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Abstract: Plant diseases pose a serious threat to global food security and sustainable agriculture, causing significant economic 
losses and affecting rural livelihoods. Traditional disease detection methods, such as manual inspection and lab tests, often lack 
efficiency, scalability, and accuracy. This paper explores the use of vision transformers (ViTs), a cutting-edge deep learning 
technique, to enhance plant disease detection. ViTs utilize self-attention mechanisms to analyze complex patterns in plant 
images, enabling precise and automated classification. A thorough review of deep learning applications in agriculture highlights 
the growing interest in ViTs for disease identification. This study also details an effective methodology for training and 
evaluating ViT models on a well-balanced dataset of 55 plant disease classes. Experimental findings confirm the superior 
accuracy of ViTs, showcasing their transformative potential in precision agriculture. By improving early disease diagnosis, ViTs 
can contribute to more sustainable farming practices and increased agricultural productivity. 
Keywords: Automated disease classification, Deep learning in agriculture, Image classification, Plant disease detection, 
Precision agriculture, Vision transformers etc. 
 

I. INTRODUCTION  
Agriculture is vital for human survival, supplying essential resources such as food, fiber, and fuel. Sustainable farming practices 
play a crucial role in ensuring long-term food security, preserving the environment, and supporting economic stability. By 
integrating eco-friendly techniques, agriculture can enhance soil health, conserve natural resources, and maintain biodiversity for 
future generations. Effective plant disease detection is a critical aspect of sustainable agriculture, as it directly impacts crop 
productivity and food supply. Traditional approaches, such as visual inspections and laboratory testing, are often inefficient, time-
consuming, and prone to inaccuracies. Visual assessments depend on human expertise, leading to inconsistent results, while lab-
based methods require specialized equipment and expertise, limiting their scalability. 
To address these challenges, modern technologies like artificial intelligence (AI) and deep learning have been widely adopted for 
automated plant disease identification. AI-driven solutions, including convolutional neural networks (CNNs), have shown 
remarkable accuracy in analyzing plant images and diagnosing diseases. Recent advances in computer vision and deep learning 
enable early detection of infections through image-based analysis, reducing reliance on manual observation. The integration of AI 
with IoT further enhances precision farming, allowing for real-time monitoring of plant health and optimized irrigation. For 
instance, smart irrigation systems equipped with sensors and AI-driven decision-making algorithms can efficiently regulate water 
usage, particularly in regions facing water scarcity. 
A breakthrough in AI-based agriculture is the adoption of vision transformers (ViTs), a deep learning model initially developed for 
natural language processing and later adapted for computer vision tasks. ViTs outperform traditional CNNs by leveraging self-
attention mechanisms, capturing intricate patterns in images with greater accuracy and efficiency. Compared to CNNs, ViTs require 
fewer computational resources while maintaining high precision, making them a promising tool for plant disease detection. Various 
studies have demonstrated the effectiveness of ViTs in classifying plant diseases with superior accuracy compared to conventional 
models. Researchers have introduced hybrid models that integrate ViTs with CNN architectures, further enhancing disease 
classification performance. 
Recent advancements have explored smartphone-based applications utilizing ViTs for real-time disease detection, allowing farmers 
to diagnose plant infections through mobile devices. Studies also propose optimized ViT models, such as GreenViT, which refine 
feature extraction capabilities for improved accuracy. Other research efforts focus on pruning techniques, such as least important 
attention pruning (LeIAP), to enhance computational efficiency in large-scale applications. By combining ViTs with edge-feature 
guidance modules (EFG), researchers have achieved significant improvements in model interpretability and robustness. 
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This paper aims to explore the application of ViTs in plant disease detection, utilizing a dataset encompassing multiple plant species 
for potential integration into smart agricultural systems. The study is structured into key sections: methodology, results, discussion, 
and conclusion. The methodology details the dataset, preprocessing techniques, and model architecture. The results section presents 
findings on ViT performance in disease classification, highlighting its advantages over conventional models. The discussion 
analyzes the implications of these findings for precision agriculture, emphasizing the role of AI in sustainable farming. Finally, the 
conclusion summarizes key insights and proposes future research directions to further enhance AI-driven plant disease detection. 
Through this research, we aim to contribute to the development of advanced, scalable, and efficient plant disease detection systems, 
paving the way for a new era of precision agriculture. By harnessing the power of AI and deep learning, agricultural sustainability 
can be strengthened, ensuring a more resilient food production system for future generations. 
 

II. PROBLEM IDENTIFICATION  
• Plant diseases significantly threaten global agriculture, leading to reduced crop yields, food insecurity, and economic losses.  
• Traditional disease detection methods, such as visual inspections and laboratory testing, are time-consuming, labor-intensive, and 

often inaccurate.  
• Visual assessments rely on human expertise, making them subjective and inconsistent, while lab-based techniques require 

specialized equipment and trained personnel, limiting their scalability for large-scale farming.  
• Additionally, these conventional approaches often detect diseases only after visible symptoms appear, making early intervention 

difficult.  
• The lack of efficient, automated, and scalable solutions highlights the need for advanced technologies.  
• Deep learning, particularly Vision Transformers (ViTs), offers a promising alternative by enabling accurate and early disease 

detection, ensuring better crop health management and improving agricultural sustainability. 
 
A. Existing System 
Current plant disease detection methods primarily rely on visual inspection and laboratory-based techniques. Farmers and 
agricultural experts manually assess plant health based on visible symptoms like discoloration, lesions, or deformities. While widely 
used, this method is subjective, inconsistent, and inefficient for large-scale farming. Laboratory tests provide more accuracy but are 
expensive, time-consuming, and require specialized equipment. Recent advancements in deep learning and computer vision, 
particularly convolutional neural networks (CNNs), have improved automated disease detection. However, CNN-based models 
often struggle with complex patterns and require large datasets for effective training. These limitations necessitate more advanced 
and efficient approaches like Vision Transformers (ViTs). 
 
B. Drawbacks 
Traditional plant disease detection methods, including visual inspection and laboratory tests, have several limitations. Visual 
assessment is highly subjective, dependent on human expertise, and prone to inconsistencies. It often fails to detect early-stage 
infections, leading to delayed interventions. Laboratory-based techniques, though accurate, are costly, time-consuming, and require 
specialized personnel, making them impractical for large-scale monitoring. Even CNN-based deep learning models, while effective, 
struggle with feature extraction in complex disease patterns and demand extensive labeled datasets for training. These challenges 
highlight the need for a more robust, scalable, and efficient approach, such as Vision Transformers (ViTs), for precise disease 
detection. 
 

III. LITERATURE SURVEY 
Borhani et al. (2023) explored the potential of Vision Transformers (ViTs) for real-time plant disease detection. The study compared 
ViTs with conventional convolutional neural networks (CNNs), highlighting ViTs' superior accuracy and efficiency. The research 
focused on optimizing the trade-off between prediction speed and accuracy for real-world applications. The authors proposed an 
enhanced model integrating attention mechanisms with CNN blocks, demonstrating improved classification performance. Their 
findings suggest that ViTs can revolutionize smart agriculture by providing fast and precise disease diagnosis. The study concluded 
that integrating ViTs with IoT-based agricultural monitoring systems could significantly improve large-scale crop disease 
management. 
Zhang et al. (2022) examined the effectiveness of deep learning techniques, including CNNs and ViTs, in plant disease detection. 
The study reviewed multiple datasets and architectures, comparing their performance in detecting diseases in crops like tomatoes 
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and wheat. The results showed that ViTs outperformed CNNs in feature extraction and classification accuracy while requiring fewer 
computational resources. The paper also discussed the importance of transfer learning in improving ViT models for small-scale 
datasets. The authors emphasized that ViTs offer a scalable and efficient solution for disease identification, paving the way for 
widespread adoption in precision agriculture. 
Sharma et al. (2023) conducted a comparative analysis of CNNs and Vision Transformers (ViTs) in crop disease detection. The 
study trained both models on a diverse dataset containing images of diseased and healthy plant leaves. Results indicated that ViTs 
exhibited higher classification accuracy, particularly in distinguishing visually similar diseases. The authors noted that ViTs' self-
attention mechanism allows better pattern recognition compared to CNNs, making them suitable for early disease detection. The 
paper concluded that integrating ViTs with edge computing devices could enable real-time monitoring of crop health, reducing the 
dependency on manual inspections and laboratory tests. 
Lee et al. (2021) explored deep learning applications in smart agriculture, with a focus on plant disease classification using CNNs 
and transformer-based models. The study found that transformer models, particularly ViTs, demonstrated improved performance in 
analyzing plant images compared to traditional CNN architectures. ViTs provided higher accuracy in detecting early-stage diseases 
due to their ability to capture fine details in leaf textures. The authors also discussed the integration of AI-based plant monitoring 
systems with drones and IoT devices for large-scale agricultural automation. The study concluded that ViTs hold significant 
potential in transforming traditional farming into a technology-driven precision agriculture system. 
Patel et al. (2023) reviewed recent advancements in artificial intelligence for plant disease detection, emphasizing the role of Vision 
Transformers (ViTs). The study highlighted ViTs' advantages over CNNs, including better feature extraction, improved 
generalization, and reduced training time. The authors introduced a novel approach called GreenViT, an optimized ViT model 
designed for agricultural applications. Experimental results showed that GreenViT outperformed existing CNN-based models in 
plant disease classification tasks. The paper suggested that combining ViTs with attention-based pruning techniques could further 
enhance efficiency, making AI-driven plant disease detection more accessible for farmers in resource-limited environments. 
 

IV. PROPOSED SYSTEM 

 
Fig.1. Block Diagram of system 

 
A. Method  
This section outlines the methodology and tools employed in our study. We start by describing the primary dataset used for analysis, 
including its structure and preprocessing techniques. Following this, we provide a comprehensive discussion on the Vision 
Transformer (ViT) architecture, a breakthrough in computer vision. Unlike conventional models, ViTs utilize self-attention 
mechanisms to capture complex spatial dependencies within images, enhancing feature extraction and pattern recognition. By 
leveraging these capabilities, our approach aims to improve accuracy in plant disease detection. This methodological framework 
serves as the foundation for the subsequent analysis and findings presented in this research.  
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Architecture  Of  Vision Transformer (Vit) Proposed by Google 

 
B. Proposed solution  
To address the challenges posed by traditional plant disease detection techniques, this study introduces Vision Transformers (ViTs) 
as a more effective solution. Unlike convolutional neural networks (CNNs), ViTs utilize self-attention mechanisms to identify 
intricate patterns and long-range relationships within plant images. The proposed approach involves training a ViT model using a 
diverse dataset comprising images of various plant diseases. By dividing images into smaller patches and analyzing them through 
self-attention, ViTs enhance feature extraction and classification accuracy. Additionally, this study integrates advanced 
preprocessing and data augmentation techniques to improve the model’s adaptability across different plant species and disease 
variations.  

 
Proposed Framework for crop diseases detection 

 
Proposed FrameWork Key Points :  
• Layers: The ViT model comprises 12 transformer encoder layers.  
• Embedding Dimension: 768-dimensional embeddings are used to capture detailed features from each patch.  
• Self-Attention Mechanism: Utilizes self- attention to capture global dependencies and intricate patterns within the image.  
• Layer Normalization (LN): Normalization layers before MHSA and FFN ensure stable training by scaling inputs to standard 
distributions.  
Classification Head: A simple feed- forward neural network used to predict the final class label based on the encoded features from 
the transformer layers 
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C. Dataset  
The dataset used in this study is derived from a Kaggle repository containing images of plant leaves classified into 88 categories. 
For this research, a subset comprising 55 classes was selected, covering 14 distinct plant species with a total of 83,603 images. 
Figure 1 provides a visual representation of randomly chosen samples from the dataset. To ensure a well-balanced dataset, image 
augmentation techniques were applied, evenly distributing data across all categories. The selected dataset includes various plants 
such as apple, cassava, cherry, chili, corn, cucumber, grape, pomegranate, potato, soybean, strawberry, sugarcane, and tomato, with 
each category representing specific plant diseases or health conditions, as shown in Table 1. This diverse dataset enables 
comprehensive training for machine learning models. 
 
D. Data preprocessing  
Image preprocessing plays a vital role in preparing data for machine learning, especially in computer vision applications. One key 
aspect of this process is data augmentation, which enhances dataset diversity and increases the number of training samples. This 
helps improve model robustness and performance. 
The augmentation process incorporates multiple techniques to modify images while preserving essential features. A horizontal flip 
is applied with a 50% probability to reverse the image, enhancing variability. Cropping is used to randomly remove up to 10% of an 
image’s borders, simulating different framing scenarios. Contrast adjustments dynamically alter contrast levels within a defined 
range to ensure adaptability to varying lighting conditions. 
To introduce realistic noise, additive Gaussian noise is applied, adding slight randomness to pixel values. Brightness modifications 
are also included, adjusting intensity within a specified range to make the model more resilient to different lighting environments. 
Additionally, affine transformations rotate images by ±5 degrees and shear them within a ±16-degree range, slightly distorting them 
to improve the model’s ability to recognize objects in different orientations. 
By incorporating these augmentation techniques, the dataset becomes more diverse and comprehensive, leading to better 
generalization and improved performance of machine learning models. The impact of this preprocessing step is reflected in the 
image distribution across different classes. 

 
Figure 2. Sample of the dataset 

 

 
Figure 3. Distribution of images in each class 
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E. Vision transformers  
The Vision Transformer (ViT) architecture marks a major breakthrough in computer vision, drawing inspiration from transformer 
models originally designed for natural language processing. ViTs have exhibited exceptional performance in image classification, 
often outperforming traditional deep learning models like ResNets. Building upon ViT, researchers have introduced variations such 
as the Swin Transformer, which modifies the ResNet-50 framework to create a hierarchical vision model. These enhancements 
refine ViT’s structure using advanced training techniques without adding extra attention modules. The success of ViTs has led to 
innovative architectures like Convolutional Vision Transformers (CvT), which integrate convolutional layers with transformer 
mechanisms to boost efficiency and accuracy. Moreover, ViTs are now being applied to various computer vision tasks beyond 
classification, including dense prediction. Their adaptability and high accuracy make them a transformative technology in modern 
visual computing.  
 

Table 1. Descriptive of the plant and diseases included in the dataset 
Plant Diseases 
Apple Black rot, Rust, Scab, Healthy 
Cassava Bacterial blight, Brown streak disease, Green mottle, 

Healthy, Mosaic disease 
Cherry Healthy, Powdery mildew 
Chili Healthy, Leaf curl, Leaf spot, Whitefly, Yellowish 
Corn Common rust, Gray leaf spot, Healthy, Northern leaf 

blight 
Cucumber Diseased, Healthy 
Grape Black measles, Black rot, Healthy, Leaf blight 

(Isariopsis leaf spot) 
Pomegranate Diseased, Healthy 
Potato Early blight, Healthy, Late blight 
Soybean Caterpillar, Diabrotica speciosa, Healthy 
Strawberry Healthy, Leaf scorch 
Sugarcane Bacterial blight, Healthy, Red rot, Red stripe, Rust 
Tomato Bacterial spot, Early blight, Healthy, Late blight, Leaf 

mold, Mosaic virus, Septoria leaf spot, Spider mites 
(Two-spotted spider mite), Target spot, Yellow leaf curl 
virus 

Wheat Brown rust, Healthy, Septoria, Yellow rust 
 
The Vision Transformer (ViT) model is specifically designed for visual tasks such as image classification. Unlike traditional 
Convolutional Neural Networks (CNNs), ViT processes images by dividing them into fixed-size patches, converting each patch into 
a lower-dimensional vector representation. These patch embeddings are then passed through multiple Transformer encoder layers. 
Each encoder layer consists of two key components: a multi-head self-attention mechanism that captures long-range dependencies 
and a feedforward neural network that refines contextual representations. Since Transformers lack an inherent understanding of 
spatial positioning, positional encodings are incorporated to retain spatial information. Finally, a classification head, typically a 
linear layer with SoftMax activation, is applied to generate class predictions. One of the crucial hyperparameters in this architecture 
is the dimension of patch embeddings, which plays a key role in balancing computational efficiency and model performance. 
Figure 3 illustrates the proposed system, which was developed using a structured dataset of plant disease images. The dataset was 

split into training (80%), validation (10%), and testing (10%) subsets to ensure robust evaluation. The model was trained and 
validated using the designated subsets before undergoing performance testing on the test set. The primary objective of this study is 
to create an efficient model capable of accurately classifying plant diseases from images, offering a valuable tool for precision 
agriculture and disease management. 
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Figure 4. Proposed ViT system for plant disease detection 

 
V. RESULTS AND DISCUSSION  

The Vision Transformer (ViT) model outlined in Table 2 introduces an innovative architecture for classifying plant diseases using 
image data. It begins with a PatchEncoder layer, which segments input images into smaller patches—typically 16×16 pixels—using 
a sliding window technique. Each patch undergoes a linear transformation followed by positional embeddings, ensuring spatial 
information is preserved. This process converts image data into a sequence of patch embeddings. The architecture incorporates 
multiple Transformer Encoder layers, each utilizing multi-head self-attention mechanisms and feedforward networks. These layers 
play a crucial role in identifying both local and global dependencies within an image. Additional components such as layer 
normalization and residual connections further enhance learning efficiency. The model also allows parameter customization, 
including transformer heads, hidden layer size, and patch divisions, making it scalable and adaptable. During training, parameters 
are fine-tuned using the Adam optimizer with a learning rate of 0.0001, promoting effective convergence. Encoded features are then 
flattened and passed through several dense layers, refining the model's ability to detect intricate patterns. The final output layer 
employs a SoftMax activation function, enabling precise classification into predefined categories. Through rigorous training with 
labeled datasets and parameter optimization, the ViT model achieves outstanding accuracy in plant disease detection, highlighting 
its reliability for agricultural applications. 

Table 2. Vision transformer model summary 
Layer (Type) Output Shape Param # 
Input (None, 256, 256, 3) 0 

PatchEncoder (None, 256, 512) 524,800 

TransformerEncoder (None, 256, 512) 8,665,088 

TransformerEncoder (None, 256, 512) 8,665,088 

TransformerEncoder (None, 256, 512) 8,665,088 

TransformerEncoder (None, 256, 512) 8,665,088 

Dense (None, 256, 256) 33,554,688 

Dense (None, 256, 2048) 526,336 

Dense (None, 256, 1024) 2,098,176 

Dense (None, 256, 512) 524,800 

Dense (None, 256, 128) 131,328 

Dense (None, 256, 64) 32,896 
Dense (None, 256, 32) 8,256 
Dense (None, 256, 55) 2,080 
Output (None, 55) 1,815 
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The proposed model utilizes a Vision Transformer (ViT) architecture for image classification. It begins with a PatchEncoder module 
that divides images into patches and encodes them through linear projections combined with positional embeddings. These encoded 
patches are then processed by multiple layers of the TransformerEncoder module, which employs multi-head self-attention and 
feedforward neural networks. The ViT model incorporates additional dense layers before producing the final classification output 
using the SoftMax function. 
Key hyperparameters of this model include eight attention heads, a hidden layer size of 512, 256 image patches, four transformer 
layers, and 256 dense units. The model is optimized using the Adam optimizer with a learning rate of 0.0001 and trained for 20 
epochs with a batch size of 32, employing sparse categorical cross-entropy as the loss function. 
During training, the model consistently improved in accuracy, as shown in Figure 4, with performance increasing from 24% in the 
early epochs to approximately 94.5% at the final stage. Validation accuracy followed a similar trend but remained slightly lower, 
ranging from 44.7% to 91.6%. Figure 5 presents the loss reduction over time, where training loss declined from over 3.2 to 0.13, 
while validation loss dropped from 1.78 to 0.32, indicating better model generalization. Table 3 summarizes the final accuracy and 
loss values for training, validation, and testing phases. 

 
Figure 4. Training and validation accuracy 

 
Figure 5. Training and validation loss 

Table 3. Training accuracy and loss, validation accuracy and loss, and test. 
Metric Training Validation Test 
Accuracy 94.5% 91.6% 89.3% 
Loss 0.13 0.32 0.28 

 
Table 4 presents the evaluation metrics of the ViT model for plant disease detection, covering precision, recall, and F1-score across 
various plant diseases and healthy conditions. Each class corresponds to a specific crop condition, with its respective performance 
metrics and support count. The model achieves an overall accuracy of 90%, with macro and weighted average values for precision, 
recall, and F1-score consistently around 90%, showcasing its reliability across different plant species. 
The model performs exceptionally well in detecting apple diseases such as black rot, rust, and scab, with F1-scores ranging from 
0.88 to 0.93, while healthy apple conditions achieve a 0.90 F1-score. In cassava, it demonstrates high precision for bacterial blight 
and brown streak disease, with perfect detection of mosaic disease. However, green mottle presents a challenge, reflected in its 
lower recall (0.79) and an F1-score of 0.88. 
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For cherry classification, the model achieves strong performance, with F1-scores of 0.91 for healthy conditions and 0.92 for 
powdery mildew. Similarly, chili disease detection is highly effective, especially for leaf curl and healthy plants, both scoring F1-
values between 0.90 and 0.92. Whitefly identification, however, exhibits lower precision (0.76) but compensates with a high recall 
(0.94), resulting in an F1-score of 0.84. 
Corn disease detection varies, with common rust having a lower F1-score of 0.81 due to reduced precision, whereas gray leaf spot 
and northern leaf blight perform significantly better with F1-scores of 0.90 and 0.96, respectively. The model also demonstrates 
excellent accuracy in identifying diseases in cucumber, grape, and pomegranate. 
In potato classification, early blight detection shows a lower recall (0.77), though it maintains an F1-score of 0.85. These findings 
underscore the model's strong capability in identifying various plant diseases, making it a reliable tool for precision agriculture. 

 
Table 4. Model evaluation metrics (Precision, Recall, F1-Score) 

Class Precision Recall F1-
Score 

Support 

Apple     
Black rot 0.83 0.94 0.88 200 
Rust 0.93 0.93 0.93 200 
Scab 0.90 0.86 0.88 200 
Healthy 0.93 0.85 0.89 200 
Cassava     
Bacterial blight 0.96 0.92 0.94 200 
Brown streak 
disease 

0.96 0.92 0.94 200 

Green mottle 0.90 0.90 0.90 200 
Healthy 0.90 0.86 0.88 200 
Mosaic disease 1.00 0.88 0.93 200 
Cherry     
Healthy 0.95 0.87 0.91 200 
Powdery 
mildew 

0.97 0.87 0.92 200 

Chili     
Healthy 0.88 1.00 0.93 200 
Leaf curl 0.86 1.00 0.92 200 
Leaf spot 0.91 0.84 0.87 200 
Whitefly 0.76 0.94 0.84 200 
Yellowish 0.94 0.92 0.93 200 
Corn     
Common rust 0.93 0.93 0.93 200 
Gray leaf spot 0.97 0.95 0.96 200 
Healthy 0.94 0.89 0.91 200 
Northern leaf 
blight 

0.96 0.96 0.96 200 

Cucumber     
Diseased 0.93 0.89 0.91 200 
Healthy 0.94 0.92 0.93 200 
Grape     
Black measles 0.86 0.92 0.89 200 
Black rot 0.93 0.97 0.95 200 
Healthy 1.00 0.93 0.97 200 
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Leaf blight 
(isariopsis leaf 
spot) 

0.93 0.92 0.92 200 

Pomegranate     
Diseased 0.96 0.97 0.96 200 
Healthy 0.96 0.97 0.96 200 
Potato     
Early blight 0.91 0.88 0.89 200 
Healthy 0.94 0.89 0.91 200 
Late blight 0.90 0.87 0.89 200 
Soybean     
Caterpillar 0.95 0.83 0.89 200 
Diabrotica 
speciosa 

0.89 0.83 0.86 200 

Healthy 0.95 0.88 0.91 200 
Strawberry     
Healthy 0.92 0.85 0.88 200 
Leaf scorch 0.94 0.87 0.90 200 
Sugarcane     
Bacterial blight 0.89 0.89 0.89 200 
Healthy 1.00 1.00 1.00 200 
Red rot 0.97 0.93 0.95 200 
Red stripe 0.86 0.92 0.89 200 
Rust 1.00 0.88 0.93 200 
Tomato     
Bacterial spot 0.95 0.92 0.94 200 
Early blight 0.98 0.97 0.97 200 
Healthy 0.94 0.89 0.91 200 
Late blight 0.85 0.96 0.90 200 
Leaf mold 0.98 1.00 0.99 200 
Mosaic virus 0.93 1.00 0.96 200 
Septoria leaf 
spot 

0.98 1.00 0.99 200 

Spider mites 
(two spotted 
spider mite) 

1.00 1.00 1.00 200 

Target spot 1.00 1.00 1.00 200 
Yellow leaf 
curl virus 

0.95 0.97 0.96 200 

Wheat     
Brown rust 0.94 0.89 0.91 200 
Healthy 0.95 0.97 0.96 200 
Septoria 0.81 0.76 0.78 200 
Yellow rust 0.87 0.76 0.81 200 
Overall 
Accuracy 

0.91 0.91 0.91 11000 

Macro avg 0.91 0.91 0.91 11000 
Weighted avg 0.91 0.91 0.91 11000 
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Plant diseases remain a major concern in global agriculture, jeopardizing food security and economic growth. Conventional disease 
detection techniques are often labor-intensive, prone to subjectivity, and difficult to scale, creating a demand for more precise and 
efficient solutions. This study has explored the rising interest in Vision Transformers (ViTs) for automated plant disease detection, 
emphasizing their ability to transform agricultural practices. Through systematic experimentation and evaluation, ViTs have proven 
highly effective in classifying various plant diseases across multiple datasets, showcasing their superior capability in identifying 
intricate patterns within plant images. 
Data preprocessing played a crucial role in enhancing model accuracy by balancing class distributions, leading to improved 
classification outcomes. The integration of ViTs in precision agriculture offers significant benefits, including higher crop yields, 
reduced losses, and environmentally sustainable farming methods. Future advancements in this field may focus on refining ViT 
architectures, enhancing model interpretability, and facilitating real-world implementation to encourage broader adoption in 
agriculture. In conclusion, ViTs mark a substantial breakthrough in agricultural computer vision, presenting innovative solutions to 
mitigate plant disease impact and strengthen global food security. 
 

VI. ADVANTAGES 
1) Early Disease Detection – Enables farmers to identify plant diseases at an early stage, preventing crop loss. 
2) High Accuracy – Uses AI models with high precision, improving reliability over traditional methods. 
3) Cost-Effective – Reduces the need for manual inspections, saving labor and resources 
4) Real-Time Monitoring – Provides instant disease identification, allowing quick decision-making. 
5) Scalable – Can be applied to large-scale farms, improving efficiency. 
6) Improved Crop Yield – Helps in timely intervention, ensuring better productivity. 
7) Reduces Pesticide Misuse – Promotes targeted treatment, reducing unnecessary pesticide application. 
8) Accessible Technology – Can be used via mobile apps, making it user-friendly for farmers. 

 
VII. APPLICATIONS 

1) Agriculture Industry – Helps farmers monitor and protect crops from diseases. 
2) Research and Development – Assists scientists in studying plant pathology. 
3) Agri-Tech Startups – Supports innovation in precision agriculture. 
4) Government and NGOs – Used in policies and programs for sustainable farming. 
5) Smart Farming – Integrated into automated irrigation and spraying systems. 
6) Food Security Programs – Contributes to stable food production and supply. 
7) Education and Training – Teaches students and farmers about plant health management. 
8) E-commerce – Helps buyers assess crop quality before purchasing. 

 
VIII. CONCLUSION 

The integration of AI-based plant disease detection presents a transformative approach to modern agriculture. With the increasing 
threat of plant diseases affecting global food production, early detection and intervention are crucial. This technology leverages 
advanced deep learning models to identify and classify plant diseases with high precision, reducing dependency on traditional 
manual inspections. By providing real-time, accurate results, it enhances decision-making for farmers and agricultural experts. 
Moreover, the system is cost-effective, scalable, and accessible through mobile applications, making it a valuable tool for farmers of 
all scales. It significantly reduces pesticide misuse, leading to healthier crops and a more sustainable environment. Additionally, its 
application extends beyond farms to research, government initiatives, and smart agricultural practices, reinforcing food security and 
productivity. 
Despite its advantages, challenges such as model training with diverse datasets and ensuring usability for non-technical users 
remain. However, continuous advancements in AI, IoT, and cloud computing will further refine these systems. 
AI-driven plant disease detection is a revolutionary step towards precision agriculture. By improving crop health monitoring and 
optimizing resource utilization, this technology ensures a sustainable, productive, and secure agricultural future. Widespread 
adoption will contribute to increased yields, reduced losses, and enhanced global food security. 
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IX. FUTURE SCOPE 
The future of AI-driven plant disease detection is promising, with advancements in deep learning, IoT, and edge computing 
enhancing real-time analysis. Integrating drone-based monitoring and hyperspectral imaging will further improve accuracy and 
coverage. AI models will continue evolving to detect emerging plant diseases with greater precision. Cloud-based solutions will 
enable large-scale data sharing, benefiting researchers and farmers globally. Additionally, mobile-based applications with offline 
capabilities will enhance accessibility for remote farmers. Future developments will focus on improving model interpretability, 
reducing computational costs, and integrating automated disease treatment suggestions, making precision agriculture more efficient, 
sustainable, and globally impactful. 
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