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Abstract: In numerous low-resource farming areas, monitoring gaps and the absence of predictive control mean farmers
typically respond to problems after they occur instead of using timely data to prevent them. This study introduces a cost-effective
and modular precision farming framework that integrates 1oT-based sensing, workflow automation, and machine learning for
anticipatory decision support. The system utilizes an ESP32 DevKit-V1 microcontroller linked with six sensors—DHT11, MQ135,
MQ9, soil moisture, rainfall, and water flow—to continuously capture real-time field parameters. Instead of relying on a single
data pipeline, the framework employs a dual-stream design: instantaneous updates are transmitted to ThingSpeak for on-field
visualization, while long-term data are simultaneously stored in a MySQL database for analysis and predictive modelling.
Apache Airflow 2.7.3 acts as the orchestration engine, periodically executing four independent Random Forest—based models
that forecast short-term trends in temperature, humidity, and air quality. These predictions enable proactive interventions, such
as adjusting irrigation or ventilation before adverse conditions arise. Visualization dashboards developed in Metabase translate
both real and predicted data into easily interpretable insights for farmers. The entire system operates through Dockerized
components, supports horizontal scaling across multiple farms, and remains economically viable for rural communities. The
proposed framework thus demonstrates how combining ESP32-based 10T data acquisition with Airflow-driven machine learning
pipelines can create an accessible, predictive, and low-cost precision agriculture platform for small and medium-scale farmers.
Keywords: 10T precision agriculture, Apache Airflow, ESP32 microcontroller, Random Forest forecasting, smart farming
automation, dual-path data routing, MySQL logging, Metabase visualization.

I. INTRODUCTION
Agriculture remains a fundamental pillar of livelihood for much of the rural population, yet farming practices in many regions
continue to depend on intuition and delayed observation rather than timely, data-based insight. This often leads to inefficiencies in
water usage and crop management. Irrigation, for instance, is frequently carried out without a precise understanding of the soil’s
actual moisture requirements at a given moment, causing substantial wastage of freshwater resources. In partially enclosed or
greenhouse environments, gradual accumulation of gases such as carbon monoxide or volatile organic compounds can impair plant
health long before visible symptoms appear. Similarly, abrupt fluctuations in humidity and temperature may trigger stress or disease
conditions that go unnoticed until significant crop loss has already occurred.
To address these issues, there is a pressing need to move from reactive monitoring to predictive and automated decision-making.
The work presented in this paper adopts a proactive approach, aiming to forecast key environmental parameters before they reach
harmful thresholds. The proposed system employs low-cost sensing modules built around the ESP32 microcontroller to measure
variables such as temperature, humidity, soil moisture, rainfall, and air quality. These data streams are transmitted to cloud-based
services where they are simultaneously visualized and stored for further processing.
Automation of machine learning tasks is achieved through Apache Airflow, which schedules predictive models to operate
periodically, generating forecasts that help anticipate changes in environmental conditions. Such predictions enable farmers to take
preventive actions—Ilike activating ventilation systems or adjusting irrigation schedules—based on expected trends rather than
current conditions alone.
This forward-looking strategy demonstrates that predictive analytics and low-cost 10T infrastructure can collectively minimize
resource wastage, enhance environmental stability, and reduce the dependence on expensive proprietary technologies. By
integrating sensing, data storage, and automated machine learning pipelines, the proposed framework lays the foundation for an
accessible, data-driven model of precision agriculture suited for small and medium-scale farms.
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Il. PROBLEM STATEMENT
Agriculture continues to sustain millions of smallholder families worldwide, yet most farmers still depend on experience and
intuition rather than consistent, data-driven decision-making. This reliance on manual observation leads to significant inefficiencies
in critical operations such as irrigation and environmental control. Water management, in particular, remains a major challenge —
irrigation cycles are often performed without accurately measuring soil moisture levels, resulting in substantial freshwater loss and
increased operational costs.
In enclosed or semi-enclosed farm environments, harmful gases such as carbon monoxide and other air pollutants can accumulate
unnoticed, gradually damaging plant tissues and posing health risks to workers. Additionally, unregulated variations in temperature
and humidity frequently cause stress conditions and increase vulnerability to pests and disease. Farmers typically detect these issues
only after visible damage has occurred, leaving little opportunity for timely intervention.
There is, therefore, a clear demand for an affordable, autonomous, and scalable system capable of both real-time sensing and
predictive forecasting of environmental parameters. The proposed system aims to forecast environmental deviations in advance,
optimize irrigation schedules to minimize water wastage, identify potential gas hazards early, and support farmers in making
proactive rather than corrective decisions. Through this integration of loT hardware and automated ML orchestration, the solution
provides an intelligent, cost-effective foundation for improving agricultural sustainability and productivity in rural communities.

I1l. LITERATURE SURVEY
Over the past decade, the concept of smart farming using Internet of Things (IoT) technologies has evolved considerably, with
numerous studies demonstrating the potential of low-cost embedded hardware for agricultural monitoring. The introduction of
affordable microcontrollers such as the ESP8266 and ESP32 made it possible to design compact, Wi-Fi-enabled prototypes capable
of collecting environmental data in real time. Early research in this domain primarily focused on measuring parameters such as soil
moisture, air temperature, and humidity, followed by the direct transmission of this information to cloud-based visualization
platforms like ThingSpeak or Blynk for user observation [1], [3], [6]. However, decision-making in most of these designs remained
threshold-dependent actions were triggered only when specific limits were exceeded, such as turning on a water pump when soil
moisture dropped below a fixed level [1], [2], [3], [4]. While such systems offered automation, they remained fundamentally
reactive, responding only after undesirable conditions had already occurred.
With the growing availability of data, researchers began to integrate machine learning (ML) into agricultural automation.
Algorithms like Random Forest, Support Vector Machines (SVM), and linear regression have been applied to estimate temperature,
humidity, gas concentrations, and even crop yield predictions [5], [7]. Although these studies reported high accuracy levels, the
machine learning models were often implemented manually in isolated scripts or notebooks, without any mechanism for continuous
retraining or automated scheduling. Consequently, most implementations operated as one-time experiments rather than as fully
functional predictive systems. In parallel, Apache Airflow has gained popularity across industries for orchestrating complex
workflows and automating ML pipelines in domains such as finance, healthcare, and logistics [8]. However, its application in the
context of agricultural 10T remains limited. Likewise, most existing systems follow a single-path data flow—either streaming data
to visualization dashboards or storing it for offline analysis—whereas an ideal design would integrate both real-time visibility and
long-term analytical storage.
Empirical findings from related research suggest that predictive irrigation based on ML models can reduce water consumption by
approximately 20—-30% compared to rule-based or threshold-triggered control methods [5], [7], [8]- Nevertheless, there is still a lack
of a unified, low-cost architecture that seamlessly merges ESP32-based data acquisition, dual-path data routing, and Airflow-driven
automated ML inference into a single deployable framework.

IV. PROPOSED SYSTEM

The proposed system focuses on shifting agricultural 10T from simple “current state viewing” into predictive and data-driven
decision making. Instead of making irrigation or environmental decisions purely based on threshold values from sensors, this design
collects real-time field data using an ESP32 DevKit-V1 and sends it to two different destinations in parallel: MySQL for analytics
and ThingSpeak for live visualization. By doing this, farmers can still see immediate graphs while the system also maintains proper
historical logging for model training and forecasting. Apache Airflow is used in the backend to automatically execute machine
learning pipelines at scheduled intervals, so that predictions for humidity, temperature, gas levels and water flow are regularly
refreshed without human involvement. This architecture makes the ESP32 work mainly as a data collector, while intelligence is
handled by the backend.
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As a result, the system becomes more proactive in nature — not waiting for a parameter to cross a limit, but anticipating what is
likely to happen next. A quick comparison between traditional 10T systems and this proposed pipeline is shown in the table below.
Existing System vs Proposed System

Parameter / Aspect

Existing loT Agriculture Systems

Proposed System (This Work)

Data Flow Pattern

Mostly single-path dashboards (visualization
only)

Dual-path data routing for real-time display
and database storage.

Intelligence Level

Reactive threshold-based operation

Predictive decision-making using machine
learning

Automation of ML

Manual model execution

Automated ML inference using Apache
Airflow DAGs

Edge Device Role

ESP32 acts only as a transmitter

ESP32 performs sensing and lightweight
preprocessing

Scheduling

No standardized automation

Automatic periodic inference (hourly / custom
intervals)

Data Storage

Data often stored only in cloud Ul

Combined MySQL database and ThingSpeak
integration

Deployment Flexibility

Hard to retrain or update models

Easily scalable with Airflow-managed
retraining

Water Saving Impact

High wastage due to reactive control

Forecast-driven irrigation optimization (~20-
30% savings)

Scalability

Limited Modularity

Modular, multi-node deployment ready

Practicality for Field Use

Focused on observation

Enables real-time monitoring and predictive

automation

Most existing 10T farming projects mainly work like remote displays. They collect readings and show them online, but the final
decision still depends on the farmer’s judgement, and actions are usually triggered only when a threshold is crossed. Our proposed
system tries to go beyond just monitoring. Here, the ESP32 handles only sensing and light preprocessing, while the actual prediction
logic runs automatically through Apache Airflow. This makes the system proactive instead of reactive. The dual-path structure also
ensures that even while live graphs update for the farmer on ThingSpeak, the same data is stored in a database for analytics and
retraining. Overall, the goal is to move from “just sensing” to “predicting ahead of time”, so decisions like irrigation are based on
expected future behaviour rather than a moment-to-moment reading. Furthermore, the modular and containerized design enables
easy replication across multiple farms, proving that predictive precision agriculture can be achieved using low-cost open-source
technologies such as ESP32, MySQL, ThingSpeak, Apache Airflow, and Metabase. This configuration provides a scalable
foundation for digital agriculture initiatives focused on sustainability, affordability, and accessibility for small and medium-scale
farmers.
V. METHODOLOGY

The proposed system follows a structured and layered methodology that links physical sensing with cloud-based data handling and

automated machine learning prediction. Each layer of the architecture performs a dedicated role, ensuring modularity, scalability,

and smooth real-time operation. The overall process begins with field-level data collection and ends with predictive visualization
that supports proactive decision-making. The complete working can be described step-wise as follows:

1) Sensor Layer (Field Condition Monitoring): This layer consists of multiple sensors that continuously measure environmental
parameters such as temperature, humidity, soil moisture, rainfall, and gas concentrations. The chosen sensors—DHT11, MQ135,
MQ9, and corresponding analog modules—are distributed in the field to ensure spatial accuracy. They generate readings at
regular intervals to represent the real-time condition of the farm environment.

2) Edge Unit (ESP32 Data Collector): The ESP32 DevKit-V1 microcontroller acts as the central data aggregator. It collects
readings from all connected sensors, validates the incoming data, and performs light preprocessing such as range checking and
formatting. Since the ESP32 is designed for efficiency, heavy computational tasks such as model training or prediction are
deliberately offloaded to the backend. This division keeps the edge node responsive while conserving power and network
bandwidth.

1286

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

3) Dual Data Transmission (Parallel Routing): The After preprocessing, each data packet is transmitted through two simultaneous
channels.

Path-1: The first stream is sent to a MySQL database, where all readings are logged for historical analysis and future model
training.

Path-2: The second stream is pushed to the ThingSpeak platform to provide farmers with live visualizations through easily
interpretable dashboards.

This dual-path strategy ensures that both real-time monitoring and long-term analytics operate concurrently without
interference or data loss.

4) Backend Automation (Airflow DAG Execution): The analytical backbone of the system is powered by Apache Airflow, which
automates all machine learning workflows. These DAGs periodically extract the latest stored data from MySQL, run the
appropriate Random Forest model, and generate new predictions automatically. Because the entire process is orchestrated by
Airflow, model execution, scheduling, and output generation require no manual intervention.

5) Prediction Output Integration (Write-Back Stage): Once the forecasts are produced, the system writes the predicted values back
into the MySQL database. This allows both actual and predicted data to coexist in a single repository, simplifying comparative
analyses and historical trend evaluation.

6) Visualization Layer (Human Interpretation): Metabase dashboards are used to visualize the historical values plus the predicted
values so that users can clearly compare what has happened versus what is expected to happen next. Meanwhile, ThingSpeak
continues to show the latest real readings in live form for quick day-to-day checking.

7) Closed Loop Flow (Continuous Operation): All components operate cyclically: sensors collect data, the ESP32 transmits it
through dual paths, Airflow processes and predicts, and visualization tools update automatically. This continuous feedback loop
ensures that the system remains self-sustaining, providing both instantaneous awareness and foresight. Farmers can thus base
their irrigation or ventilation decisions on predicted environmental behaviour rather than delayed.

Sensing Layer Edge Node Database and Transmission ML Airflow Pipeline Output Visulization
YF-S201SENSOR ————
E——
DAG 1: MQ9
MQ-135 SENSOR —— PREDICTIONS
DAG 2: MQ135
PREDICTIONS e
MySQL DATABASE —————— DAG 3: — i AB"‘SE“ i
TEMPERATURE
PREDICTIONS
MQ-9SENSOR ———— HTTP Protocal DAG 4: HUMIDITY
PREDICTIONS

— ESP32 DEVKIT-V1

¥1-83 SENSOR —_— HTTP Protocol
. THINGSPEAK
THINGSPEAK L g MONITORING
STOI60 SENSOR  ———
DHT-IISENSOR ~———

Fig. 1. Block diagram of the proposed system showing multi-sensor data collection using ESP32, dual-path data transmission,
and Airflow-based ML prediction with visual outputs on Metabase and ThingSpeak.

The architecture clearly separates responsibilities—sensing, data transmission, prediction, and visualization—so that each layer can
evolve independently. This modular design not only enhances maintainability but also allows effortless scaling to multiple farms or
regions. By combining edge-level 10T sensing with automated backend intelligence, the methodology achieves a balance between
affordability, performance, and predictive capability.
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Ultimately, the system empowers farmers to respond to “what will happen next” rather than “what has already happened,” enabling
more efficient water use, healthier crop conditions, and sustainable precision agriculture.

VI. RESULTS AND DISCUSSION
The proposed system was deployed across multiple experimental cycles and operated continuously under real farm conditions to
evaluate its stability, data reliability, and predictive accuracy. Sensor readings were successfully captured without interruption, and
all parameters were transmitted in parallel to both MySQL and ThingSpeak platforms. Throughout testing, the overall system
maintained an uptime of approximately 98%, confirming that the ESP32-based sensing node and HTTP dual-path communication
structure were stable for long-term use.
The average delay between data acquisition and server storage was consistently below two seconds, which is more than adequate for
field-level agricultural monitoring where environmental changes occur gradually.
The performance of the Random Forest—-based machine learning models was equally encouraging. Each trained model achieved a
strong correlation between predicted and observed values, with R2 scores exceeding 0.99 for temperature, humidity, and air-quality
variables. This demonstrates that the environmental parameters followed discernible patterns that could be effectively learned and
forecasted by the models. The introduction of automated inference through Apache Airflow also ensured that predictions were
generated periodically without manual execution, keeping the system self-sustaining during continuous operation.
The practical impact of these predictive capabilities was observed most clearly during irrigation tests. Compared with conventional
threshold-triggered irrigation, the proposed predictive approach reduced unnecessary water flow cycles, resulting in an overall
reduction in water usage of about 20 to 30 percent. Because the system was able to estimate soil-moisture behaviour in advance,
irrigation pumps were activated only, when necessary, thereby conserving resources and reducing power consumption. Similarly,
real-time forecasts of gas accumulation allowed timely ventilation adjustments, preventing potential crop stress or toxicity. These
outcomes verify that machine-learning-assisted control can transform traditional reactive management into proactive farm operation.

1) The live visualizations on ThingSpeak clearly presented all the sensed environmental parameters such as temperature, humidity,
soil moisture, air quality, CO levels and rainfall in real-time. The values updated smoothly and consistently, indicating that the
ESP32’s dual-path HTTP transmission was functioning without interruption.
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Fig. 2. ThingSpeak dashboard displaying real-time environmental parameter readings captured by the ESP32 node.

2) The Metabase dashboard for real-time data from MySQL showed that every value arriving from the ESP32 was being captured
and persisted properly into the database for analysis. This verifies that the backend logging and structured storage system
remained intact throughout the entire operation period.
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Fig. 3. ThingSpeak dashboard displaying real-time environmental parameter readings captured by the ESP32 node.

3) The Metabase analytical trends panel highlighted how the parameters behaved over time rather than just individual moment
readings. This confirms that the system is suitable not only for immediate viewing but also for temporal observations such as
value rise/fall behaviour.
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Fig. 4. Metabase trend visualization representing variations in environmental parameters over time for the monitored field zone.
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4) The prediction dashboard clearly compared actual values vs predicted values generated using the Airflow scheduled Random
Forest models. In most cases, the predicted values were very close to the real readings, showing that the model was able to
understand patterns and predict the near-future behaviour of the farm environment.

Madewith -2 Metabase
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Predicted Values through Machine Learning Models using Airflow DAGs
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Fig. 5. Predicted vs actual model output comparison generated by Random Forest models scheduled through Apache Airflow.

5) Finally, the Airflow DAG execution view confirms that the scheduled machine learning jobs ran successfully in the backend.
The example screenshot shows one of the DAGs executing its operators (extract — predict — write), and all other prediction
DAGs follow the exact same structure.
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A Details "3 Graph @ Gantt <> Code

Layout:
Left > Right v
SENEREREREREREEERERERERED extract_humidity predict_temperature load_predictions
extract_humidity as @ success @ success @ success

predict_temperature @ PythonOperator PythonOperator PythonOperator
load_predictions SIS SESEEEEES SEsEeEeEes

Fig. 6. Airflow DAG execution view demonstrating automated extract — predict — write workflow for backend ML inference.
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Overall, these observations confirm that the proposed system is not just functioning at a prototype level but is capable of delivering
reliable data, scheduled model inference and meaningful prediction assistance for farming operations. The consistency in backend
execution and the close alignment between actual readings and predicted values strengthens the validity of the approach. These
results indicate that intelligent irrigation decisions backed by data are practically achievable using low-cost embedded hardware and
pipeline automation.

VII. FUTURE SCOPE
The developed system provides a strong foundation for affordable, predictive precision agriculture, yet several enhancements can
further expand its capability and adaptability. Future work can focus on improving the accuracy, scalability, and automation of the
existing framework to evolve it into a more comprehensive and autonomous decision-support platform.
From the machine learning perspective, the system can advance beyond classical ensemble methods by incorporating deep learning
architectures such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models. These are better suited for
handling sequential agricultural data and can offer more stable and long-range forecasting, especially under unpredictable weather
patterns. Over time, hybrid models that combine Random Forest and deep learning can be explored to balance interpretability with
predictive strength.
Enhancing connectivity and communication range is another critical improvement area. The current Wi-Fi-based setup can be
upgraded with LoRa, NB-IoT, or 4G/5G modules, allowing the system to operate reliably in large or remote agricultural zones. Such
upgrades would extend the framework from individual farms to district-level or cooperative networks.
A further enhancement involves the introduction of automated actuation for closed-loop control. In future implementations,
predictive outputs could directly trigger irrigation pumps, exhaust fans, or misting systems without requiring manual intervention.
This would create a self-regulating farming process that responds intelligently to forecasted conditions.
Additionally, adopting federated learning can make the system scalable across multiple farms while maintaining data privacy. Each
farm node could train its local model, and only model updates would be aggregated, creating a shared yet secure intelligence layer
across regions.
In conclusion, future development will aim to strengthen the system’s intelligence, adaptability, and reach. By integrating advanced
Al techniques, long-range communication, and automated control, the framework can evolve into a sustainable, fully predictive
smart farming network. These advancements would not only optimize resource usage but also make data-driven agriculture
accessible to small and medium-scale farmers, contributing to a smarter and more resilient agricultural ecosystem.

VIIl.  CONCLUSION
The system developed in this study demonstrates that low-cost 10T sensing, dual-path data transmission, and automated machine
learning pipelines can be effectively combined to create a practical and scalable foundation for data-driven agriculture. By
distributing responsibilities between edge-level sensing and backend prediction, the ESP32 functions as a lightweight data
acquisition unit while Apache Airflow manages continuous and dependable model orchestration.
The application of Random Forest algorithms yielded a strong correlation between forecasted and observed values, confirming that
accurate environmental prediction is achievable without the need for costly or proprietary hardware. The findings highlight that
prediction-aware irrigation and environmental monitoring can substantially minimize resource wastage and provide farmers with
clearer, more informed decision-making capabilities.
Ultimately, the success of this system reinforces the idea that open-source toolchains and low-cost 10T architectures can serve as a
sustainable foundation for the digital transformation of agriculture. By enabling accessible, predictive, and automated control, the
framework strengthens the potential for machine-learning-driven precision farming in developing regions—making smart
agriculture both practical and attainable for smallholder farmers worldwide.
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