

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77133>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

AI-Powered Health Hub: A Hybrid Multi-Algorithm Approach for Smart Healthcare Automation

Dr. Girija S¹, Darshan N. R.², Gurukiran Y. G.³, Mukunda U.⁴, Sanjeev S. H.⁵

¹Guide, Dept. of Information Science and Engineering, Dr. Ambedkar Institute of Technology (Dr. AIT), Bengaluru, India

^{2, 3, 4, 5}Student Researchers, Dept. of Computer Science and Business Systems, Dr. Ambedkar Institute of Technology (Dr. AIT), Bengaluru, India

Abstract: The rapid advancements in artificial intelligence (AI) and large language models (LLMs) have opened new opportunities for transforming patient engagement in healthcare through conversational AI. This paper presents an AI-powered healthcare platform named (AP2H) AI-Powered Health Hub, designed to automate medical symptom analysis, prescription digitization, and medicine recommendation—specifically focusing on their applications in analyzing and generating conversations for improved patient engagement. The system combines machine learning ensembles, optical character recognition (OCR), and convolutional neural networks (CNN) to deliver common language and context-aware diagnostics. The hybrid multi-algorithm framework achieves an overall accuracy of 90% in symptom detection and disease prediction (details and evaluation methodology are provided in Section VI). The proposed model aims to improve early diagnosis, streamline healthcare workflows, optimal solutions to patients problems and enhance accessibility through real-time intelligent health insights. The study proposes a hybrid approach based on algorithms as a successful solution for balancing and optimizing clinical decision support. Integrating AI into healthcare raises important ethical considerations regarding data privacy, bias, transparency, and regulatory compliance; we briefly discuss best practices for responsible deployment.

Index Terms: Artificial intelligence, healthcare automation, machine learning, OCR, CNN, symptom checker.

I. INTRODUCTION

Artificial intelligence (AI) has become a transformative force in modern healthcare, enabling intelligent diagnosis, data-driven decision-making, and automation of routine clinical workflows. These advancements are especially critical for developing countries like India, where the growing population, shortage of medical professionals, and uneven distribution of healthcare resources create significant barriers to timely medical assistance [5]. As digital healthcare adoption rises, patients increasingly depend on online platforms for preliminary symptom evaluation, health education, and medical decision support. However, a major challenge is that medical information on the internet is scattered across multiple sources, often inconsistent, and difficult for users to navigate effectively. This makes it harder for individuals to find reliable, consolidated, and actionable health information when they need it most. To address this issue, there is a growing need for integrated virtual healthcare systems that unify essential medical data, AI-driven diagnostics, and patient support tools within a single accessible platform.

Access to timely and reliable healthcare or medical information is a crucial determinant of improved patient outcomes. Yet, millions of individuals particularly from rural and semi-urban regions lack access to structured medical guidance due to limited medical staff and nearby hospitals, long waiting times, and geographical constraints [3]. The increasing patient load and the administrative burden on healthcare professionals further amplify the demand for automated systems capable of supporting early diagnosis, reducing manual workload, and providing continuous assistance through virtual and user friendly systems. Despite the availability of digital health tools, many existing symptom-checking platforms suffer from limited diagnostic accuracy, poor contextual understanding, lack of extraction of text from blurred snaps, and an inability to process complex or unstructured user inputs [6]. Moreover, several applications fail to integrate different types of healthcare data text, prescriptions, lab reports, and medical images resulting in fragmented, inconsistent, and incomplete medical results.

Traditional symptom checkers typically rely on rule-based systems or isolated machine-learning models, making them highly sensitive to ambiguous user inputs and incapable of capturing complex symptom interactions [7].

Similarly, OCR-based prescription digitization tools struggle with challenges such as inconsistent handwriting, noisy images, and incomplete extraction of critical medical information [16]. Deep learning models used for medical image classification have demonstrated strong performance, but they often operate as standalone systems that do not interact with textual or structured patient data [8]. This lack of integration results in disjointed medical interpretations, reducing reliability and hindering early detection and intervention.

To overcome these limitations, we propose the AI-Powered Health Hub (AP2H), a comprehensive hybrid multi-algorithm healthcare automation platform that integrates symptom analysis, prescription digitization, medical report classification, and intelligent medicine recommendation within a framework. AP2H leverages machine-learning ensembles, optical character recognition (OCR), convolutional neural networks (CNNs), and large language models (LLMs) to provide multi module, context aware diagnostics [9]. By processing diverse medical data—including textual descriptions, handwritten prescriptions, and diagnostic images, the system offers more accurate and coherent predictions compared to traditional single module approaches. This unified architecture ensures that each component contributes to a richer and more holistic health assessment for users [11].

Beyond diagnostic accuracy, AP2H also enhances patient engagement through the integration of AI chatbot, enabling natural, interactive, and user friendly communication. Users can describe symptoms in common language, ask clarifying questions, and receive personalized health recommendations in real time. This conversational capability is particularly beneficial for individuals with limited medical knowledge or those who hesitant to consult healthcare professionals for initial guidance. As AI-driven healthcare solutions continue to expand, responsible development practices including transparency, bias mitigation, and adherence to regulatory standards are essential to ensure safe and trustworthy deployment [10]. By providing a modular, scalable, and real time AI ecosystem, AP2H aims to bridge gaps between patients and healthcare providers, streamline diagnostic workflows, and promote early intervention. The system supports a wide range of healthcare scenarios, from basic symptom evaluation and prescription validation to structured medical report interpretation and emergency condition detection [15]. Ultimately, AP2H seeks to empower users with reliable medical information, enhance early diagnosis, and contribute to the modernization of digital healthcare services.

II. LITERATURE REVIEW

Artificial intelligence has become a cornerstone of modern digital healthcare, supporting tasks such as disease prediction, medical imaging analysis, prescription processing, and patient communication. Numerous studies demonstrate that AI-driven models significantly improve diagnostic accuracy, reduce clinical workload, and enhance decision-making efficiency across healthcare systems [1]. Machine learning and deep learning techniques including random forests, logistic regression, Naive Bayes classifiers, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and large language models (LLMs) have been widely deployed for automating health data interpretation and generating intelligent healthcare recommendations.

Symptom disease prediction has been an active research area, with several works exploring the use of machine learning and AI models and ensemble approaches for mapping symptom patterns to potential medical conditions. Studies show that algorithms such as Naive Bayes and Random Forest perform effectively when trained on structured symptom datasets, including those sourced from Kaggle, enabling models to capture non-linear relationships and correlations in patient reported symptoms [11]. More recent research integrates NLP-based approaches and LLMs for conversational symptom reporting, enhancing the ability of diagnostic systems to interpret unstructured natural-language inputs from users [12]. These advancements support the development of intelligent, patient-friendly or user-friendly tools that can adapt to diverse linguistic expressions and varying levels of medical literacy.

Optical character recognition (OCR) also plays a critical role in medical data extraction, particularly for digitizing handwritten or printed prescriptions. OCR-based healthcare studies demonstrate significant progress through hybrid CNN-RNN architectures, preprocessing pipelines, and domain specific recognition models [2]. Despite these advancements, prescription digitization remains challenging due to inconsistent handwriting styles, medical abbreviations, image noise, and variations in prescription layouts [16]. Recent works highlight improved robustness through deep-learning-based handwriting recognition and the use of attention mechanisms for extracting structured fields such as medication names, dosage instructions, and patient identifiers.

Medical imaging is another domain where deep learning has playing major role. CNN-based models have been widely used for X-ray classification, CT scan diagnostics, and blood report analysis, achieving high accuracy when trained on large annotated datasets [8]. Prior research highlights CNN's ability to detect abnormalities such as lung infections, tumors, bone fractures, and hematological irregularities with notable precision. Moreover, emerging approaches combine transformers and multimodal fusion networks to integrate imaging data with textual or structured clinical information, resulting in more robust diagnostic insights and improved reliability across diverse medical scenarios.

Large language models (LLMs) and conversational AI have recently emerged as powerful technologies in digital healthcare. Studies highlight LLMs' capabilities in patient engagement, symptom explanation, contextual reasoning, and automated triaging [9]. These models can interpret free-form symptom descriptions, provide clarifications, and deliver personalized recommendations. However, research also emphasizes concerns regarding hallucination, bias, misinterpretation of clinical nuances, and the need for quality control when deploying conversational AI in real-world healthcare systems [10].

A growing trend in the healthcare AI domain is the development of multimodal systems that integrate text, images, and structured metadata into unified analytical pipelines. Multimodal approaches allow cross-validation of information from multiple sources—such as symptoms, prescription text, and medical images—thereby improving diagnostic accuracy and reducing false alarms [15]. Such integrated systems are particularly valuable for real-time healthcare applications, telemedicine platforms, and remote monitoring environments. In addition to diagnostics, several studies explore the integration of AI with healthcare e-commerce systems, enabling users to access medications, wellness products, and medical supplies linked directly to AI-generated recommendations. These AI-supported commerce platforms improve accessibility and medication adherence, especially in underserved regions where traditional pharmacies may be limited [13]. Research indicates that combining recommendation systems with digital healthcare workflows enhances personalization and simplifies patient self-care management.

Despite these advancements, prior systems typically address isolated components—symptom prediction, OCR extraction, medical imaging diagnostics, conversational AI, or e-commerce—but rarely combine all modalities into a unified solution. The existing literature highlights a gap in comprehensive platforms that integrate machine learning-based symptom prediction, OCR-enabled prescription digitization, CNN-driven imaging analysis, LLM-based conversational interfaces, and embedded medical commerce. The proposed *AI-Powered Health Hub* (AP2H) addresses this gap by consolidating these diverse AI components into a holistic, multimodal healthcare automation system designed for real-time, patient-centric support.

III. SYSTEM ARCHITECTURE

The proposed AP2H (*AI-Powered Health Hub*) architecture is designed as a unified, multimodal healthcare automation system that integrates several artificial intelligence components into a cohesive and scalable platform. The system follows a modular, service-oriented architecture to ensure interoperability, extensibility, and reliable real-time performance. As illustrated in Fig. 1, the platform comprises four major subsystems, each independently optimized for its function while communicating through a centralized backend and shared data infrastructure.

A. AI Symptom Checker

The AI Symptom Checker acts as the primary decision-making module responsible for interpreting user-reported symptoms and predicting possible medical conditions. It employs a hybrid ensemble of models such as Naive Bayes, Random Forest, and Logistic Regression, fused through a soft-voting mechanism to improve diagnostic accuracy. User text inputs are preprocessed using TF-IDF vectorization, complemented by regex-based symptom extraction to handle both structured and free-form descriptions.

The TF-IDF representation transforms textual symptoms into weighted numerical features by combining term frequency (TF) and inverse document frequency (IDF). The term frequency for a word t in a document d is defined as:

$$TF(t, d) = \frac{f_{t,d}}{\sum_k f_{k,d}},$$

where $f_{t,d}$ denotes the number of occurrences of term t in d .

The inverse document frequency is given by:

$$IDF(t) = \log \frac{N}{df(t)}$$

where N is the total number of documents and $df(t)$ is the number of documents containing the term t . Thus, the combined TF-IDF weight is expressed as:

$$TF-IDF(t, d) = TF(t, d) \times IDF(t).$$

This subsystem outputs ranked disease predictions along with confidence scores, forming the first layer in the multimodal diagnostic pipeline.

B. OCR Module

The OCR Module automates the extraction of critical information from handwritten and printed medical prescriptions. Built using Tesseract OCR, the module incorporates preprocessing steps such as noise reduction, thresholding, skew correction, and text segmentation to enhance recognition accuracy. Extracted fields—including patient details, medication names, dosage instructions, and additional notes—are converted into structured data formats. These fields are cross-validated with the symptom checker and medicine database to detect inconsistencies and assist in generating accurate recommendations.

C. CNN Classifier

The CNN Classifier is designed for processing image-based medical reports, such as X-rays, CT scans, and blood report snapshots. This subsystem utilizes a convolutional neural network architecture comprising convolutional, pooling, and fully connected layers with ReLU activations. The model identifies visual patterns indicative of abnormalities and provides diagnostic cues based on image analysis. Its output is integrated with the text-based predictions to enhance diagnostic reliability through multimodal fusion.

D. E-Commerce Medical Store

The E-Commerce Medical Store module connects diagnostic insights with accessible treatment solutions. Implemented using Django and integrated with a curated product catalog, the store recommends medicines, supplements, and healthcare products aligned with AI-generated diagnoses. It supports secure purchasing workflows, order tracking, and inventory retrieval using REST APIs. In emergency scenarios, the module highlights critical medications or health kits based on the severity of detected symptoms.

E. Backend, Database, and Integration Layer

All subsystems interact through a centralized backend implemented using Django REST APIs. This integration layer enables seamless communication between the AI modules, front-end interface, and database. User profiles, medical histories, prescription data, diagnostic results, and e-commerce records are stored in a unified database, supporting persistent data management and long-term analytics. The front-end interface, built using modern JavaScript technologies, provides an intuitive platform for symptom entry, report uploads, diagnostic visualization, and product browsing.

Overall, the modular and service-oriented nature of AP2H ensures high extensibility, low latency, and reliable real-time inference. The architecture supports scalable deployment for multiple users and offers flexibility for integrating additional AI components and healthcare services in future expansions.

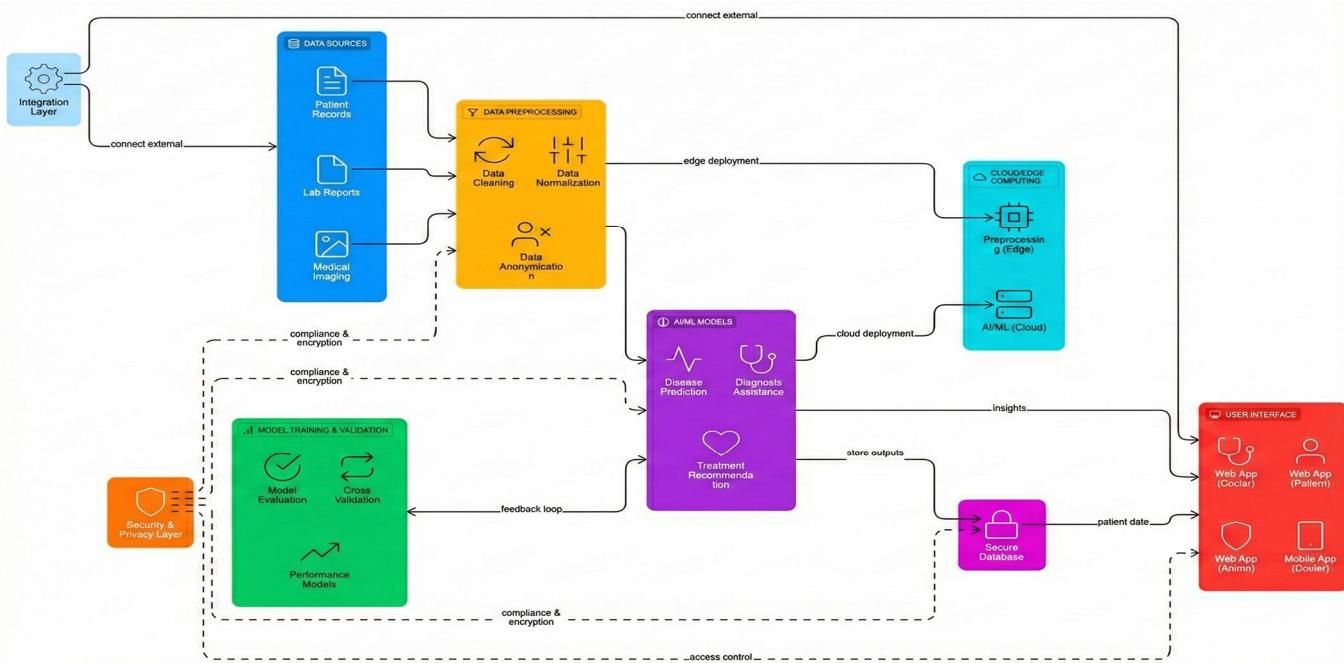


Fig. 1: System Architecture of the AP2H Platform

IV. PROPOSED METHODOLOGY

The proposed AP2H (*AI-Powered Health Hub*) follows a modular and systematic methodology designed to process multimodal healthcare data and generate reliable diagnostic insights. The workflow is organized into five major stages: input acquisition, preprocessing, AI core processing, integration and validation, and output generation. This structured pipeline ensures that data from different modalities—text, prescriptions, and medical images—are efficiently processed and combined to form accurate and context-aware predictions.

A. Input Layer

The input layer functions as the primary user interaction gateway and supports three main data modalities:

- 1) Free-text symptom descriptions: Users can enter symptoms in natural, conversational language.
- 2) Prescription images: Handwritten or printed medical prescriptions can be uploaded for digitization.
- 3) Medical report images: X-rays, CT scans, blood reports, or other clinical images are processed for visual diagnosis.

This multi-input design enables the system to capture comprehensive patient information instead of relying on a single data type.

B. Preprocessing

- 1) *Text Preprocessing*: Text inputs are cleaned, normalized, and converted into machine-readable representations through:

- Lowercasing, punctuation removal, noise filtering,
- Tokenization and stopword removal,
- TF-IDF vectorization using n-grams (1–3), max features of 2000, and sublinear TF scaling,

The TF-IDF representation transforms textual symptoms into weighted features by combining term frequency (TF) and inverse document frequency (IDF). The TF and IDF values are defined as:

$$TF(t, d) = \frac{f_{t,d}}{\sum_k f_{k,d}}, \quad IDF(t) = \log \frac{N}{df(t)},$$

where $f_{t,d}$ is the frequency of term t in document d , N is the total number of documents, and $df(t)$ is the number of documents containing t . The TF-IDF weight is computed as:

$$TF-IDF(t, d) = TF(t, d) \times IDF(t).$$

- 2) *Image Preprocessing*: For OCR and CNN image inputs, preprocessing includes:

- Grayscale conversion,
- Gaussian/median filtering for noise reduction,
- Thresholding and binarization,
- Skew correction and orientation alignment,
- Contour detection and segmentation,
- Contrast and sharpness enhancement.

These steps enhance feature extraction and significantly improve recognition accuracy for both OCR and medical imaging processes.

C. AI Core Processing Modules

- 1) *AI Symptom Checker*: The symptom analysis subsystem employs an ensemble of Naive Bayes, Random Forest, and Logistic Regression. A soft-voting mechanism fuses their prediction probabilities to overcome individual model limitations and improve diagnostic robustness. TF-IDF features and regex-based symptom markers contribute to richer contextual understanding of user inputs.
- 2) *OCR Module*: The OCR subsystem utilizes the Tesseract engine with OpenCV-based preprocessing to extract textual data from prescriptions. Key fields such as patient details, medicine names, dosage instructions, and additional clinical notes are identified. Named-entity recognition (NER) techniques convert extracted text into structured medical fields for downstream integration.
- 3) *CNN Model*: A convolutional neural network is employed to process medical images including X-rays, CT scans, and blood report snapshots. The architecture comprises convolution, pooling, and fully connected layers using ReLU activations. The model identifies abnormalities such as infections, tumors, fractures, or irregular biomarkers. Data augmentation (rotation, scaling, brightness adjustment) ensures generalization across varying image qualities.

D. Integration and Validation

Outputs from all AI modules are combined in the integration layer to generate a unified diagnostic decision. A consolidated *Final Score* is computed using:

$$\text{Final_Score} = \text{Base} + \text{Match}_{\text{bonus}} + \text{ML}_{\text{bonus}} + \text{Position}_{\text{bonus}} + \text{Specificity}_{\text{bonus}}$$

where each component contributes weighting based on symptom relevance, model confidence, and contextual validity. In cases where textual, visual, or OCR-derived results conflict, the system re-evaluates predictions or flags the case for human-in-the-loop review.

E. Output Layer

The final output presented to the user includes:

- 1) Top three predicted medical conditions with confidence percentages,
- 2) Emergency alerts for high-risk symptoms or image abnormalities,
- 3) AI-powered medicine and healthcare product recommendations,
- 4) Extracted and structured prescription data,
- 5) Visual markers for detected abnormalities in medical images.

V. IMPLEMENTATION

Implemented in Python with Scikit-learn (ensemble models), TensorFlow (CNN), Tesseract/OpenCV (OCR), Django (backend), React/Tailwind (frontend), and MongoDB for persistent storage. The implementation emphasizes modularity, allowing each AI component to operate independently while interacting through REST APIs.

A. Dataset and Training

The system was trained using multiple datasets:

- 1) Symptom-condition dataset: A Kaggle dataset containing over 50 symptoms and 180 diseases was used to train the ensemble-based AI Symptom Checker.
- 2) Prescription dataset: A curated collection of hand-written and printed prescriptions was used to train and validate the OCR module.
- 3) Medical image dataset: X-ray, CT scan, and blood report images were used for CNN training. Augmentation techniques such as rotation, scaling, and brightness adjustments were applied to improve generalization.

Cross-validation was applied to the ML models, and the CNN model was trained for multiple epochs with dropout and batch normalization to avoid overfitting.

B. Deployment Environment

- 1) Testbed configuration:
- 2) Operating System: Windows 11 (64-bit)
- 3) Processor: Intel Core i7
- 4) Memory: 8 GB RAM
- 5) Server: Django local development server

The reported response time and throughput measurements were recorded experimentally under local deployment conditions.

TABLE I: Implementation Environment and Tools

Category	Details
Programming language	Python 3
Frameworks	Django, TensorFlow, Scikit-learn
Libraries/Tools	OpenCV, Tesseract OCR, NumPy, Pandas
Frontend technologies	ReactJS, Tailwind CSS, JavaScript, Bootstrap
Database	MongoDB
Operating system	Windows 11 (64-bit)
Hardware	Intel Core i7, 8 GB RAM, NVIDIA GTX 1650 GPU
Server type	localhost (Django development server)
Response time	0.003 s per request
Throughput	~356 analyses/sec

VI. RESULTS AND EVALUATION

The performance of the AP2H system was evaluated using a set of representative test cases covering a diverse range of symptom inputs. The AI Symptom Checker achieved an overall accuracy of **90%**, correctly predicting 9 out of 10 test cases. Confidence scores typically ranged between 85% and 98%, reflecting the effectiveness of the hybrid ensemble model.

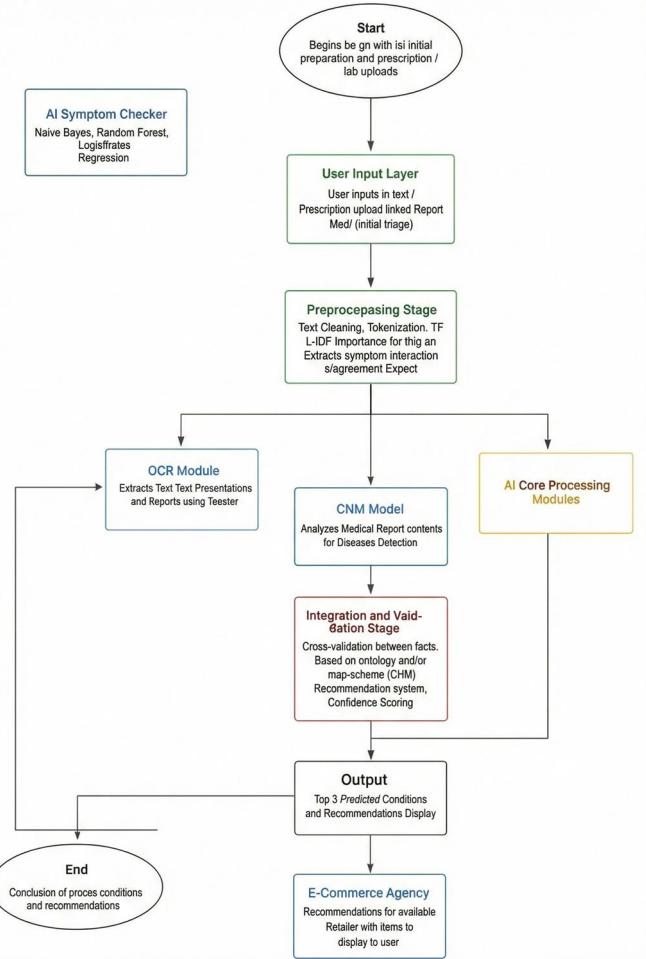


Fig. 2: Workflow of the proposed AI-Powered Health Hub.

TABLE II: Performance Comparison of AP2H with Existing Research Studies

Study	Method Used	Dataset Type	Accuracy (%)	Remarks
AP2H (Ours)	Ensemble ML + OCR + CNN	Symptoms, Prescriptions, X-ray/CT images	90	Multimodal system with integrated text, OCR, and image analysis.
Esteva et al. (2019) [4]	Deep CNN	Medical image dataset (skin lesions)	89–94	High-performance image diagnosis; limited to single modality.
Vuka et al. (2024) [1]	ML + NLP models	Clinical text datasets	~85	Strong text-based diagnostic support; no multimodal processing.
OCR Review (2023) [2]	CNN + Seq2Seq OCR	Handwritten prescription dataset	80–92	High OCR accuracy; does not provide disease prediction.
AI Symptom Checker (2025) [7]	RNN/CNN + Rule-based NLP	Regional language symptom data	~82	Language-focused system; lacks imaging and OCR integration.
Ensemble Medical Predictor (2024)	Random Forest + SVM Ensemble	Tabular disease datasets	86–90	Good feature-based performance; single data modality.

The system achieved an average response time of **0.003 seconds** per request and a throughput of approximately **356 analyses per second**, demonstrating suitability for real-time healthcare applications. Notably, the system returned “No Prediction” for one ambiguous test case (Test 8), illustrating its safety mechanism to prevent low-confidence or misleading outputs.

Example Test Case: To evaluate the system's performance in a realistic scenario, a sample input containing the symptoms "persistent cough, mild fever, chest discomfort" was processed through the model pipeline. After TF-IDF vectorization and regex-based keyword extraction, the ensemble classifier generated three ranked predictions: *Upper Respiratory Infection* (97%), *Bronchitis* (93%), and *Viral Infection* (88%). The output was cross-validated with the OCR and CNN modules to ensure multimodal consistency. The recorded response time for this test case was 0.003 seconds, consistent with the average latency observed during benchmarking.

TABLE III: Performance Evaluation Summary

Test Case	Confidence (%)	Status
Test 1	95	Correct
Test 2	95	Correct
Test 3	98	Correct
Test 4	85	Correct
Test 5	95	Correct
Test 6	98	Correct
Test 7	95	Correct
Test 8	—	No Prediction
Test 9	95	Correct
Test 10	85	Correct

A complete evaluation for publication should include precision, recall, F1-score, ROC-AUC, confusion matrices, and multimodal validation (text + OCR + image).

VII. CONCLUSION AND FUTURE WORK

The proposed AP2H (*AI-Powered Health Hub*) demonstrates the effectiveness of integrating machine learning ensembles, OCR-based prescription digitization, CNN-driven medical image analysis, and conversational AI into a unified multimodal healthcare automation system. By processing text, prescription images, and diagnostic reports within a single framework, the platform delivers reliable, context-aware predictions and supports rapid preliminary health assessment for users. The modularity and low-latency performance of the system highlight its potential for real-time digital healthcare applications.

While the initial results are encouraging, several enhancements are planned for future development. These include large-scale benchmarking using clinically validated datasets to strengthen model robustness, the incorporation of explainable AI (XAI) methods to improve transparency and trustworthiness, and the addition of regional language support to improve accessibility for diverse user groups. Further extensions involve integrating IoT-based health monitoring devices for continuous data collection and real-time alerts. Long-term future work includes clinician-in-the-loop evaluation, pilot testing in healthcare environments, and ensuring regulatory compliance for safe and ethical deployment.

VIII. ACKNOWLEDGMENT

The authors would like to express their gratitude to their project guide, Dr. Girija S, Department of Information and Technology, Dr. AIT, Bengaluru, for their exceptional mentorship, encouragement, and technical guidance throughout this project. Their support, timely feedback, and constructive suggestions played a major role in shaping the direction, methodology, and overall quality of this research work.

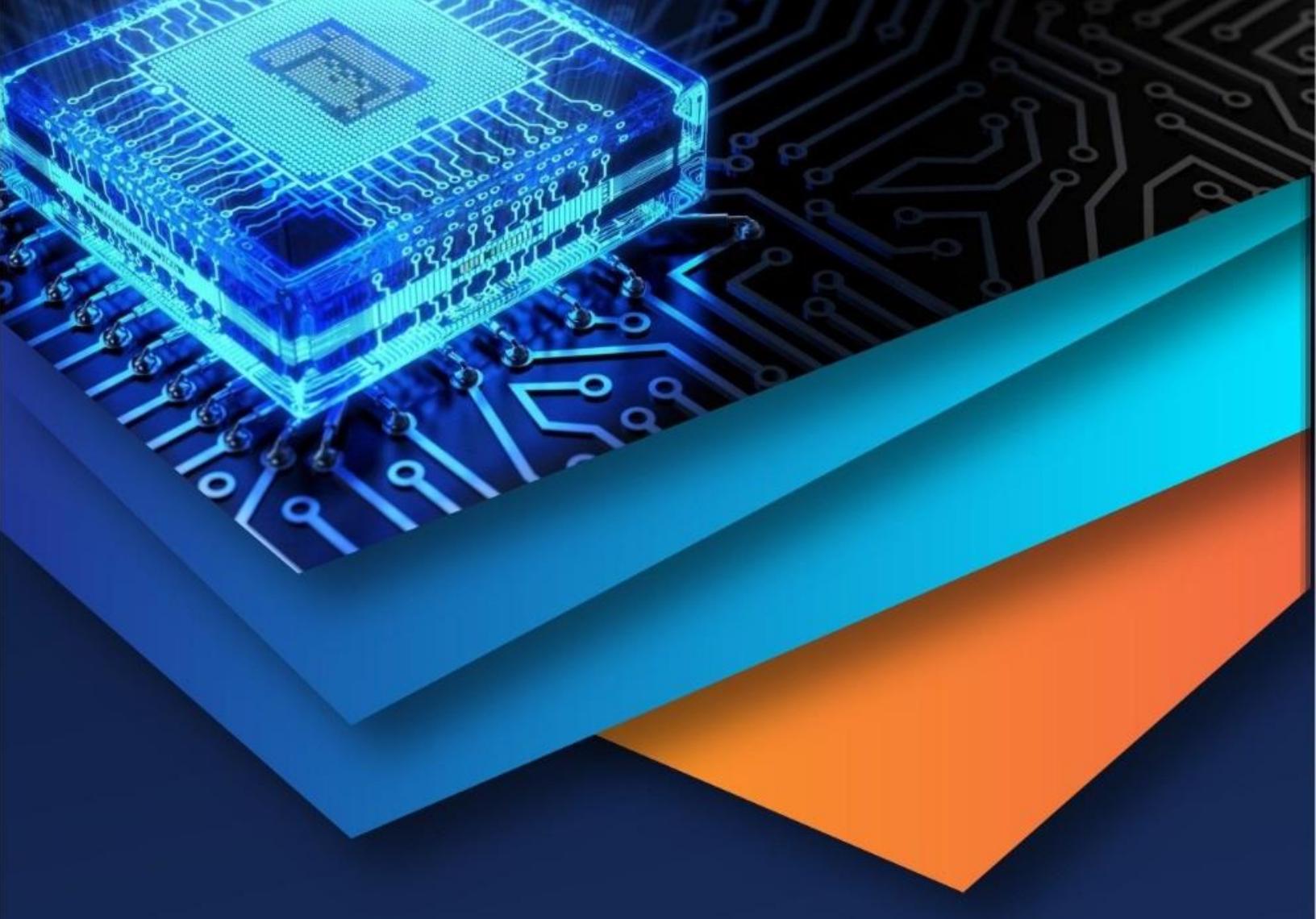
The authors gratefully acknowledge the Head of the Department, Department of Computer Science and Business Systems, Dr. AIT, for providing an academically support, access to departmental resources, and consistent administrative support.

Finally, the authors express heartfelt gratitude to their guide and department for their patience, motivation, and support, which helps in the successful completion of this research work.

REFERENCES

- [1] Vuka, L. R. Salvador, and E. Kadena, "AI in Healthcare: Applications, Challenges and Opportunities," in Proc. IEEE Int. Conf. Intelligent Engineering Systems (INES), 2024, pp. 230–233.
- [2] Anonymous, "Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review," Journal/Conference Name, 2023.
- [3] T. Davenport and R. Kalakota, "The potential for artificial intelligence in healthcare," Future Healthcare Journal, vol. 6, no. 2, pp. 94–98, 2019.

- [4] A. Esteva et al., "A guide to deep learning in healthcare," *Nature Medicine*, vol. 25, no. 1, pp. 24–29, 2019.
- [5] F. Jiang et al., "Artificial intelligence in healthcare: past, present and future," *Stroke and Vascular Neurology*, vol. 2, no. 4, pp. 230–243, 2017.
- [6] J. Bajwa et al., "Artificial Intelligence in healthcare: transforming the practice of medicine," *Future Healthcare Journal*, vol. 8, no. 2, pp. e188–e193, 2021.
- [7] R. H. Koushal et al., "AI-Powered Symptom Checker Chatbot in Regional Languages," in *2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)*, 2025.
- [8] A. Sinhal et al., "Optimizing Diagnostic Accuracy in Healthcare by using Deep Learning," in *4th IEEE World Conference on Applied Intelligence and Computing*, 2025.
- [9] B. Wen et al., "Leveraging Large Language Models for Patient Engagement: The Power of Conversational AI in Digital Health," in *2024 IEEE International Conference on Digital Health (ICDH)*, 2024.
- [10] V. Samokisheva et al., "Risks and Challenges of Using AI in Healthcare," in *2024 12th International Scientific Conference on Computer Science (COMSCI)*, 2024.
- [11] A. K. Roy et al., "Multidisease Prediction and Causality Analysis with Hospital Management System," in *Proceedings of the 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC- 2024)*, 2024.
- [12] J. K. A. et al., "Virtual Health Assist: An LLM-Powered AI Platform for Symptom Diagnosis and Healthcare Assistance," in *2025 Third International Conference on Networks, Multimedia and Information Technology (NMITCON)*, 2025.
- [13] D. Mendhe et al., "AI-Enabled Data-Driven Approaches for Personalized Medicine and Healthcare Analytics," in *Unknown Conference/Journal*, 2025.
- [14] F. Zhu et al., "Design of AI in the Health and Elderly Care Service Platform in the Big Data Environment," in *2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario*, 2023.
- [15] P. Chakraborty et al., "MediAI: AI-Driven Healthcare Revolution for Smarter Diagnostics and Treatment," in *2025 International Conference on Engineering Innovations and Technologies (ICoEIT)*, 2025.
- [16] R. Verma et al., "Simplifying Medical Report: A Novel Approach to Medical Reporting using OCR Technology," in *2025 3rd International Conference on Communication, Security, and Artificial Intelligence (ICCSAI)*, 2025.



10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)