]; diffusion-based 
PreDiff models [27]. 
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Before the AI era, operational nowcasting relied primarily on extrapolation of recent observations. The simplest baseline is 
persistence, assuming conditions remain unchanged over the forecast period. More sophisticated systems perform Lagrangian 
advection of radar reflectivity, estimating a motion field (often via optical flow or cross‑correlation between successive radar images) 
and then translating echoes forward in time [9][10]. Frameworks 
such as STEPS and the open‑source PySTEPS library add stochastic perturbations and simple growth/decay models, which partially 
respect conservation and yield probabilistic nowcasts [10][11]. 
These advection methods are surprisingly skillful at very short leads (~0 –1 h), because they preserve observed storm structures and 
simply advect them. However, they cannot predict initiation of new convection, rapid upscale growth, splitting or sudden dissipation 
beyond what can be inferred from recent motion [12]. Skill typically drops sharply after ~1 –2 h, especially for convective 
precipitation. 
Another strand of “traditional” nowcasting is to use high‑resolution NWP in rapid‑update mode. For example, the U.S. HRRR 
model runs hourly at ~3 km grid spacing out to ~18 h.  
Such models provide physically consistent multi‑variable fields and can, in principle, simulate storm growth and environmental 
interactions. Yet they remain computationally expensive, have spin‑up issues, and often misrepresent small‑scale convective 
structures at very short lead times [3][13]. In practice, many centers blend radar extrapolation for the first 0–2 h with NWP beyond 
that. 
 
B. Data sources for nowcasting 
Effective nowcasting requires dense, frequent observations: 
1) Weather radar is the workhorse for precipitation nowcasting, providing volumetric reflectivity scans every 2 –10 min at 

horizontal resolutions of order 1 km [14]. Radar captures the evolving structure of rain and snow fields and is well suited as 
both input and verification for AI systems. However, radar coverage is uneven globally, and radars see precipitation but not 
pre‑convective cloud development. 

2) Geostationary satellites provide near‑global coverage with scan intervals of 5 –15 min. Infrared (IR) and visible channels give 
information on cloud‑top temperature, texture and growth, which are valuable precursors of convective initiation [15]. AI 
models can learn relationships between satellite features and surface rainfall, particularly when trained in regions with both 
radar and satellite. 

3) Surface rain gauges, automatic weather stations, lightning detection networks and crowdsourced observations provide 
additional constraints on precipitation intensity and severe weather. Lightning in particular is a strong indicator of deep 
convection and has been used in multi‑task deep learning models for concurrent rainfall and lightning nowcasting [17]. 

Environmental fields from global reanalyses or NWP (e.g. instability indices, vertical wind shear, moisture flux convergence) 
provide large‑scale context that helps AI models distinguish environments favorable for sustained convection from those where 
showers quickly decay [16][18]. 
 

Table 1 Example datasets used for AI-based precipitation nowcasting 
Dataset (region) Data source(s) Resolution (space 

/ time) 
Time span 
(approx.) 

Notes and typical use 

HKO-7 (Hong 
Kong) 

C-band weather 
radar reflectivity 

≈1 km grid, 5-min 
frames 

2009–2015 (~7 
years) 

Classic benchmark for deep 
learning nowcasting; used in Shi 
et al.’s benchmark and TrajGRU 
work.[23] 

Shanghai radar 
(China) 

S-band radar 
reflectivity (single 
site) 

≈0.5 km, ≈6-min 
frames (subset) 

2014–2015 Used in the original ConvLSTM 
paper for 10-frame radar 
prediction experiments.[12][23] 

Iowa Rain / 
CONUS subset 
(USA) 

NEXRAD 
national radar 
mosaic 

≈1 km, 5-min 
frames 

2016–2019 (multi-
year) 

Used by Lebedev et al. for 
satellite-aided nowcasting and as a 
benchmark for radar extrapolation 
vs AI.[24] 
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MRMS (USA, 
national) 

Multi-radar / 
multi-sensor 
(MRMS) mosaic 

1 km grid, 2–5-
min products 

2017–present High-resolution national 
composite widely used in 
stochastic nowcasting frameworks 
such as PySTEPS.[10] 

SEVIR (USA) Co-located radar, 
satellite and 
lightning 

1 km, 5-min 
(radar/satellite) 

2017–2019 Public benchmark for multi-modal 
severe-weather prediction and 
nowcasting; curated events for 
deep learning.[26] 

OPERA (Europe) Pan-European 
radar composite 

≈2 km grid, 15-
min 

≈2011–2019 
(operational) 

Used in European nowcasting 
research and 
EUMETNET/OPERA products; 
often a source for regional 
composites. 

RainNet 
(Germany) 

National radar 
mosaic (DWD 
network) 

1 km grid, 5-min 
frames 

2015–2018 Basis of the RainNet CNN 
baseline for radar-based 
nowcasting; open dataset for 
method comparison.[25] 

MeteoNet 
(France) 

Radar + NWP-
derived fields 

1 km, 5-min radar 2016–2018 
(challenge period) 

Dataset released for the MeteoNet 
challenge by Météo-France; used 
to test radar+NWP fusion. 

 
Multi‑sensor fusion is non‑trivial because different datasets have distinct spatial/temporal resolutions, coverage, and noise 
characteristics. Nevertheless, combining radar’s high‑resolution rainfall view with satellites’ broad cloud view and NWP 
environment has emerged as a key strategy for robust AI nowcasting [15][16][18]. 

 
III.  AI AND DEEP LEARNING METHODS FOR NOWCASTING 

A. Deterministic vs. probabilistic models 
Early deep learning nowcasting systems typically framed the problem as supervised video prediction: given a sequence of past radar 
images, predict future images by minimizing a pixel‑wise loss such as mean squared error (MSE). This yields a single “best‑guess” 
deterministic forecast. A well‑known drawback is that MSE encourages “averaging” over many plausible futures, leading to overly 
smooth, blurry forecasts, especially at longer lead times [5]. 
To address this, the community has increasingly shifted to probabilistic models that represent uncertainty. Instead of one 
deterministic forecast, a generative model produces an ensemble of possible future radar sequences consistent with the recent past. 
DeepMind’s DGMR is a prominent example: a conditional generative adversarial network (GAN) that outputs an ensemble of 
high‑resolution radar scenarios up to 90 min ahead [3]. The adversarial loss encourages realistic, sharp structures that better match 
observed convective cells [3][7]. More recently, diffusion models have emerged as a competitive alternative. Leinonen et al. (2023) 
applied a latent diffusion model (LDM) to precipitation nowcasting, showing improved sharpness and more reliable uncertainty 
compared to both GAN‑based DGMR and traditional extrapolation [6][19]. Diffusion models iteratively “denoise” random noise 
into a forecast conditioned on past observations, naturally producing ensembles whose spread can be calibrated to match forecast 
uncertainty [20]. 
Probabilistic nowcasts can be evaluated using metrics such as the continuous ranked probability score (CRPS) [21] and reliability 
diagrams, and they have clear advantages for decision‑making because users can base actions on forecast confidence rather than a 
single deterministic scenario [22]. 
 
B. Convolutional Recurrent Networks (ConvLSTMs, PredRNN) 
One of the earliest deep learning approaches to nowcasting was the Convolutional LSTM (ConvLSTM) of Shi et al. (2015) [12]. 
ConvLSTM extends standard LSTMs by replacing fully connected operations with convolutions, allowing the network to model 
spatio‑temporal evolution of radar images. In an encoder –forecaster configuration, ConvLSTM learns both motion and intensity 
changes and was shown to outperform optical‑flow‑based extrapolation for short‑term precipitation prediction in Hong Kong [12]. 
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Subsequent work introduced variants such as Trajectory GRU (TrajGRU), which learns dynamic connection structures that better 
follow advecting rain cells, and PredRNN, which adds additional memory cells to better capture long‑term dependencies [14]. 
PredRNN and its successors (e.g. PredRNN‑v2, MIM) have achieved strong performance on benchmark radar datasets and, 
importantly, have seen early operational adoption. For example, the China Meteorological Administration has deployed a 
PredRNN‑type system for short‑term precipitation guidance [14]. 
ConvLSTM‑family models are relatively lightweight and well suited to GPU inference in real time. However, when trained with 
simple pixel‑wise losses they still tend to blur small‑scale, intense features at longer lead times. Hybrid training strategies (e.g. 
combining MSE with structural or threshold‑based losses) and integration with generative objectives partially mitigate this, but 
many state‑of‑the‑art systems now combine recurrent backbones with GAN or diffusion modules [1][3][6]. 
 
C. Encoder –decoder CNNs and Vision Transformers 
Fully convolutional encoder –decoder networks, often in U‑Net form, provide another widely used architecture for nowcasting. 
These models treat a stack of recent radar (and sometimes satellite) images as input channels and predict multiple future frames in a 
single feed‑forward pass. Skip connections help preserve fine spatial detail, and 3‑D convolutions over space – time can capture 
motion implicitly. With sufficient data, U‑Net‑type models have been shown to rival or surpass ConvLSTM in some settings [4]. 
Attention‑based architectures, such as Vision Transformers (ViTs) and spatio‑temporal transformers, have recently entered the field. 
Google’s MetNet[13] and MetNet‑2[18] are examples that combine convolutional backbones with attention mechanisms over large 
spatial contexts to produce probabilistic precipitation forecasts up to 8 –12 h ahead. 
Transformer‑style self‑attention allows the model to link distant upstream features with local rainfall, a key advantage for 
longer‑lead nowcasts where remote precursors become relevant. 
The main trade‑off is computational cost: pure transformers scale poorly with resolution and domain size. Modern systems therefore 
use hybrids (e.g. CNN encoders plus local –global attention blocks) and hierarchical, multi‑scale tokenization to keep inference fast 
enough for operational use [4][18]. 

 
D. GANs and diffusion models 
Generative adversarial networks (GANs) and diffusion models explicitly target the realism and uncertainty representation of 
nowcasts. DGMR uses a U‑Net generator and a discriminator that evaluates entire radar sequences, producing sharp, high‑resolution 
ensembles that human forecasters often prefer over extrapolation and NWP in the 0 –2 h range [3][7]. However, first‑generation 
GAN systems tended to under‑predict very rare extremes and did not guarantee calibrated probabilities [3][18]. 
Diffusion models, including LDM‑type architectures, address some of these issues. Their iterative denoising structure produces 
ensembles that can be tuned for reliability and supports conditioning on additional inputs (e.g. NWP fields, satellite features) via 
“guided diffusion” [6][19][20]. For instance, Physical‑Driven Diffusion Networks (PDDN) condition the diffusion process on fields 
from a limited‑area NWP model (WRF), leading to improved 6‑h precipitation nowcasts that outperform both pure ML and pure 
NWP baselines in several case studies [8]. 

 
E. Graph neural networks and geometric deep learning 
Most nowcasting architectures operate on regular latitude –longitude or Cartesian grids. Graph neural networks (GNNs) provide a 
way to represent precipitation fields and observation networks on irregular meshes or learned adjacency graphs. Zhao et al. (2023) 
proposed a geometric deep learning framework in which each grid cell is treated as a node, and the model learns an adjacency 
matrix that captures dynamic, flow‑dependent relationships rather than fixed local neighborhoods [7]. Temporal graph convolutions 
then propagate information along these learned edges, improving representation of complex advection and deformation patterns. 
GNNs also offer a natural way to fuse heterogeneous data sources such as radar pixels, rain gauges, and lightning sensors into a 
single graph. While still an emerging area, geometric approaches align well with recent global forecasting models like GraphCast 
[19], and similar ideas are likely to be applied at nowcasting scales. 

 
F. Physics‑informed and Hybrid Models 
A major research trend is to embed physical knowledge into AI architectures, creating hybrid physics‑AI systems. Pure data‑driven 
models can produce unphysical outputs (e.g. non‑conservative rain fields, unrealistic storm growth), which raises concerns for 
high‑impact applications. Physics‑informed designs aim to incorporate constraints such as mass conservation, approximate 
continuity equations, or known advection operators directly into the network or loss function. 
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NowcastNet, a physics‑conditioned generative model, is a leading example [1]. It embeds differentiable operators inspired by the 
precipitation continuity equation into a GAN‑style framework, encouraging realistic advection and growth of storms while still 
allowing flexible learning of non‑linear processes. Evaluations over the U.S. and China show that NowcastNet outperforms both 
DGMR and high‑resolution NWP for extreme precipitation thresholds, with much higher critical success index (CSI) for very heavy 
rain [1][2]. 
Hybrid diffusion models such as PDDN go a step further by directly conditioning on NWP fields [8]. In these systems, AI and NWP 
complement each other: NWP provides dynamically consistent large‑scale context, while AI learns fine‑scale structures and corrects 
systematic NWP errors. This hybridization improves robustness, extends useful lead times to 3 –6 h, and can enhance 
interpretability because some components have explicit physical meaning. 
 

Table 2 Representative deep learning models for radar nowcasting (selected examples, approaches, and reported highlights) 
Model (year) Type / approach Key idea(s) Example dataset 

& performance 
(approximate) 

References 

ConvLSTM 
(2015) 

ConvLSTM 
encoder–decoder 
RNN 

Adds convolutions 
inside LSTM 
gates so the 
hidden state is a 
feature map, well-
suited to radar 
image sequences. 

Demonstrated 
improved 
MSE/CSI vs 
optical-flow 
extrapolation on 
Shanghai radar 
10-frame 
nowcasting tasks. 

[12] 

TrajGRU (2017) Trajectory-aware 
GRU (recurrent) 

Learns location-
variant recurrent 
connections that 
move with flow, 
enabling better 
representation of 
advection. 

On HKO-7 radar, 
reduces MSE and 
improves CSI 
relative to vanilla 
ConvLSTM at 1-h 
lead times.[23] 

[23] 

PredRNN 
(2017/2022) 

Spatiotemporal 
LSTM (RNN) 

Uses dual 
memories and a 
“gradient 
highway” to 
mitigate blurring 
over long 
sequences in video 
/ radar prediction. 

Strong results on 
generic video (e.g. 
Moving-MNIST) 
and improved 
structural 
similarity for radar 
nowcasts. 

[14] 

RainNet (2020) U-Net-style CNN Fully 
convolutional 
encoder–decoder 
taking a short 
radar history and 
predicting future 
frames in one 
pass. 

On German 5-min 
radar, outperforms 
persistence at 30–
90 min; CSI ≳ 0.5 
for light rain at 1-
h lead.[25] 

[25] 

MetNet (2020) Large-context 
CNN with 
attention 
(probabilistic) 

Aggregates a very 
large spatial 
context and 
produces 

Over CONUS, 
provides skillful 
8-h precipitation 
probabilities vs 

[13] 
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calibrated 
probability 
distributions for 
rain rates. 

operational 
baselines. 

DGMR (2021) GAN (deep 
generative radar 
model, 
DeepMind) 

Uses a generative 
adversarial 
network to 
produce 
ensembles of 
realistic radar 
futures, tuned for 
extremes. 

For 90-min UK 
radar, ~89% of 50 
Met Office 
forecasters 
preferred DGMR 
over the 
operational 
system. 

[3] 

Rainformer (2022) Hybrid 
transformer + 
CNN 

Swin-style 
transformer blocks 
capture long-range 
dependencies; 
CNN layers refine 
local convective 
structure. 

On Chinese radar, 
improves CSI for 
moderate rain and 
better preserves 
small convective 
cells vs 
ConvLSTM. 

[28] 

MetNet-2 / large-
context CNNs 

Deep CNN with 
larger context + 
NWP conditioning 

Extends MetNet 
with larger spatial 
context and NWP 
inputs to 12-h 
horizons; 
produces 
probabilistic 
“cubes”. 

Shows improved 
precipitation skill 
compared with 
high-res NWP 
(e.g. HRRR) 
across 0–12 h 
leads. 

[13][18] 

NowcastNet 
family (2023–
2024) 

Hybrid physical–
ML nowcasting 

Embeds explicit 
advection / 
warping inside a 
neural architecture 
and focuses on 
extremes and 
interpretability. 

Demonstrates 
skilful extreme-
precipitation 
nowcasts and 
hybrid physics–AI 
gains over NWP 
and pure ML. 

[1][2] 

PreDiff / diffusion 
models (2023+) 

Latent diffusion 
generative models 

Models full 
predictive 
distributions via 
iterative denoising 
in a learned latent 
space; sharp, 
realistic radar 
fields. 

On SEVIR and 
related datasets, 
produces sharper, 
more realistic rain 
structures than 
GAN baselines 
while giving 
calibrated 
uncertainty. 

[6][27] 

 
IV. OPPORTUNITIES 

AI‑based nowcasting creates several major opportunities: 
1) Improved short‑lead forecast skill: Deep learning models consistently outperform optical‑flow extrapolation and often 

outperform NWP for 0 –2 h convective precipitation [2][3][13]. Gains are particularly large for localized extremes, where 
additional 30–60 min of reliable lead time can translate directly into saved lives and reduced damage. 
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2) Multisensor fusion and global coverage: AI architectures naturally ingest heterogeneous inputs, enabling quantitative fusion of 
radar, satellite, lightning, gauges and NWP environment [4][5][15][16]. Satellite‑driven AI systems can provide useful 
nowcasts in radar‑sparse regions, significantly improving forecast equity worldwide [5]. 

3) Probabilistic, user‑oriented products: Generative models and ensembles provide full probability distributions rather than single 
deterministic forecasts [3][6][19]. This supports risk‑based decision‑making and more transparent communication of 
uncertainty. 

4) Application‑specific nowcasts: AI models can be tailored to aviation, hydrology, renewable energy, urban flooding and other 
sectors by optimizing for sector‑specific targets (e.g. probability of runway lightning, probability of exceedance of a flood 
threshold) [16][17]. 

Because the same core architectures can be re‑trained on different targets, this opens a large space of targeted decision‑support 
products. 
Synergy with physics‑informed learning: Hybrid physics‑AI models such as NowcastNet and PDDN show that coupling ML with 
NWP and physical constraints can extend useful lead times to 3 –6 h while retaining dynamical consistency [1][2][8]. This suggests 
a pathway toward seamless integration of nowcasting and short‑range forecasting. 

 
V. CHALLENGES 

Despite rapid progress, significant challenges must be addressed before AI nowcasting can be fully relied upon in operations. 
 
A. Physics‑informed and hybrid models 
AI models inherit all the imperfections of their training data. Radar fields can contain ground clutter, bright -band artifacts, beam 
blockage and calibration drifts; satellite rainfall estimates are noisy and biased; gauge networks are sparse and uneven [10][14]. If 
these issues are not carefully handled, models may learn spurious patterns (e.g. always predicting rain near a radar range edge) 
rather than true meteorology. 
Global coverage is highly uneven. Large parts of Africa, South America and the oceans lack dense radar networks [5]. Models 
trained in data -rich mid -latitude regions may not generalize to tropical regimes or sparsely observed areas. Satellite -based AI helps, 
but satellite retrievals themselves are uncertain and climate -dependent. 
Non-stationarity is another concern: climate change is altering the frequency and intensity of extreme events, and observing systems 
evolve in time. A model trained on historic data may become sub -optimal as the underlying distribution shifts. Continual learning, 
transfer learning and routine re -training are promising but operationally non -trivial. 

 
B. Models Class Imbalance and Extremes 
Precipitation fields are extremely imbalanced: most pixels at most times have zero or light rain, while the high -impact extremes 
occupy a tiny fraction of space –time [4][11]. Standard losses like MSE or MAE focus on minimizing average error and under -
emphasize rare heavy rainfall. As a result, naïve deep learning nowcasts often smooth out or miss intense convective cores. 
To address this, researchers use weighted losses, focal losses, threshold -oriented losses (e.g. Maximizing CSI for specific rain 
thresholds), and specialized distributions such as Tweedie or compound Poisson losses tailored to zero -inflated, heavy -tailed 
rainfall [11]. Data -level techniques such as oversampling rainy cases or augmenting extreme events are also applied. 
Nevertheless, accurately predicting the location and timing of extremes remains very difficult, both because they are rare in training 
data and because they are inherently less predictable. 

 
C. Generalization and transferability 
Many AI nowcasting models are trained on a specific region, season or radar network. Domain shifts —different climate regimes, 
orography, observing systems or microphysical characteristics —can markedly degrade performance. A model trained on U.S. Great 
Plains convection may struggle with tropical cyclones, monsoon convection or winter stratiform precipitation. 
Possible strategies include: 
 Global or multi -regional training with regional conditioning [5][13]. Transfer learning: pretraining on large global datasets then 

fine -tuning on local data [15][19]. 
 Self -supervised learning on massive unlabelled archives to learn general weather representations [15]. 
Developing models that are both globally applicable and locally adaptable is key research frontier. 
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D. Interpretability and trust 
Operational meteorologists must understand, to some degree, why a model is predicting a hazardous event in order to trust it and 
diagnose failures. Traditional extrapolation is conceptually simple, and NWP provides physically interpretable fields (e.g. CAPE, 
shear, convergence). In contrast, most deep networks are black boxes with millions of parameters. 
Explainable AI tools —saliency maps, feature attribution, analog -based retrievals —can help illuminate which input regions or 
features drive a given forecast [4]. Physics -informed architectures also provide partial interpretability because some components 
correspond to recognizable physical operators [1][8]. Nonetheless, building trust will require extensive validation, careful 
documentation of failure modes, and training for end -users. 

 
E. Evaluation, Metrics and Benchmarks 
Precipitation nowcasting is difficult to evaluate because small spatial displacement errors can lead to large pointwise errors (the 
“double penalty” problem). Simple metrics such as MSE and correlation are therefore inadequate for high -resolution precipitation 
fields. The community increasingly relies on threshold -based scores (CSI, POD, FAR), scale -aware metrics (fractions skill score, 
SAL), and probabilistic scores (CRPS, Brier score, reliability diagrams) to fully characterize performance [4][21][22]. 
A major challenge is lack of standardization. Different studies use different datasets, thresholds, scales and metrics, hindering fair 
comparison. Recent surveys call for open benchmarks and shared testbeds for AI nowcasting [4]. Libraries like PySTEPS already 
provide baseline extrapolation methods and verification tools [10], but consistent, widely accepted benchmark datasets are still 
emerging. 
 
F. Evaluation, Metrics and Benchmarks 
Deploying AI nowcasting in real time raises practical and ethical questions: 
1) Latency and cost: Some advanced transformer or diffusion models are computationally intensive. Operational centers must 

ensure that inference can keep pace with observation updates using available hardware [6][18]. 
2) Robustness: Models must behave sensibly in edge cases (e.g. missing radar tiles, sensor glitches). Fallback strategies and sanity 

checks are needed to avoid implausible outputs entering warning systems. 
3) Human –AI interaction: Forecasters need guidance on when and how to use AI nowcasts, and how to integrate them with NWP 

and conceptual models [7]. 
4) Fairness and equity: Systems should perform adequately across all regions and populations, not just data -rich urban centers [5]. 
Transparency and accountability: For high -impact decisions, agencies must understand model limitations, version changes, and 
responsibilities if AI guidance contributes to missed events or false alarms. 
 

VI. METHODOLOGICAL TRENDS AND RESEARCH FRONTIERS 
AI for nowcasting is evolving rapidly. Key research directions include: 
1) Foundation models and self -supervised learning: Large, generic “weather foundation models” trained on heterogeneous global 

data (e.g. ClimaX, FourCastNet, GraphCast, Pangu -Weather) demonstrate that a single architecture can support many tasks 
after fine-tuning [15][19][20]. Extending such models down to nowcasting scales is an active area. 

2) Multimodal and multi -sensor fusion: Architectures that jointly ingest radar, satellite, lightning, gauges and NWP fields using 
cross -attention, multi -branch encoders or graph structures aim to exploit complementary strengths of each dataset 
[4][5][16][17]. 

3) Physics -informed deep learning: Embedding conservation laws, symmetry constraints, differentiable advection operators or 
NWP -like modules into AI architectures promises better generalization and physical consistency [1][2][6][8]. 

4) Uncertainty quantification and extremes: Generative models, Bayesian techniques and tailored loss functions are being explored 
to deliver well -calibrated probabilities and improved representation of extreme events [6][11][19]. 

5) Continual and transfer learning: Methods that allow models to update incrementally as new data arrive, while avoiding 
catastrophic forgetting, are crucial for adapting to changing climates and observing systems. 

6) Benchmarks and open science: Community datasets, leaderboards and open -source reference implementations are increasingly 
recognized as vital infrastructure for progress [4][10][19]. 

 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

668 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

VII. AI VS. TRADITIONAL NOWCASTING 
It is useful to compare AI nowcasting qualitatively against two traditional approaches: optical -flow extrapolation and convection -
permitting NWP. 
1) Forecast skill (0 –2 h): Deep learning systems generally outperform extrapolation and often outperform NWP for high -

resolution convective precipitation, especially on structural and threshold -based metrics [2][3][13]. 
2) Forecast skill (>3 –6 h): Purely data -driven nowcasts typically lose skill beyond a few hours as chaos and large -scale 

dynamics dominate. NWP, with full physical equations and data assimilation, remains superior at these lead times [18][19][20]. 
3) Physical consistency: NWP enforces conservation and dynamical balance by design. Optical -flow extrapolation preserves 

observed reflectivity but does not simulate physics. AI models may violate physical constraints unless specifically regularized, 
though hybrid systems mitigate this [1][8]. 

4) Computational cost: Once trained, AI models are very fast at inference, often much cheaper than running a full NWP cycle, 
particularly at very high resolution [3][5][13]. Extrapolation is cheapest but less capable; NWP is the most expensive. 

5) Interpretability: Extrapolation and NWP provide clear, physically grounded reasoning pathways. AI models are currently less 
interpretable, though physics -aware designs and XAI tools help. 

6) Global equity: Satellite -driven AI can provide high -frequency, higher -resolution guidance in data-sparse regions where local 
NWP and radar networks are limited [5]. Traditional radar -based extrapolation is not possible where radars do not exist. 

In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, AI nowcasts for 0 –2 
(or 0 –3) h, and gradually transition to NWP beyond that, possibly with AI assisting in blending and post -processing. Human 
forecasters remain central in synthesizing guidance and managing warnings. 

 
VIII. DISCUSSION 

In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, AI nowcasts for 0 –2 
(or 0 –3) h, and gradually transition to NWP beyond that, possibly with AI assisting in blending and post -processing. Human 
forecasters remain central in synthesizing guidance and managing warnings. The emergence of AI nowcasting has generated both 
excitement and hype. High -profile results from DGMR, MetNet, NowcastNet and others demonstrate real, substantial gains in short 
-range precipitation skill [1][2][3][5][13]. At the same time, operational uptake is still in early stages. Most national weather 
services are cautiously experimenting with AI guidance alongside established methods rather than replacing them. 
 
A. Key Themes in the Current Discourse Include 
1) Practical impact vs. hype: While AI has produced impressive case studies, widespread operational transformation will depend 

on sustained validation, robust engineering, and user training. 
2) Standardization and reproducibility: The community needs shared benchmarks, clear baselines and open code/data where 

possible to compare methods fairly and avoid redundant effort [4][10]. 
3) Interdisciplinary collaboration: The most successful systems have arisen from close collaboration between meteorologists, 

hydrologists and ML researchers [1][2][8][16][17]. 
4) Responsible deployment: Issues of equity, transparency, and accountability must be addressed explicitly when AI nowcasts 

influence public warnings and disaster risk management [5]. 
 

IX. CONCLUSION AND FUTURE DIRECTIONS 
In practice, the most promising operational paradigm is hybrid: use extrapolation for the first tens of minutes, AI nowcasts for 0 –2 
(or 0 –3) h, and gradually transition to NWP beyond that, possibly with AI assisting in blending and post -processing. Human 
forecasters remain central in synthesizing guidance and managing warnings. The emergence of AI nowcasting has generated both 
excitement and hype. High -profile results from DGMR, MetNet, NowcastNet and others demonstrate real, substantial gains in short 
-range precipitation skill [1][2][3][5][13]. At the same time, operational uptake is still in early stages. Most national weather 
services are cautiously experimenting with AI guidance alongside established methods rather than replacing them. AI-based 
nowcasting has rapidly progressed from proof -of-concept ConvLSTMs to sophisticated hybrid diffusion and transformer systems. 
These models leverage large archives of radar, satellite and NWP data to produce detailed, frequently updated, and increasingly 
probabilistic precipitation forecasts. Evidence from multiple studies indicates that, for 0 –2 h convective rainfall, AI systems can 
deliver higher skill than both optical -flow extrapolation and high -resolution NWP in many settings [2][3][13]. Physics -informed 
and hybrid architectures extend useful lead times and improve robustness for extremes [1][2][6][8]. 
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At the same time, AI is not a magic bullet. Data limitations, non -stationarity, class imbalance, generalization issues, interpretability 
challenges and operational constraints remain active research and engineering problems. To fully realize the promise of AI 
nowcasting, the community should: 
1) Invest in high -quality, multi -sensor datasets and open benchmarks. 
2) Embrace hybrid physics -AI designs that respect known dynamics. 
3) Develop standardized verification practices, especially for probabilistic products and extremes. 
4) Focus on interpretability, user training, and human –AI teaming in forecast offices. 
5) Prioritize equity, ensuring that advances benefit data -sparse, vulnerable regions as well as data-rich ones [5]. 
6) Design governance frameworks that clarify responsibilities and manage model updates transparently. 
For PhD -level research, open questions include optimal multi -sensor fusion strategies, foundation -model approaches for high -
resolution nowcasting, principled physics -ML coupling, robust uncertainty quantification, continual learning under climate change, 
and human -centric design of decision -support products. Progress on these fronts could yield AI nowcasting systems that are not 
only more accurate, but also more trustworthy, interpretable and impactful. 
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