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Abstract: The need for quicker development cycles, better teamwork, and shorter technical onboarding times has increased in the 
modern era of software innovation, especially in huge codebases and enterprise-grade software systems. When growing modular 
architectures, maintaining old systems, or integrating new developers, traditional development pipelines frequently run into 
problems. A recurring barrier to guaranteeing code understanding, consistency, and maintainability is the enormous complexity 
of these systems, which is exacerbated by poor documentation and the dispersed structure of development teams. The problem is 
made worse by the lack of context-aware, real-time documentation, which raises deployment mistake rates, reduces productivity, 
and increases technical debt. In response to this problem, Ai-Forge stands out as a game- changing solution, providing an 
ecosystem powered by AI that revolutionizes the way developers engage with codebases. Ai-Forge uses sophisticated natural 
language processing (NLP), retrieval-augmented generation (RAG), and real-time embedding architectures to enable intelligent 
understanding, querying, and visualization of software systems, in contrast to traditional documentation tools that function 
statically or necessitate human intervention. By making sure that every line of code is self-explanatory, current, and dynamically 
interpretable, this innovation aims to reduce the knowledge imbalance among development teams and transform the software 
engineering workflow. The innovative multi-agent framework at the heart of Ai- Forge combines cutting-edge large language 
models (LLMs) for automated documentation production with real-time event-driven triggers. The system uses cloud- based 
features to identify code contributions and start a series of automated procedures, mostly through GitHub webhooks and AWS 
Lambda. Specialized agents are assigned specific tasks by this distributed architecture: documentation synthesis agents create 
descriptive, readable content that reflects the current state of the codebase, code analysis agents segment and interpret the code's 
semantics, and event detection agents record changes as they happen. Every agent functions within a meticulously crafted 
communication protocol that draws inspiration from conversational paradigms present in contemporary multi-agent 
frameworks. The agents collaboratively improve their outputs through repeated multi-turn dialogues, guaranteeing that the final 
documentation captures the code's underlying functional and contextual subtleties in addition to its syntactic structure. Even 
with changing project complexity and massive codebases, Ai-Forge is able to continuously adapt and develop due to the dynamic 
interaction between agents. 
Keywords: Multi-Agent, RAG, LLM 

 
I. INTRODUCTION 

Large language models (LLMs) have precipitated transformative shifts in software engineering by seamlessly integrating extensive 
knowledge expressed in natural language ( [6] [07] [33] [21] [12] ). For example, frameworks like ChatDev demonstrate how 
LLM- powered agents can engage in multi-turn dialogues, collaboratively navigating the design, coding, and testing phases to yield 
comprehensive software solutions. 
Software development itself is inherently complex, necessitating coordinated efforts among experts such as architects, programmers, 
and testers ( [04] ; [40]). This process involves extensive natural language communication to capture and refine requirements, 
alongside the use of programming languages to implement, debug, and optimize code ( [16]; [03]). Despite numerous studies 
applying deep learning to individual phases of the traditional waterfall model—such as design, coding, and testing ( [34] ; [23] ; [19] ; 
[39] )—the methods remain fragmented. This fragmentation results in technical inconsistencies across phases, ultimately leading to a 
disjointed and less efficient development process [16] ; [36]). 
In response to these challenges, emerging multi-agent frameworks such as Self-Organized Agents and Cross- Team Collaboration 
have paved the way for scalable solutions that distribute complex tasks among specialized agents. Similarly, Experiential Co-
Learning and AutoGen further demonstrate the benefits of agent-based systems by incorporating historical experience and flexible 
conversation programming. These advancements provide the foundation for AI-Forge, which aims to integrate these concepts into a 
real-time, automated documentation framework. 
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A lack of coherence throughout the development lifecycle still hinders modern software engineering, despite notable improvements 
in programming paradigms and tooling. Intelligent code recommendations are provided by tools such as GitHub Copilot and 
TabNine, although they usually operate in discrete situations and lack a comprehensive grasp of the system architecture or 
collaboration needs. Developers frequently have to manually manage communication bottlenecks, synchronize documentation, 
troubleshoot unknown code, and coordinate activities across teams— all of which impede creativity and productivity. This broken 
environment serves as the inspiration for AI- Forge. AI-Forge hopes to provide an LLM-driven multi- agent environment where 
activities like requirement analysis, code implementation, documentation creation, and testing are not isolated but rather coordinated 
among autonomous agents, taking inspiration from frameworks like ChatDev and AutoGen. 
Like its ChatDev predecessors, each agent in AI-Forge takes on a predetermined social or technical role (such as planner, coder, 
tester, or reviewer), enabling a collaborative loop that emulates actual development teams. Furthermore, through promoting 
alignment, self- improvement, and division of labour, cross-role contact and experience learning improve the performance of agent-
based frameworks, as noted in Cross-Team Collaboration and SDE Agents. AI-Forge expands on existing frameworks by 
prioritizing knowledge synchronization and real-time interaction. AI-Forge constantly learns from code modifications, debugging 
sessions, and user input to modify its tactics dynamically, in contrast to conventional tools that respond to static instructions. 
Despite the advancements in multi-agent systems and LLM-driven frameworks, significant challenges remain in achieving a fully 
integrated, real-time documentation system. The primary problem centres on the persistent gap between rapidly evolving codebases 
and static, manually updated documentation. This gap leads to outdated technical information, increased onboarding difficulties, and 
elevated maintenance costs. 
Specifically, existing methods suffer from: 
1) Synchronization Delays: The time lag between code changes and documentation updates creates inconsistencies that can 

mislead developers and propagate errors throughout the development lifecycle. Traditional systems typically operate in a batch 
mode, which fails to capture the dynamic nature of modern software projects. 

2) Contextual Misalignment: Automated documentation tools often lack the deep semantic understanding required to capture the 
nuances of complex code interdependencies. Although LLMs have demonstrated significant potential in generating text, they 
can struggle to maintain coherent context across large, modular codebases. 

3) Fragmented Workflows: Many current approaches treat documentation generation as an isolated task, separate from core 
activities such as code analysis, testing, and debugging. This siloed approach leads to technical inconsistencies and disrupts the 
natural flow of development processes. 

4) Scalability Constraints: Single-agent frameworks are limited by their context length and computational resources, making them 
less effective for large-scale projects. Distributed multi-agent architectures, as seen in frameworks like Self-Organized Agents 
and AutoGen, offer scalability; however, their application in real- time documentation remains underexplored. 

The research gap, therefore, lies in the absence of a comprehensive, multi-agent framework that can seamlessly synchronize and 
generate documentation in real time, ensuring that every code modification is accurately reflected in the project’s knowledge base. 
AI- Forge is designed to fill this gap by leveraging continuous event-driven triggers, distributed semantic analysis, and iterative 
LLM-based dialogue among specialized agents. 
 

II. LITERATURE REVIEW 
Trained on vast datasets to comprehend and manipulate billions of parameters, LLMs have be come pivotal in natural language 
processing due to their seamless integration of extensive knowledge ( [06]; [07]; [37]; [32]; [31]; [30]; [11]; [05]; [11]; [32]; [39]; 
[36]; [06] ). 
Further more, LLMs have demonstrated strong role- playing abilities ( [24]; [33]; [21]; [09]; [30]; [12]; [13]; [25]). Recent progress, 
particularly in the field of autonomous agents ( [24]; [29]; [33]; [27] ; [38]; [31]; [30]), is largely attributed to the foundational 
advances in LLMs. These agents utilize the robust capabilities of LLMs, displaying remarkable skills in memory ( [33]; [39] ), 
planning ( 12; 26 ) and tool use ( [18]; [08]; [35]; Ruan et al., 2023; [39]), enabling them to reason in complex scenarios Software 
development is a multifaceted and intricate process that requires the cooperation of multiple experts from various fields ( [14]; 
[01]; [04]; [40]; [03]; [18] ), encompassing the requirement analysis and system design in natural languages ( [34]; [28]; [29] ), 
along with system development and debugging in programming languages ( [19]; [08] ; [14] ). Numerous studies employ the 
waterfall model, a particular software development life cycle, to segment the process into discrete phases (e.g., design, coding, 
testing) and apply deep learning to improve the effectiveness of certain phases ( [18]; [21]; [24]; [22]; [26]; [36] ). 
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III. WHAT IS AI-FORGE 
AI-Forge adopts a multi-agent architecture that mirrors the design principles of ChatDev, with a focus on automating documentation 
rather than solely generating code. The framework organizes a collection of specialized agents into a chat-chain, enabling them to 
communicate and collaborate seamlessly throughout the documentation process. The key architectural components of AI-Forge 
include: 
1) Event Detection and Code Monitoring 
AI-Forge continuously monitors changes in the codebase by interfacing directly with the version control system. Instead of relying 
on external cloud triggers, it utilizes native hooks and internal mechanisms to detect code updates as they occur. When a change is 
detected, the system immediately initiates the documentation process. 
 
2) Code Analysis Agents 
Specialized agents are responsible for parsing and semantically analyzing the updated code. These agents apply text chunking and 
context extraction techniques to decompose complex code structures into manageable segments. The extracted context forms the 
basis for generating accurate, detailed documentation. 
 
3) Documentation Synthesis Agents 
Leveraging advanced LLMs fine-tuned on technical and documentation-specific corpora, these agents generate natural language 
descriptions that precisely capture the functionality, design decisions, and usage instructions of the code. The synthesis process is 
iterative, with agents engaging in multi-turn dialogues to refine and clarify the documentation output. 
 
4) Inter-Agent Communication via Chat Chain 
Inspired by ChatDev, AI-Forge employs a chat- chain mechanism where agents interact in a structured sequence. The chain divides 
the documentation process into distinct phases (e.g., code analysis, synthesis, and review), and each phase is further broken down 
into subtasks. During these conversations, agents exchange contextual information and feedback to ensure that the documentation 
remains both comprehensive and aligned with the evolving codebase. 
 
5) Iterative Refinement and Self-Correction 
A crucial feature of AI-Forge is its ability to continuously refine documentation through iterative feedback loops. Agents monitor 
the consistency and completeness of the generated content, requesting additional context or clarification when ambiguities arise. 
This communicative dehallucination mechanism, inspired by ChatDev, minimizes errors and ensures that the final documentation is 
accurate and easily interpretable. 
 
6) Seamless Integration with Development Workflows: 
While AI-Forge does not rely on external cloud services, it is designed to integrate naturally within existing development 
environments. By embedding directly into the development pipeline, AI-Forge ensures that documentation updates occur 
concurrently with code changes, maintaining a synchronized and cohesive project record. Through these components, AI-Forge 
transforms the traditionally static documentation process into an agile, dynamic function—one that continuously evolves in tandem 
with the code. This architecture not only enhances documentation quality but also significantly reduces the manual effort required by 
developers, thereby fostering a more efficient and error-resilient development workflow. 
 
A. Operational Workflow and Agent Interaction Dynamics 
AI-Forge, the operational workflow is designed around a dynamic, iterative dialogue among specialized agents, closely mirroring the 
principles established in ChatDev. This process is divided into several phases, each representing a key stage in transforming raw 
code changes into coherent, context-rich documentation. 
1) Multi-Phase Workflow 
The documentation process is segmented into discrete phases—each dedicated to a specific task. Initially, the system detects changes 
within the codebase and triggers the code analysis phase, where agents dissect the updated code into manageable segments. This is 
followed by a synthesis phase in which agents collaboratively generate preliminary documentation, and finally, a review phase 
where iterative feedback ensures clarity and consistency. 
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2) Multi-Turn Dialogue 
During each phase, agents engage in multi-turn dialogues. An instructor-like agent initiates the conversation by framing the task 
(e.g., summarizing a code module), while an assistant-like agent responds with its proposed documentation. This back-and-forth 
continues iteratively. The agents employ a mechanism akin to communicative dehallucination—where the assistant actively seeks 
clarification or additional context when ambiguities arise. This repeated exchange ensures that the generated documentation is 
refined and aligned with the actual code semantics. 
 
3) Context Sharing and Memory 
To maintain continuity across phases, AI-Forge implements both short-term and long-term memory systems. In the short term, each 
phase’s dialogue is stored and used to inform subsequent interactions. For longer projects, selected key outputs are preserved as 
long-term memory, ensuring that critical context from earlier phases influences later documentation updates. This hierarchical 
memory structure allows agents to maintain focus on the current task while retaining relevant historical insights. 

 
4) Agent Interaction Dynamics 
The interaction among agents is characterized by a role-specific communication protocol. Each agent is pre-configured with a 
system prompt that defines its role and behavioral guidelines. When a code update is detected, the relevant analysis agents interpret 
the change and pass contextual data to the synthesis agents. These synthesis agents, in turn, use the context to generate descriptive 
documentation. If inconsistencies or gaps are identified during the review phase, the process loops back— prompting further dialogue 
and adjustment until consensus is reached. This decentralized interaction model ensures that no single agent is overwhelmed by the 
entire task, promoting a modular, resilient system. 
 
5) Iterative Refinement and Error Correction 
The system’s iterative nature facilitates self- correction. As agents exchange messages, they evaluate the quality of generated 
documentation against the code’s functional and contextual attributes. Should an agent identify a discrepancy or vague area, it 
requests additional details from its counterpart, prompting a targeted re-evaluation. This continuous feedback loop minimizes 
errors—such as outdated or ambiguous descriptions—and gradually converges on a final, polished document that accurately mirrors 
the codebase. Through this operational workflow and dynamic agent interaction, AI-Forge transforms the static task of 
documentation into an adaptive, collaborative process. The system not only automates the generation of documentation but also 
ensures that it evolves fluidly in tandem with code changes, thereby enhancing overall project maintainability and reducing manual 
effort. 
 
B. Chat Chain 
A structured, multi-turn dialogue technique called ChatChain arranges agent interactions into a process that is sequential and chain-
like. This idea, which is essential to frameworks like ChatDev, is modified in AI-Forge to organize the creation of precise, real-time 
documentation. Fundamentally, the ChatChain separates the entire process into discrete stages (e.g., planning, coding, testing), 
whether it is code synthesis, debugging, or documentation development. Every stage is further divided into more manageable, 
smaller subtasks. Agents take on specific duties within each subtask, usually as an assistant and an instructor. The assistant agent 
answers with a solution or a fragment of documentation, while the instructor agent starts the conversation by giving instructions or 
background. Until a consensus on that specific subtask is obtained, this back and forth keeps happening in several rounds. 
The ChatChain's iterative nature is one of its key characteristics. The results of each subtask act as building blocks that guide the 
phase that follows. To put it another way, the solution produced during one subtask is incorporated into the context or "memory" that 
is transmitted, guaranteeing that any agents that come after it operate with the most recent and improved data. This process improves 
the overall coherence and uniformity of the finished product in addition to facilitating a smooth information flow across phases. A 
dual-memory system is also incorporated into the ChatChain. In order to maintain continuity and context for that subtask, short-term 
memory records the current discourse within a phase. However, when tasks get more complicated, the system can maintain a 
permanent context because long-term memory retains important decisions and outputs across phases. To manage the iterative 
improvements needed in large- scale projects, this tiered memory technique is crucial. All things considered, the ChatChain turns 
difficult jobs into a sequence of co-op, iterative conversations. The method lowers the possibility of mistakes—like omissions or 
inconsistencies—and enables focused improvements by organizing the communication in this manner.  
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This approach allows agents to provide outputs that are both contextually precise and thorough, which is especially useful in 
situations where information accuracy—whether it be code or documentation—is crucial. The ChatChain (CC) orchestrates 
collaborative software development through a structured workflow of sequential phases (PP), each decomposed into interactive 
subtasks (TT). This framework enables iterative refinement of solutions via dialogues between specialized agents, ensuring 
alignment between requirements and executable code. Below, we formalize its components and operational dynamics. 
 
1) Agent Roles and Dialogue States 

Let 

be the set of agents, where each 

agent ai is assigned a role  (e.g., Instructor, Assistant, Reviewer, etc.). 
 

A dialogue is modeled as an ordered sequence of messages: 

 
Where: 

  is the message generated by agent  
  represents the timestamp or dialogue turn index, 
 T is the total number of dialogue steps. 

Each agent’s generation at step iii depends on the interaction history: 
 

 
This sequence forms the contextual basis upon which decisions and content generation are made by the agents. 

 
2) Subtask Decomposition and Objective Optimization 
The overall task GGG, which may include code generation, testing, documentation, or debugging, is decomposed into modular 
subtasks: 
Each subtask is processed as a functional unit with independent evaluation and feedback. 
To optimize the outcome of each subtask, we define an objective function based on minimizing a contextual loss fn: 

 
where: 

  is the output generated by the agent(s) responsible for subtask , 
  denotes the input context or prompt condition (e.g., project requirements, API descriptions), 
  is a domain-specific evaluation metric or loss function, such as BLEU for text, or test coverage for code. 

This approach introduces task granularity and supports iterative refinement, making it conducive to multi-agent pipeline 
operations. 
 
3) Communication Policy and Memory Embedding 
Each agent utilizes a policy function , governed by its internal language model and memory context: 
 

 
This can be interpreted as the function mapping history  to the next message  using the role semantics of agent  
The communication history is embedded into a high- dimensional vector space using an encoder function: 
 

 
where could represent any dense vectorizer such as a transformer encoder, sentence embedding model (e.g., Voyage AI), or 
custom LLM embedding. 
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Subsequently, the generation at any turn is represented as: 
Here, each agent considers its role  and embedded memory state  to produce task-specific dialogue contributions. 
 
4) Output Aggregation and Convergence 
The outputs from all subtasks are synthesized into the final software artifact: 
 

 
Where ⨁ denotes semantic concatenation or structured integration, depending on the task (e.g., appending documentation or 
integrating test cases into a main codebase). 
Convergence for each task is ensured through a delta- based threshold mechanism: 

 

This expression guarantees that once the improvement between subsequent outputs falls below a small margin ϵ, the task is 
considered converged. This setup enables AI-Forge’s ChatChain to operate as a distributed intelligent system, where agents can 
independently handle subproblems, evaluate outcomes, and collaborate through structured, role-aware communication to complete 
complex software development workflows. 
 
C. Communicative Dehallucination in AI-Forge 
A central challenge in language model-based systems is the issue of hallucination—the generation of plausible- sounding but 
factually incorrect or semantically inconsistent outputs. This becomes particularly problematic in technical domains such as 
software documentation, where precision, consistency, and adherence to actual code logic are imperative. AI-Forge adopts and 
extends the Communicative Dehallucination strategy pioneered in ChatDev, wherein agents correct each other’s outputs through 
structured, role-based dialogue. Rather than relying on external validation datasets or static correctness checks, AI-Forge embeds an 
interactive quality assurance loop within its agent communication system. 
In the context of AI-Forge, hallucination often manifests as incorrect function descriptions (e.g., claiming a function returns a string 
when it actually returns an object), misrepresented parameter types or naming, fabricated logic paths or assumptions not present in 
the code, and ambiguities in procedural steps—especially in auto-generated API documentation. These errors typically originate 
from large language models generalizing from patterns in their pretraining data, incomplete or insufficient context during message 
generation, or accumulated semantic drift in multi-turn agent exchanges. 
To mitigate these issues, AI-Forge initiates a structured dialogue-based correction protocol, where agents iteratively verify and refine 
each other's outputs. Let ܱₖ be the intermediate documentation output at iteration ,݇ ܴ be the set of roles, and ܥₖ represent the set of 
extracted claims or entities from the output. Each agent takes turns performing one of the following steps: 
1) Claim extraction – identifying critical assertions in the documentation. 
2) Verification – matching each claim against actual code logic using parsing or static analysis. 
3) Revision – updating or removing unverifiable or hallucinated claims based on mismatches. 
This loop is repeated until the delta in hallucination rate h drops below a tolerance threshold ϵh, ensuring progressively cleaner and 
more accurate documentation. 
Example: Real-Time Dialogue Sequence 

Role Message Example 

Scribe “The function processOrder() logs order 
details to a database.” 

Reviewer “Clarify: does the code actually contain any 
DB connection or logging API?” 

 
Scribe 

“Correction: processOrder() only appends to a 
local list, no DB operations present.” 

Verifier “Confirmed. No DB-related imports or calls 
exist in this module.” 
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This mechanism ensures that agents do not operate in isolation but instead rely on critical peer feedback— much like human code 
reviews—to eliminate errors stemming from LLM overconfidence or contextual ambiguity. 
The benefits of this Communicative Dehallucination strategy are significant. First, it allows for self- correction without relying on 
external ground truth, enabling the system to refine outputs using internal reasoning and code verification. Second, it ensures multi-
perspective consistency, as multiple roles scrutinize the output from functional, semantic, and syntactic standpoints. Finally, it leads 
to improved factual accuracy, with preliminary evaluations showing a 30–50% reduction in documentation errors (refer to Section 8 
for detailed metrics). 
 
D. Memory Architecture in AI-Forge Role and Design of Memory Systems 
Effective memory design is essential for multi-agent collaboration, especially in software engineering tasks that involve iterative 
understanding and revision. Inspired by the memory hierarchy introduced in ChatDev, AI-Forge adopts a dual-memory 
architecture—comprising both Short-Term Memory (STM) and Long-Term Memory (LTM)—to support contextual grounding, 
historical awareness, and output consistency across agent interactions. 
 
1) Motivation for Memory Integration 
Unlike single-turn inference systems, AI-Forge agents participate in multi-turn, multi-role dialogues that span across various 
subtasks, such as documentation synthesis, refinement, and verification. Without memory, these agents would lack the ability to: 

 Recall prior agent outputs, 
 Understand evolving context, 
 Maintain continuity across project modules, 
 Avoid contradiction and redundancy in documentation. 

Thus, a formalized memory model is crucial to both inter-agent communication and longitudinal coherence across evolving 
codebases. 
 
2) Short-Term Memory (STM) 
Short-Term Memory is defined as the window of local dialogue history relevant to the current subtask or ChatChain phase. 

Let: 
 

 
where w is the size of the memory window, and each  represents a message exchanged during that time frame. 
STM is: 

 Continuously updated with each new turn. 
 Pruned using recency and relevance heuristics. 
 Lightweight, enabling quick token-level referencing in LLM prompts. 

STM supports: 
 Context preservation during multi-turn exchanges, 
 Real-time reference of recently discussed design patterns or terminology, 
 Local dehallucination and self-consistency checks. 

 
3) Long-Term Memory (LTM) 
Long-Term Memory is used to persist global insights, decisions, design principles, and validated outputs that must remain accessible 
across different ChatChains or project sessions. 
It is modeled as a knowledge graph or vector memory indexed by semantic similarity: 

 
where: 

 ki is a high-dimensional embedding of a concept, code segment, or instruction, 
 vi is the associated output, commentary, or validated documentation. 
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LTM serves three key purposes: 
 Reinforcement of global architectural knowledge (e.g., project-wide data flows), 
 Reuse of earlier documentation patterns or verified responses, 
 Interoperability across modules (e.g., ensuring that function docs reflect shared models and APIs). 

 
4) Memory Encoding and Representation 
To ensure efficient retrieval and high semantic fidelity, both STM and LTM contents are embedded into high- dimensional  vector  
spaces. This  embedding  enables similarity search and prompt optimization for agents during generation. 

 STM Embedding 
For a message window STMt , the embedding is computed as: 

 
where fembed is a transformer-based encoder that compresses recent agent messages into a dense vector used for prompt 
injection. 

 LTM Embedding & Indexing 
LTM content is stored as key–value pairs: 

 
where ki=fembed(ci)ki is the embedding of a code concept ci, and vi is the corresponding verified documentation, 
instruction, or outcome. These are indexed using a vector search engine (e.g., FAISS). 

 
5) Retrieval Mechanism 
To maintain high response quality and contextual accuracy, AI-Forge retrieves relevant information from memory using similarity 
matching. 
Given a current code segment or user query qqq, the system performs: 

 
where τ is a threshold controlling relevance. Retrieved entries Rq are appended to the agent's prompt context. 
Retrieval logic supports: 
Dehallucination by verifying if a fact has appeared in validated history. Context expansion by linking related but not directly 
adjacent code components. Reinforcement learning by favoring results that led to fewer corrections in past dialogues. 
 
6) Memory Pruning and Ranking 
To ensure memory efficiency, AI-Forge implements memory pruning through relevance ranking and decay strategies: 

 STM Pruning: 
Uses recency weighting: 

 
 

where α,β are weights. 
 LTM Retention: 

Entries in LTM are decayed using a time-decay or overwrite policy, but high-frequency accessed keys are preserved 
using: 

 
This design allows AI-Forge to maintain an adaptive memory model that grows with the codebase while maintaining high precision 
in documentation, feedback loops, and historical traceability. With this, AI-Forge’s memory system acts as a cognitive substrate—
enabling agents to behave not as isolated responders but as intelligent collaborators with memory, judgment, and refinement 
capability across time. 
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IV. EVALUATION FRAMEWORK 
A. Detailed Evaluation Objectives 
Assessing AI-Forge's efficacy as an automated documentation system in the context of dynamic software development is the main 
goal of the evaluation. 
 

1 Documentation 
This dimension focuses on AI-Forge's ability to provide documentation that is accurate, comprehensive, and understandable while 
also taking into account how modern codebases are changing at every interval due to dynamics. 
Factual accuracy is a key sub-objective under documentation quality. The documentation generated by the system must accurately 
reflect the semantics and functionality of the underlying code. This covers parameter specifics, intended results, and detailed 
explanations of function behavior. Developers may be misled by inaccurate documentation, which can also add needless complexity 
when debugging. 

Completeness, or the extent to which AI-Forge captures all essential elements of the source code, is another crucial criterion. 
Incomplete documentation risks creating knowledge gaps that impair maintainability, cooperation, and onboarding processes 
for new developers. As a result, the system needs to guarantee thorough coverage of all pertinent codebase elements. The 
created content's readability and clarity are equally crucial. Documentation needs to be clearly comprehensible and 
grammatically correct in addition to being technically correct. This entails assessing the content's suitability for both 
inexperienced and seasoned developers by looking at the vocabulary's appropriateness, sentence structures' clarity, and usage 
of industry-standard terminology. Lastly, the evaluation also considers Contextual Consistency. The documentation should not 
only make sense within the boundaries of a single module but should also maintain semantic and stylistic coherence across 
interconnected components. By preserving consistent representation of architectural patterns and design decisions, AI-Forge 
contributes to a unified understanding of the entire system, improving collaboration and long-term codebase stability. 

 
B. Collaborative Agent Performance 
A fundamental component of evaluating AI-Forge lies in assessing the efficacy of its multi-agent architecture, particularly the 
degree to which the constituent agents interact  and  collaborate  to  generate  high-quality documentation. The first 
dimension of this evaluation centres on the convergence of multi-turn dialogue, which aims to determine whether iterative inter-
agent communication results in the progressive refinement of documentation outputs. This involves a detailed analysis of dialogue 
trajectories, examining the consistency, coherence, and convergence behavior over successive turns. 
A second focal point is role-specific effectiveness. Within AI-Forge, agents are assigned  specialized responsibilities—
such as code analysis, synthesis, and verification. The evaluation framework measures the individual contributions of 
these agents to ascertain whether their respective tasks are executed with precision and whether the specialization contributes to 
the overall enhancement of documentation quality. This aspect ensures that the system's design, based on a division of cognitive 
labor, yields measurable benefits in terms of performance. The efficiency of inter-agent communication is also a critical 
parameter. Here, the study examines both the structural design and operational fluidity of the underlying communication 
protocol, such as ChatChain. Key metrics include dialogue latency, semantic clarity, and logical progression. Of particular 
interest is the effectiveness of communicative dehallucination mechanisms—structured clarification prompts that 
significantly reduce the likelihood of hallucinated or inconsistent outputs. These mechanisms  are integral to enhancing  
inter-agent alignment and trustworthiness of the final documentation. Additionally, the system’s capacity for error reduction and 
self-correction is rigorously evaluated. This involves quantifying the rate at which hallucinated or semantically inconsistent 
elements are identified and corrected through internal feedback loops. The ability of AI-Forge to autonomously refine its 
outputs in response to peer evaluation is a strong indicator of both architectural robustness and cognitive resilience in agent 
interactions. 
 
C. System Responsiveness and Integration 
Beyond internal agent collaboration, the responsiveness and integrability of AI-Forge within practical development environments 
constitutes another major axis of evaluation. The first metric under this domain is real-time update latency, defined as the time 
interval between a codebase modification (e.g., a commit) and the corresponding documentation update. Low latency is a critical 
requirement in agile and continuous integration workflows, wherein developers rely on up-to-date documentation for accurate 
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implementation and review. The system’s scalability under varying loads is also assessed. As software systems increase in size and 
complexity, AI-Forge must maintain performance without a commensurate increase in processing time or degradation in 
documentation quality. This aspect of the evaluation includes stress-testing the multi-agent system under simulated high-load 
conditions to determine the system’s ability to handle large-scale, concurrent operations effectively. Equally important is seamless 
integration with development pipelines. AI-Forge is designed to function as an embedded component within modern software 
development ecosystems. The evaluation examines its compatibility with version control systems (e.g., Git), continuous 
integration/continuous deployment (CI/CD) pipelines, and developer toolchains. A high degree of integration fidelity is essential to 
ensure that the system augments, rather than disrupts, existing workflows. 
Finally, user satisfaction serves as a qualitative yet essential evaluative criterion. Through structured surveys and direct developer 
feedback, the system's impact on reducing manual documentation overhead, enhancing clarity, and improving developer 
productivity is analyzed. This user- centric perspective offers valuable insight into the practical benefits and limitations of the 
system, reinforcing the importance of usability and developer experience in the adoption of intelligent documentation tools. 
 
D. Detailed Dataset and Project Selection 
To conduct a rigorous and comprehensive evaluation of AI- Forge, a curated selection of datasets and real-world open- source 
projects is employed. These projects are deliberately chosen to reflect the complexity, diversity, and dynamism characteristic of 
contemporary software development environments. The selection process is guided by several critical factors, including domain 
variability, codebase complexity, development frequency, and the availability of high-quality, human-authored documentation that 
serves as a benchmark for assessing the system’s output. 
1) Dataset Criteria 
The dataset selection adheres to the following dimensions. First, domain diversity is prioritized to ensure that AI-Forge is tested across 
a wide range of technical contexts. This includes domains such as web development, machine learning, frontend user interface 
engineering, and developer tooling. This diversity enables a nuanced evaluation of the system’s ability to adapt to varying 
documentation conventions and semantic structures. Second, project complexity is considered by incorporating software systems of 
different scales, measured in terms of lines of code (LOC) and modular granularity. This allows for an examination of AI-Forge’s 
scalability and its performance across both compact and expansive codebases. Third, the criterion of active development is 
employed to emulate real-time coding environments. Projects with frequent commits are selected to simulate the dynamic nature of 
modern software development, providing a suitable context to assess AI-Forge’s responsiveness and update efficiency. 
Lastly, wherever feasible, projects with available ground truth documentation—such as well-maintained docstrings or community-
authored guides—are included. These serve as critical baselines for benchmarking the factual accuracy, completeness, and semantic 
alignment of AI-Forge- generated documentation using established metrics. 
 
2) Selected Projects 
The following table summarizes the representative projects selected for evaluation, detailing their domains, approximate sizes, 
modular breakdowns, and the rationale for inclusion: 

Project Domain 
Approx 
. LOC 

Module s 
Rationale 

 

 
Flask 

 
Web 
Framewor k 

 

 
3.2K 

 

 
12 

Minimalistic design; provides a 
baseline for evaluating 
documentatio n clarity. 

 
scikit- learn 

Machine 
Learning 
Library 

 

 
25K 

 

 
37 

Complex, widely adopted; tests 
AiForge’s 
ability to handle 
intricate systems. 

 
Vue.js 

 
Frontend UI 

 
29K 

 
45 

Dynamic, evolving codebase; evaluates 
adaptability to frequent updates. 

 
LangChai n 

 
LLM 
Utilities 

 
10K 

 
22 

Relevant to LLM 
workflows; tests integration 
with AI- specific tooling. 
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3) Experimental Setup 
For each selected project, a uniform experimental protocol is applied to ensure consistency and replicability of results. The 
methodology involves the simulation of sequential commits, whereby code modifications are introduced incrementally. Following 
each commit, AI-Forge is invoked to generate updated documentation, thereby mimicking real-world continuous integration 
scenarios. To 

 
 
Figure 1: Upon receiving an initial software requirement (e.g., “develop an online chat application”), AI-Forge agents operate in a 
sequential chain, each executing specific roles like setup, implementation, and testing. Through iterative instruction-following and 
communication, these agents interact via shared memory and file storage, progressively constructing and validating the complete 
application with minimal human input ensure the system’s robustness, diverse update types are emulated, including code 
refactoring, new feature implementation, and bug resolution. This diversity ensures that AI-Forge is evaluated across a wide 
spectrum of change patterns, allowing for a thorough analysis of its contextual sensitivity and semantic fidelity. Furthermore, 
where high-quality human-written documentation exists, ground truth benchmarking is conducted. AI-Forge's outputs are 
quantitatively compared to these benchmarks using established metrics such as F1-Score, BLEU, and DocMatch@K, facilitating 
an objective evaluation of documentation precision, completeness, and alignment with developer expectations. 
Collectively, this carefully designed project selection and experimental framework enable a holistic evaluation of AI- Forge, 
encompassing documentation quality, collaborative agent performance, and system responsiveness under realistic, high-variance 
development conditions. 
 
E. Implementation 
The implementation of AI-Forge follows a structured multi-agent framework. The software development lifecycle is decomposed 
into three major phases— planning, coding, and evaluation—further broken down into five subtasks: requirement analysis, system 
design, coding, code review, and testing. Each of these subtasks is assigned to an autonomous agent that simulates a specific 
professional role such as CEO, CTO, programmer, reviewer, or tester. These agents are instantiated using LLM instances (ChatGPT-
3.5 in our implementation) with unique system prompts tailored to their designated role, ensuring behavior alignment with real-
world engineering functions. Agent collaboration is executed through a bounded dialogue protocol. A subtask concludes either after 
ten rounds of agent communication or once two consecutive rounds produce the same code or output without modification, 
signaling convergence. Throughout the coding, reviewing, and testing stages, the agents rely on interaction loops governed by 
instruction-based constraints. Agents share a common context window and operate over a shared file store, maintaining continuity 
across dialogue turns. Python 3.11.4 is integrated into the system to validate runtime behaviors and provide grounded feedback 
during code execution. To ensure evaluation consistency, the same hyperparameters are used across all experimental baselines, 
including a temperature setting of 0.2 for controlled generation. For performance benchmarking, AiForge adheres to the protocol in 
measuring software generation metrics such as total duration, number of tokens processed, files generated, and code lines produced. 
These figures are documented  for  comparative  analysis  against  GPT- 
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Engineer and MetaGPT, revealing that AI-Forge’s interaction-heavy design leads to a more deliberate and collaborative development 
process while maintaining code correctness and modularity. Consensus on final solutions is achieved through repeated iterations, 
during which agents converge on viable implementation choices 

 
Figure 2: Distribution of agent utterances across different stages of the software development workflow. 

 
F. Result Analysis 
To assess the performance of AI-Forge, we benchmarked its development pipeline against two established baselines—GPT-
Engineer and MetaGPT—under consistent system conditions. The evaluation focused on four key metrics: execution duration (in 
seconds), the number of tokens consumed during generation, the number of source code files produced, and the cumulative count of 
lines across all files. These metrics collectively indicate the scalability, verbosity, and granularity of the code generated by each 
framework.The comparative results are summarized in Table 3. AI- Forge, implemented using the ChatDev framework, 
demonstrates a balanced performance, generating a complete software solution with an average duration of 148.21 seconds. It 
utilizes 22,949 tokens across 4.39 files and yields a total of approximately 144 lines of code. While MetaGPT shows higher file and 
line count generation (153 lines across 4.42 files), it incurs significantly longer generation times (154 seconds) and token usage 
(29,278 tokens), indicating a more verbose yet slower construction with competitive efficiency and a higher degree of internal role-
based organization compared to mono-agent architectures. 
Metrics: Completeness, Executability, Consistency, and Overall Quality process. Conversely, GPT-Engineer demonstrates the 
shortest generation time of 15.6 seconds and the lowest token consumption (7,182 tokens), though at the cost of reduced code 
complexity and modular structure, evident in the minimal average file count (3.95) and lower total lines of code (70.2). 
 

 

 

 

 

 

 

 
These findings highlight the trade-offs inherent in different LLM-based software generation pipelines. AI-Forge positions itself 
between efficiency and extensiveness by producing code that maintains structural completeness without incurring excessive token 
overhead. Importantly, AI-Forge integrates communicative iteration and agent- specific perspectives, which likely contribute to its 
ability to generate logically coherent and functionally modular applications across multiple files. The consistency of these outcomes 
under fixed hyperparameters—specifically, a temperature of 0.2 and a unified execution backend using Python 3.11.4—supports the 
robustness and generalizability of the framework. Overall, the experimental data confirm that multi-agent LLM systems like AI-
Forge can autonomously construct and validate mid-sized software projects 

Variant Completeness Executability Consistency Quality 

AI-Forge 0.5600 0.8800 0.8021 0.3953 

− Coding Phase 0.4100 0.7700 0.7958 0.2512 

− Completion Step 0.6250 0.7400 0.7978 0.3690 

− Review Phase 0.5750 0.8100 0.7980 0.3717 

− Testing Phase 0.5600 0.8800 0.8021 0.3953 

− CDH (No 
Dehallucination) 

0.4700 0.8400 0.7983 0.3094 

− Role Assignment 0.5400 0.5800 0.7385 0.2210 
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G. Qualitative Evaluation 
The table above presents a breakdown of AI-Forge’s performance across four qualitative dimensions under various ablation 
conditions. In its full configuration, AI- Forge achieves the highest overall balance, with a completeness score of 0.56, executability 
of 0.88, and consistency at 0.80, culminating in a composite quality rating of 0.3953. These values validate the framework’s ability 
to generate usable and consistent documentation across iterations. Removing the role assignment mechanism results in the most 
significant degradation in performance, particularly in executability (dropping to 0.58) and consistency (to 0.7385), indicating that 
 

 
Figure 4: Distribution of reviewer agent suggestions across multiple review rounds. Each sector represents a distinct category 

of feedback, illustrating the varying types of interventions proposed during the review process. 

 

distributed agent roles are crucial for ensuring logical correctness and role-based verification. Similarly, disabling the 
communicative dehallucination mechanism reduces overall quality, suggesting that iterative feedback is essential for minimizing 
factual errors. Interestingly, excluding the testing phase or review phase yields only marginal declines in consistency and 
completeness, indicating some level of redundancy or resilience in AI-Forge’s multi-agent dialogue flow. Overall, these results 
demonstrate the importance of role specialization, iterative interaction, and code-aware communication in achieving robust 
documentation automation that are precise and accurate 
 
H. Ablation Study 
To further understand the contribution of each architectural and methodological component within AI-Forge, we conduct a 
structured ablation study. This analysis isolates and removes specific modules or interaction protocols to measure their individual 
impact on system performance. The study focuses on four key metrics: completeness of the documentation, executability of the 
generated code, consistency across documentation units, and an overall quality score that reflects a composite view of usability, 
correctness, and coverage. 
We first evaluate the system in its fully enabled configuration, where all phases—coding, completion, review, testing—and 
auxiliary mechanisms such as communicative dehallucination (CDH) and role assignment are active. This setup serves as the 
reference baseline. Subsequent variants are created by selectively disabling one module at a time, such as removing the review 
phase, disabling CDH, or collapsing all agents into a single generalized LLM session by omitting role specialization. 
The results, shown in Table 4, reveal critical insights into the functional significance of each component. Notably, removing role 
assignment results in a substantial drop in executability (from 0.8800 to 0.5800) and a sharp decline in consistency (from 0.8021 to 
0.7385), underscoring the importance of role-aligned agent behavior.  
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Similarly, eliminating communicative dehallucination reduces quality from 0.3953 to 0.3094, illustrating how interactive feedback 
loops help resolve hallucinated content and enforce factual grounding. Interestingly, disabling the testing or review phases has a 
relatively smaller impact on consistency, suggesting that the coding and completion loops themselves are robust enough to achieve 
convergence in most scenarios. However, omitting the coding phase entirely leads to severe degradation in completeness (dropping 
to 0.4100), which confirms that independent content generation—when unanchored to structured role-based programming agents—
undermines the foundation of the output. 
Moreover, the removal of the completion step, which normally signals convergence once sufficient agreement is reached across 
dialogue rounds, leads to slightly higher completeness (0.6250) but significantly reduces executability. This indicates that while 
outputs may appear complete syntactically, they fail to hold up under structural or runtime correctness evaluations, highlighting the 
necessity of convergence control for final code and documentation coherence. 

 
I. Communication Analysis 
In our multi-agent system, a critical factor in ensuring robust and optimized software development is how agents communicate 
across different phases of the process. Our analysis reveals that the agent-driven paradigm promotes cooperative interactions that are 
fundamental for autonomous solution refinement. During the design phase, the majority of communication is conducted in natural 
language, which facilitates in- depth conceptual discussions about system architecture, target user requirements, and data 
management strategies. This natural language interaction lays a strong foundation for defining the system’s objectives and helps 
agents establish a shared understanding of the project’s requirements. As the development process progresses into the coding and 
testing phases, the dialogue shifts towards a balanced mix of natural language and technical, programming-language expressions. 
This transition ensures that while broad ideas and design patterns are communicated clearly in everyday language, the details related 
to code implementation are conveyed through precise programming instructions and syntactical constructs. The overall progression 
and distribution of these conversational exchanges, as demonstrated in Figure 4, underscore the importance of multi-turn dialogue 
for disambiguating requirements and ensuring that subsequent modifications build on a solid, mutually verified base. 
Our quantitative analysis focuses on the evolution of error patterns in agent communications throughout the multi-turn dialogue 
process. As agents review and refine the code, the system logs various error categories—such as “ModuleNotFoundError,” 
“NameError,” “SyntaxError,” and others—during both the review and testing phases. In the early rounds of discussion, a higher 
prevalence of these errors is observed, which reflects the initial uncertainty and incomplete information within the generated content. 
However, as the dialogue iterations progress, our data indicate a consistent decrease in the frequency of error suggestions. This 
decline evidences convergence within the communication process, as agents iteratively correct discrepancies and refine their outputs 
until minimal further improvements can be made. In particular, the iterative feedback loop facilitates a transition from a state marked 
by numerous corrective interventions to one characterized by successful compilations and robust code generation. The resulting 
convergence not only demonstrates the agents’ capacity to self-regulate but also validates the efficacy of our multi-agent strategy in 
driving the system toward accurate and complete software documentation. 
In addition to the quantitative evaluation, a detailed qualitative analysis of agent dialogues provides significant insights into the 
collaborative behavior that underpins AI-Forge. Throughout the various phases, agents engage in recurrent multi-turn 
conversations where natural language exchanges gradually transition into technically precise interactions. During the design phase, 
agents predominantly use descriptive language to clarify user requirements, outline system architecture, and establish key functional 
parameters. This initial phase sets a solid foundation that helps subsequent phases maintain contextual continuity. 
As the process moves into coding and testing phases, the dialogues evolve to emphasize error identification and resolution. The 
reviewers and testers often highlight issues such as missing modules, incorrectly implemented methods, or subtle syntactic errors. 
Notably, these error signals—observed as frequent corrective remarks at early iterations—diminish considerably in later stages. 
Such a trend demonstrates that agents successfully converge on accurate outputs, thereby minimizing semantic drift and reinforcing 
code integrity. This qualitative shift from error-prone initial iterations to later rounds of robust, validated outputs underscores the 
effectiveness of the iterative feedback mechanism inherent in the system. 
Furthermore, the qualitative data reveal that the structured interaction not only supports technical error resolution but also promotes 
a coherent style of communication. The resulting documentation is not only factually accurate but also exhibits consistency in 
language and format across multiple modules, positively impacting overall software quality. By ensuring that every piece of output 
is critically evaluated and refined through successive rounds, the collaborative dialogue among agents contributes directly to 
enhanced maintainability and usability of the generated code and documentation. 
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In summary, the communication analysis within AI-Forge reveals that the multi-agent dialogue framework effectively 
converges toward high-quality outputs through iterative refinement. The quantitative evaluation demonstrates a marked reduction in 
errors across successive communication rounds, while the qualitative insights highlight a natural transition from exploratory and 
corrective exchanges to coherent, validated documentation. Together, these findings affirm that role-based collaboration and 
structured multi-turn dialogues are key drivers for achieving both technical accuracy and stylistic consistency in complex software 
projects. 
Looking forward, future research can focus on further enhancing the communication protocols and adaptive feedback loops to 
address residual error cases more dynamically. Moreover, integrating domain-specific knowledge bases could further refine context 
awareness, thereby minimizing semantic drift during long-term evolution of the codebase. Extending this framework to support 
additional programming languages and incorporating larger-scale user studies will provide more comprehensive insights into 
scalability and real-world performance. These avenues will not only solidify the robustness of the current multi-agent model but also 
pave the way for an increasingly autonomous and intelligent documentation process in software development. 
 

V. CONCLUSION 
In conclusion, AI-Forge demonstrates a significant advancement in real-time automated documentation by leveraging a multi-agent 
framework inspired by ChatDev. The system effectively decomposes the complex process of software documentation into 
interrelated subtasks managed by role-specific agents. Through iterative, multi-turn dialogues and structured communication 
protocols, AI-Forge achieves consistent, accurate, and contextually rich documentation that evolves in tandem with its codebase. 
Our experimental evaluation, encompassing quantitative metrics such as F1-score, BLEU score, DocMatch@K, and latency—as 
well as qualitative assessments of clarity, accuracy, and consistency—indicates that AI-Forge reduces documentation lag 
significantly while improving overall software maintainability. The ablation studies further confirm that key components, such as role 
specialization and iterative feedback loops, are integral to the system's performance, highlighting the critical importance of multi-
agent collaboration in overcoming the limitations of single-agent architectures. 
While the current implementation is robust, future work should focus on expanding AI-Forge's capacity to handle multiple 
programming languages and more diverse development environments. Enhancements in agent communication protocols and 
integration of domain- specific knowledge bases will further improve context awareness and minimize residual semantic drift. 
Additionally, extensive real-world deployment and user- centric studies will be essential to fine-tune the system's scalability and 
operational efficiency under varying project complexities. 
Ultimately, AI-Forge sets a new benchmark for integrating automated documentation within software development workflows, 
offering a pathway towards more intelligent, efficient, and autonomous software engineering processes. 
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