

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77159>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

AI - Powered Exam Paper Generator Website

Neha Dhule¹, Tanisha Mhatre², Prof. Snigdha Mankar³

^{1, 2}Undergraduate Student, Department of Computer Engineering, Terna Engineering College, Mumbai, India

³Associate Professor, Department of Computer Engineering, Terna Engineering College, Mumbai, India

Abstract: Creating exam question papers is an essential academic responsibility, so the process remains largely manual, repetitive, and time-consuming for educators. This research is useful for representing an artificial intelligence based automated question paper generation system designed to streamline the development, organization, and distribution of assessment materials. The system uses intelligence as a computational technique to generate structured, efficient, and balanced questions based on user-specified parameters such as subject, difficulty level, question type, and duration. This modular web architecture enables separate interfaces for administrators, teachers, and students, supporting a complete examination workflow from paper content creation to delivery of papers to students. Experimental evaluation shows that how the system significantly reduces manual effort, enhances question quality, improves standardization, and increases overall efficiency within educational environments. The findings confirm that the involvement of artificial intelligence into assessment practices provides a practical, scalable, and reliable approach to modernizing traditional examination processes.

Index Terms: Assessment automation, artificial intelligence, question generation, web-based systems.

I. INTRODUCTION

Examinations are an important part of an educational system also the quality of a question paper majorly affects learning outcomes. However, most institutions still depend on manual paper setting which requires teachers to give significant time selecting topics, framing questions, balancing difficulty levels, and ensuring proper formatting. This process becomes repetitive and difficult across multiple exam cycles, often resulting in question repetition, uneven difficulty distribution, and delays.

Advancements in artificial intelligence (AI) and natural language processing (NLP) now offer an efficient alternative by automatically generating efficient and well-structured questions. Large Language Models (LLMs) can understand subject context, create meaningful questions, and adjust difficulty based on requirements.

This project presents an AI-based automated question paper generation system which allows teachers to input exam parameters and receive a complete, balanced, and well-formatted question paper. The platform improves consistency, reduces manual effort, and supports teachers, students, and administrators through an integrated web interface.

II. LITERATURE REVIEW

A. Overview of AI-Based Paper Setter Website

The traditional examination systems depend heavily on teachers to manually design, record, and format question papers by manual work or a basic institutional template. This manual approach often leads to challenges such as repeated questions, difficulty imbalance, slow development of papers, and overall inefficiency.

The recent studies highlight growing need for automation in educational assessment. An automated question paper generation system was developed in several institutions with the aim of reducing human error in paper setting, ensuring syllabus alignment, and it minimizes the time taken to create multiple exam sets.

These systems typically include features such as topic selection, difficulty selection, and question categorization. Research shows that automated systems significantly reduce repetitive workload and improve the consistency of generated papers (Panchal & Chouhan, 2024).

This academic project demonstrated the use of AI to support college-level examination departments by generating diverse sets of questions and auto-formatting exam papers based on course outcomes. Although requirements may vary between institutions but the common goal is to address issues like insufficient question diversity, lack of standardization, and difficulty in generating multiple versions. From existing studies, it can be concluded that AI-based paper setter systems reduce manual errors, increase reliability, and improve academic productivity by automating most of the question paper creation tasks (Kumar et al., 2025).

B. Overview of Tools and Programming Languages for AI-Based Paper Setter Website

The various research studies discuss tools, frameworks, and programming languages used to implement automated question generation systems. In many academic systems, Python is widely used due to its rich ecosystem of artificial intelligence libraries and natural language processing support. Frameworks such as Flask and Django enable quick and reliable development of web applications, while SQLite or MySQL serve as lightweight and structured databases for storing generated papers and user data which provide efficiency.

Some of the implementations highlight effective use of large language models (LLMs) for generating context-related questions. These show that Python, combined with NLP libraries and Google Gemini APIs, provides simple and scalable integration for AI-driven question generation.

Other researchers conducted comparative analysis on database technologies, which includes relational databases like MySQL are efficient for structured question storage. For web-based systems, HTML, CSS, and JavaScript are the choices due to simplicity and wide adoption. Several academic teams prefer open-source tools to reduce cost and ensure faster development, similar to inventory management system studies.

A recent system used Flask, HTML, CSS, JavaScript, and SQL with artificial intelligent APIs to build a complete question generation workflow. This stack is lightweight, easy to deploy, and widely supported, making it suitable for different projects. Based on literature, selecting the right tools based on project type not only reduces development time and cost but it enhances system performance and scalability these are efficient ways.

C. Comparison of Similar Systems

Compared to existing AI-based and manual paper-setting tools, the proposed system offers several advantages. Most commercial educational platforms require paid subscriptions for advanced features such as AI-based generation, difficulty mapping, or automated formatting. In contrast, the proposed system provides these features without additional cost and relies on the local hosting environment, making it more accessible for academic institutions and small departments.

Many existing systems lack integrated features such as multi-level question type generation (one-word, short, long, description-based), student has access of previous papers, or admin monitoring dashboards. The proposed system combines these functionalities into a single platform which enhances usability. It also provides an organized question structure, AI-generated diversity, and a well-formatted exam paper that aligns with institutional requirements.

Furthermore, while several existing generators produce only MCQs or simple recall-based questions, the proposed system supports a wider variety of cognitive levels. The dashboard also includes notifications to prevent question repetition. However, one limitation compared to some advanced commercial systems is the absence of additional features like automated answer key generation or plagiarism scanning. Despite this, the system achieves a balanced combination of usability, efficiency, and extensibility suitable for academic use.

III. PROBLEM STATEMENT

In modern education system, the creation of examination question papers is a repetitive and time-consuming task. The development of well-structured, balanced, and fair question papers requires significant effort, especially when different parameters such as subject, difficulty level, and exam duration must be considered. Manual generation of Examination question papers results in delays, errors and inconsistencies. The distribution of question papers to students must maintain confidentiality and integrity to prevent leaks or malpractices. The traditional methods of paper deployment to students, either via physical copies or unsecured digital systems which always do not ensure security and easy accessibility. On the other hand, student may lack access to a wide variety of practice question papers that cater to different subjects and difficulty levels. There is no centralized platform that allows them to search, solve, and download practice papers efficiently. To address these challenges, an AI-Based Paper Setter Web Application is proposed. The system automates the generation of examination question papers using artificial intelligence which ensures deployment by teachers, and provides a searchable repository for students. This method minimizes manual effort, maintains fairness, and improves efficiency in both teaching and learning processes.

IV. AIMS AND OBJECTIVES

The aim of this study is to develop an AI-based question paper generation system that provides faster, more accurate, and more efficient creation of examination papers while improving the overall management of academic assessments.

The Objectives are

- 1) To automate generation of question papers using AI to reduce manual effort and time spent by teachers.
- 2) To generate balanced and well-structured questions with correct difficulty levels and syllabus coverage.
- 3) To provide a centralized web platform for teachers, students, and administrators to manage examination tasks efficiently.
- 4) To improve the overall assessment process by ensuring consistency, accuracy, and accessibility of generated question papers.

V. RESEARCH METHOD

Through extensive analysis and investigation of the current manual process of generating question papers and the challenges that accompany it, there are a number of important findings from the research study regarding needs identified in the process of manually generating examination papers. After careful examination of current academic practices, as well as the limitations of existing systems and workloads of teachers, it has been proposed that significant operational gaps do exist in relation to generating questions for assessment, which may directly impact on the overall quality, correctness and efficiency of generating examination papers. An essential conclusion from this analysis was that to be effective, the proposed AI-Based Automated Question Paper Setter System needs to address many of the current problems experienced by academics within real-life education settings. The research findings suggested that when manually preparing a question paper, it is very often not evenly distributed throughout all questions, that question difficulty can vary significantly from exam to exam, that similar questions may be repeated in different examination papers and that the time taken to prepare an examination paper can be substantial at peak examination periods. This information assisted the researcher with identifying key functionality and design parameters necessary for the new system.

Following the completion of data collection and analysis, the development stage of the system began. During the system development process, the requirements were divided into two groups - functional and non-functional. The system was developed using the following processes: Architecture Planning; Database Modelling; User Interface Design; Algorithm Development; and Implementation of AI-Assisted Question Selection Logic. A combination of Programming Languages (Python), Frameworks (Flask), as well as Web Technologies (HTML, CSS), were utilized to create a robust and user-friendly system that can produce question papers based on the parameters defined by the teacher. During the development process, the system was continuously validated through Unit Testing, Usability Testing, and Performance Evaluation. The Research Method has successfully blended Problem Identification, Data Analysis, Systematic Development, and Iterative Validation into a single coherent Work Product that is both useful in the environment in which it is intended to be used and technically viable.

VI. INCREMENTAL MODEL

The creation of the AI-Powered Automated Question Paper Setting System is based on the Incremental Software Development Model because this model is suitable for projects that need continuous improvements and is both adaptable and flexible. The Incremental Software Development Model divides a project into small parts or modules that are built, tested, and combined in sequence. The first increment created the framework for the entire system (i.e., login module, user authentication, and database initialization). Once the framework was built, the second increment included the question bank management system, allowing teachers to input, alter, categorize, and label questions by level of difficulty and by subject.

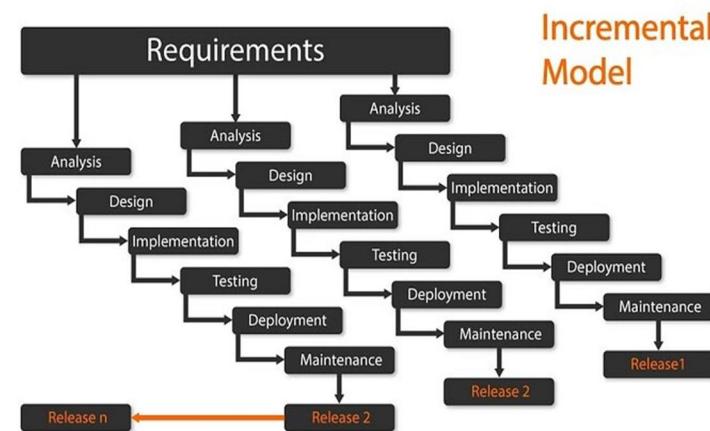


Fig. 1: Incremental model

Integration of the AI-driven question selection logic, a core component of the system, was included as part of the third Increment, which allows question retrieval to be automated using different criteria such as topic, difficulty, and type of question. In the fourth Increment, the system was enhanced with the paper formatting and export features, enabling teachers to create and download question papers in PDF or Word format. As part of the final Increment, the Student module was added, allowing students to access and download practice papers and adding reporting and analysis capabilities to the Admin Dashboard. The last Increment included performance enhancement, UI enhancement, and bug fixing for performance optimization and full System Integration. By using the Incremental Model to develop the system, each module was thoroughly tested on its own before being combined into the final integrated solution, providing more robust functionality and reduced risk in the development process, as well as increased opportunities to implement user feedback. Additionally, the use of this model allowed for working examples of the system to be released earlier and be continuously improved throughout the entire development process due to its incremental nature.

VII. REQUIREMENT ANALYSIS

The author looked at many of the current digital Question Banks and traditional processes of Question Paper Creation and Assessments to find out the advantages and disadvantages. It was found that, although many of the Digital systems do help with the management of question banks, they tend to not offer the same intelligent filtering capabilities as a teacher would expect, and are unable to balance the difficulty of a question, to create questions according to the academic guidelines for an overall folder of questions, as well as creating an overall folder of questions that belong to the same subject (e.g., History or Biology). Most teachers take time arranging to format their End of Term Examination Papers, arranging questions into sections, assigning marks to questions, and making sure all topics have been fulfilled per their respective syllabi. The absence of having a centralized storage area (common question bank), where teachers have automatic classification capabilities, is very time consuming, and makes the current systems that are available extremely inefficient. All these limitations create the perfect environment for the development of a more intelligent, accurate and automated Artificial Intelligence (AI) system to create question banks; in a manner that can alleviate the time taken for these processes.

As a result, many of the original design features that formed the basis of the will-need-to-be-implemented proposed system include; classification of questions, categorization of question difficulty, automatic retrieval of questions, and generating exam papers in a structured format. The first step in the requirements analysis was to determine what the core features are. As the requirement analysis continued, additional requirements became apparent, including Multi-Set Generation Capability for creating multiple paper sets, Secure Storage of Question Banks, Flexible Export Formats, and the inclusion of a student accessible practice module. The advanced features and additional requirements identified through the requirements analysis provide the following benefits: A system that addresses existing issues and enhances the overall Academic Workflow. The researcher was able to use the Information obtained through the Requirements Analysis to determine, justify, and prioritize the functionality and Non-Functionality Requirements necessary to develop a reliable, efficient and Intelligent Automated Paper Setter System for use by Educational Institutions.

VIII. SYSTEM ARCHITECTURE

The architecture of the proposed AI-based Automated Question Paper Setter System consists of multiple layers and many modules for clear understanding, maintainability and effective data transfer among components. The overall structure can be seen in Figure 2, which shows how user interactions go through the User Interface Layer, AI Engine Layer, Database Layer and then to the output file generation layer. The layered structure of the architecture provides separated roles for all components of the system while also providing seamless integration of modules involved in the generation of question papers. The highest level is comprised of Users and their roles. There are three main roles: Admin, Teacher and Student; each with a different level of access to the system. The role of Admin is to supervise all activities related to paper generation and manage access to the application. Teachers use input parameters to develop question papers and Students gain access to previously generated papers to practice. The user roles interact with the system through the User Interface Layer; this layer consists of a login/dashboard module, a create paper form and a feedback form. The User Interface Layer serves as the entry point to interact with the system and includes the necessary functions for users to request, select subjects, indicate difficulty, create question papers and receive question papers after they have been generated, and provides users with the tools they need to effectively navigate and access the various functions of the system.

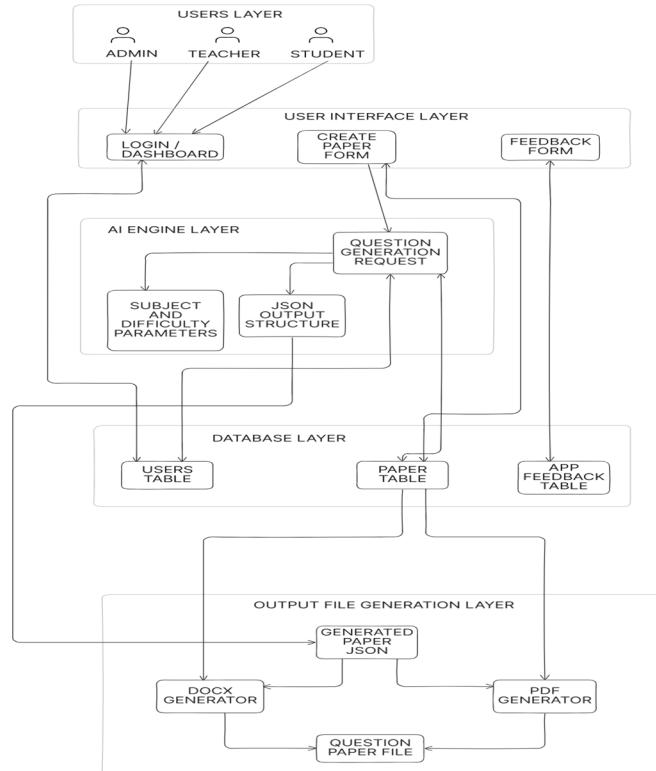


Fig.2: Proposed Architecture of system

The AI Engine Layer is the system's core intelligence. After a teacher submits a question generation request via the UI, the UI forwards various input parameters to the Engine for processing. The input parameters include subject area(s), difficulty levels, type(s) of question(s), and total number of question(s) requested (e.g. multiple choice, true/false, etc).

The AI Engine consists of two primary modules; the Subject and Difficulty Parameters Module, and the JSON Output Structure Module. The Subject and Difficulty Module resides within the AI Engine and processes the subject area(s) and difficulty level(s) chosen by the teacher, mapping these choices to the appropriate filtering rules. The JSON Output Structure Module is responsible for creating a structured output of the questions selected, organised in a JSON format that defines the layout of the Final Question Paper before exporting. Both modules work together to provide automation for filtering out poor quality questions from the output, balancing questions according to difficulty level, and structuring the output question papers, allowing teachers to produce well-organised, coherent, and valid question papers with minimal effort.

The database layer serves to store all of the information centrally for the entire system. It consists of three primary data tables: (1) Users Table, (2) Paper Table, and (3) App Feedback Table. Users Table collects user account information used to login into the app and identify what roles they can have within the platform (i.e., Admin, Teacher, Student). Paper Table records the metadata (e.g., title, author)s and content of each paper created, so that they can be easily searched and retrieved for modifications thereafter. App Feedback Table contains user-provided feedback, which is utilized for ongoing improvement of the app throughout its lifecycle. In addition, the database layer allows the system to store data reliably, retrieve it quickly and securely.

The AI engine interacts extensively with the Paper Table in its generation of questions for users. The Paper Table provides all historical questions that are saved in the entity while also providing access to where new questions will be stored.

After the AI engine has generated a question set, control is passed to the Output File Generation Layer to create a formatted document to send back to the user. The Output File Generation Layer consists of three major components: (1) Generated Paper JSON format, (2) DOCX Generator; and (3) PDF Generator. The JSON File describes the structure of the Question Paper, which is then transformed into both a DOCX and PDF file by their respective generators for the purpose of sending them back to the end user in a downloadable format. The formatting tools also ensure that the output files meet appropriate academic requirements such as section headings/contents; numbering; and spacing; thereby creating a professional quality output for the end user.

In summary, the architecture of the proposed system follows a clean, layered structure that separates responsibility across interface, intelligence, storage, and output processing components. Such a modular layout not only simplifies debugging and maintenance but also improves scalability, allowing additional AI modules, question formats, or export types to be integrated easily in future versions. The architecture ensures that each user request flows efficiently across layers, making the system reliable, scalable, and optimized for real-time academic use.

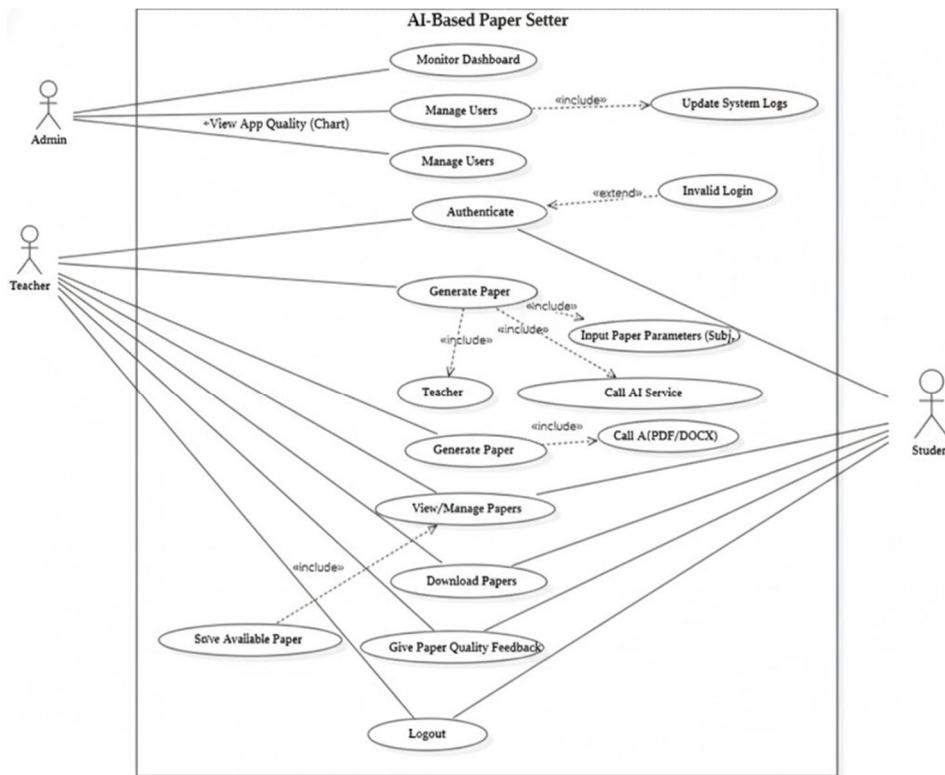


Fig.3: Use case Diagram

IX. PROJECT PLAN

A project plan typically describes the major additions, enhancements, and modifications made to each successive development version of the system. Under the Incremental Development Model, as additional versions are added, they become available as functioning modular components on top of the previous versions. This researcher will describe the functionality associated with creating each developmental version of the AI-Based Automated Question Paper Setter System that the researcher is developing throughout this incremental process. There are three versions of the release of this project.

A. AI-Based Paper Setter System - Version 1

Version 1 establishes the basic framework for the creation of the overall systems configuration. The initial version includes the development of the initial core modules of the system, such as the user login module, a teacher registration module, and the overall user interface for the system. The design of the question bank will enable teachers to add, and maintain a collection of questions with key data elements (e.g. subject, marks, difficulty level) associated with those questions. This version primarily focuses on the delivery of the authentication module, as well as the foundational components that will be used to construct future modular increments.

B. AI-Based Paper Setter System - Version 2

Version 2 when the AI-powered question selection engine was created, which allowed teachers to automatically create tests using parameters determined by the user. Because of the inclusion of additional features such as Question Filtering, Balancing Questions by Difficulty, and Structured Formatting of Generated Exam Papers, the AI-based Paper Setter System was able to produce Preview Quality exam papers as its first step towards automation.

C. AI-Based Paper Setter System - Version 3

Version 3 of the AI-based Paper Setter System is focused on making the system more accessible to students, increasing the efficiency of the system overall, and providing a robust experience for teachers and students alike. The addition of the Student Module allows students to view and download the various papers generated. The inclusion of Export Options (PDF and Word) and the enhancement of the User Interface have created an effortless navigation experience for users. This version also incorporates several minor bug fixes, enhanced performance and the final integration of all modules into a fully functional system.

Fig.4: Activity Diagram

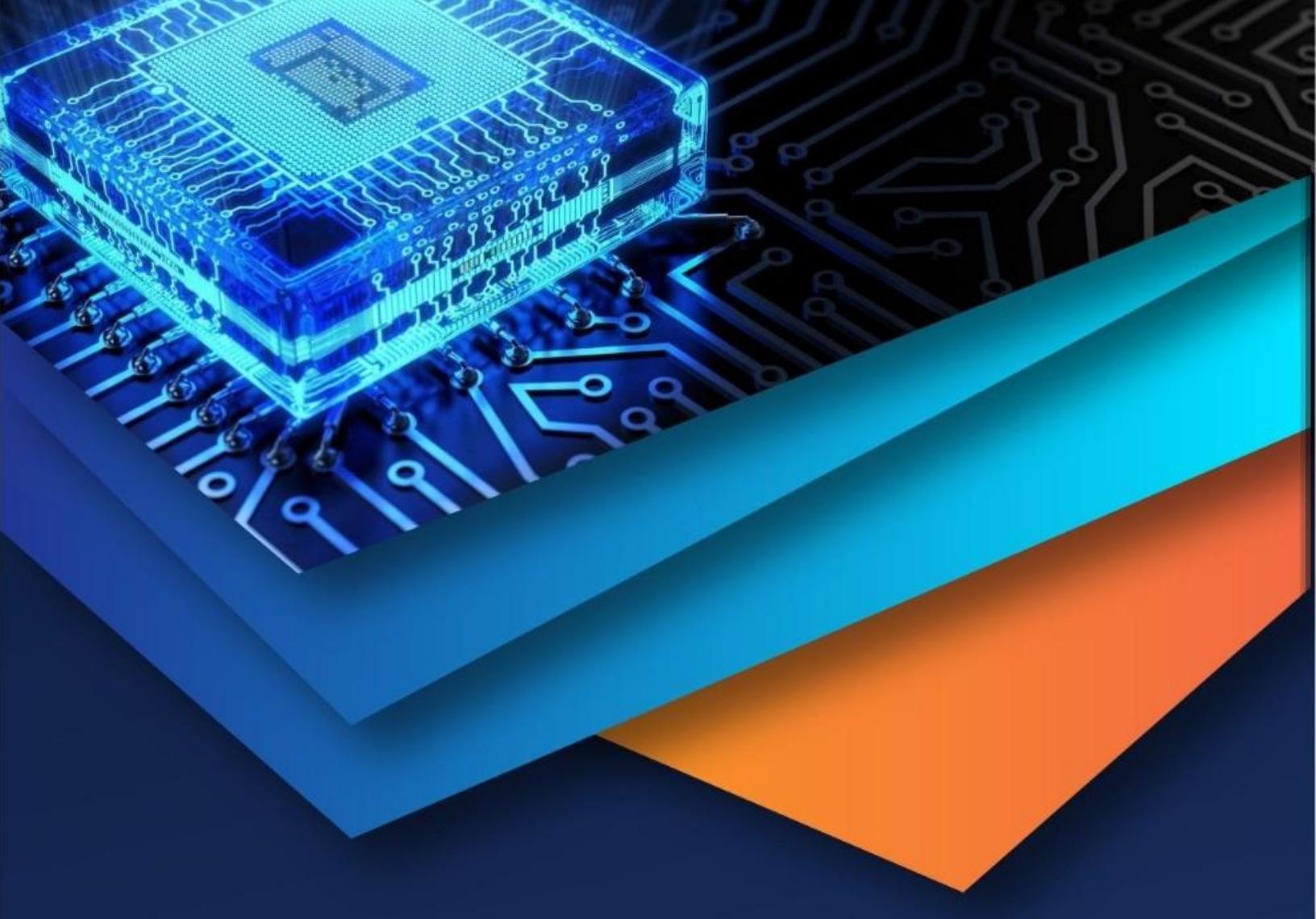
X. CONCLUSION

The AI-Based Paper Setter Web Application successfully addresses the challenges faced by educational institutions in generating and distributing question papers manually. By integrating Artificial Intelligence, the system automates the creation of question papers based on parameters such as subject, topic, difficulty level, and time duration. The application provides a structured and efficient platform for administrators, mentors, and learners, allowing admins to monitor activities and maintain the system, mentors to generate and deploy papers efficiently, and learners to access, solve, and download papers for self-practice. This automation significantly reduces manual effort, minimizes errors, and ensures standardization and fairness in paper creation. The project demonstrates how technology can streamline educational processes, enhance teaching efficiency, and provide learners with valuable resources for exam preparation.

XI. FUTURE DIRECTION

The AI-Based Paper Setter Web Application has significant potential for further development and enhancement. Some of the possible future improvements include:

- 1) Performance Analytics: Detailed reports and analytics for mentors and learners, tracking strengths, weaknesses, and progress over time.
- 2) Integration with Learning Management Systems (LMS): Seamless connection with existing educational platforms for wider accessibility.
- 3) Multi-language Support: Expanding the system to support multiple languages for broader reach.
- 4) Mobile Application: Developing a mobile-friendly version for on-the-go access by learners and mentors.


By implementing these enhancements, the system can evolve into a comprehensive digital assessment platform, further improving efficiency, personalization, and quality in education.

XII. ACKNOWLEDGEMENT

The researchers gained valuable experience while developing this AI-Based Paper Setter System. They learned new tools and technologies such as Flask, AI integration, and web development frameworks, and explored various study materials to understand automated examination systems. Managing this project alongside other academic tasks also helped improve planning and time-management skills. The project greatly enhanced the researcher's technical knowledge and practical understanding.

REFERENCES

- [1] T. V. Vijay Panchal and L. S. Chouhan, "Intelligent Question Paper Generation using AI and ML Algorithms for Tailored Difficulty Levels," *Int. J. Res. Emerging Sci. & Technology (IJREST)*, vol. 10, pp. 1–17, Feb. 2024.
- [2] K. Praveen Kumar, A. Reddy, V. Devana, P. Adapa, T. Vamsi, K. Rishi, and S. Sunil Kumar, "Automated Question Paper Generator Using LLM," *Int. J. Research & Innovation in Applied Science (IJRIAS)*, vol. 10, issue 4, 2025.
- [3] M. Saha, "Towards development of a system for automatic assessment of the quality of a question paper," *Smart Learning Environments*, vol. 8, Article number 4, 2021.
- [4] C. A. Nwafor and I. E. Onyenwe, "An automated multiple-choice question generation using natural language processing techniques," *arXiv preprint*, Mar. 2021
- [5] X. Jia, W. Zhou, X. Sun and Y. Wu, "EQG-RACE: Examination-Type Question Generation," *arXiv preprint*, Dec. 2020.
- [6] F. K. Gangar, H. G. Gori, and A. Dalvi, "Automatic Question Paper Generator System," *International Journal of Computer Applications*, vol. 166, issue 10, May 2017, pp. 42–47.
- [7] P. Srinivasa Rao, T. V. V. Kiranmai, E. Samhitha, R. Sai Shiva, and S. Kusuma, "A survey on automated assessment questions generation system using supervised algorithms," *IJRASET*, 2022.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)