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Abstract: The increasing complexity of machine learning (ML) workflows poses challenges for beginners, educators, and non-
technical users, often requiring programming expertise and offering limited model interpretability. AIMEX (Automated 
Intelligent Modeling and Explainability System) is a web-based framework that integrates Automated Machine Learning 
(AutoML) with Explainable AI (XAI) to provide an accessible, user-friendly platform. Using the TPOT framework, AIMEX 
enables users to upload structured datasets, select target variables, and generate optimized models for classification or regression 
tasks, with automated preprocessing and performance evaluation. It incorporates SHAP (SHapley Additive exPlanations) for 
intuitive visualizations of feature contributions, enhancing model transparency. Additionally, an Educational Mode powered by 
LLaMA via the Ollama API delivers simplified natural-language explanations of datasets, model outputs, and feature 
importances, catering to learners and non-experts. AIMEX bridges automation, interpretability, and education, serving as a 
practical and pedagogical tool for academic and experimental ML applications. 
Keywords: Automated Machine Learning, Explainable AI, TPOT, SHAP, Educational ML Platform, Model nterpretability, 
Web-Based ML Framework, LLaMA Integration, ollama. 
 

I. INTRODUCTION 
The advent of Artificial Intelligence (AI) and Machine Learning (ML) has revolutionized data-driven decision-making across 
domains like healthcare, finance, and education. However, developing and interpreting ML models requires expertise in data 
preprocessing, algorithm selection, and evaluation, which poses barriers for non-experts. The Automated Intelligent Modeling and 
Explainability System (AIMEX) addresses these challenges by integrating TPOT for automated model development, SHAP for 
explainable AI (XAI), Streamlit for an intuitive web interface, and LLaMA via the Ollama API for educational support [1], [2].ML 
workflows involve multiple stages: data collection, preprocessing, feature engineering, model selection, hyperparameter tuning, 
evaluation, and deployment. Each stage presents challenges such as dealing with messy data that has missing values, inconsistent 
formats, and errors. Choosing the right algorithm from simpler models to complex neural networks is a trade-off between 
performance and interpretability. Finding the best combination of model settings (hyperparameters) is computationally expensive 
and prone to the "curse of dimensionality" [3], [4].Many powerful models, like deep neural networks, are opaque, making it difficult 
to understand how they make decisions. This reduces trust in high-stakes applications like medical diagnosis or loan approvals. 
Lack of transparency can hide biases in training data, leading to unfair or discriminatory outcomes.  
Most traditional ML tools require strong coding skills, creating a barrier for non-programmers like domain experts and educators 
[5], [6].To address these challenges, AIMEX leverages the Tree-based Pipeline Optimization Tool (TPOT) to automate the creation 
of optimized ML pipelines, enabling users to upload structured datasets (e.g., CSV files), select target variables, and generate high-
performing models without extensive programming knowledge. The system supports both classification and regression tasks, 
handling essential preprocessing steps such as missing value imputation, categorical encoding, and feature scaling [7], [8].To 
enhance transparency, AIMEX incorporates SHapley Additive exPlanations (SHAP), a state-of-the-art XAI technique that quantifies 
the contribution of individual features to model predictions and presents them through intuitive visualizations, such as summary 
plots and force plots. The framework is deployed using Streamlit, providing an interactive web interface that simplifies dataset 
handling, model training, evaluation, and result interpretation [9], [10].Additionally, AIMEX features an Educational Mode 
powered by the Large Language Model Meta AI (LLaMA) via the Ollama API, which delivers simplified, natural-language 
explanations of ML concepts, model outputs, and feature importances, catering to learners and non-experts. By combining 
automation, interpretability, and educational support, AIMEX serves as a versatile tool for researchers, students, and practitioners, 
fostering reproducible and responsible ML practices in academic and experimental environments [11], [12]. 
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II. METHODOLOGY 
The methodology of AIMEX follows a structured workflow that ensures accuracy, interpretability, and ease of use. It begins with 
data collection through the Streamlit interface, allowing users to upload structured datasets for analysis. The data undergoes 
preprocessing to handle missing values, outliers, and categorical encoding, ensuring consistency for model training. Next, feature 
engineering enhances the dataset by creating informative attributes that improve model performance. The TPOT algorithm is then 
employed to automatically build and optimize machine learning pipelines through genetic programming, selecting the best model 
based on evaluation metrics like accuracy, MAE, and R². After training, the system generates visual performance results and 
interpretable outputs using SHAP, which highlights the importance of each feature in the predictions. Finally, the Educational Mode 
powered by LLaMA provides simple, natural-language explanations, helping users understand the complete machine learning 
workflow in an interactive, user-friendly manner. 

 
Fig. 1 Flow diagram 

 
III. DATA COLLECTION AND PREPROCESSING 

The system under consideration accepts structured datasets through the Streamlit web interface, which provides an intuitive file 
upload mechanism for CSV files. This keeps the dataset used for prediction accessible and user-friendly. The data is retrieved 
through simple drag-and-drop or file selection, enabling continuous interaction between users and the system.After raw data is 
acquired, it goes through a preprocessing step to get ready for machine learning. This encompasses dealing with missing or 
inconsistent values through imputation strategies—filling numerical columns with zeros or median values, and categorical columns 
with mode values. Categorical features are automatically encoded using category codes to ensure compatibility with tree-based 
algorithms.The system implements intelligent target variable detection through the detect_target_column function, which examines 
the dataset for common target variable naming patterns (e.g., 'target', 'label', 'class', 'species', 'survived') and identifies binary 
columns that likely represent classification targets. Users can override this automatic detection through a dropdown menu for 
manual selection.High-cardinality text columns (e.g., 'name', 'ticket' in Titanic dataset) are identified and presented to users for 
optional removal, preventing model complexity and overfitting. Temporal alignment is used to guarantee that every feature adheres 
to the right order, which is vital for effective modeling. Preprocessed data is divided into training and test sets, preferably with an 
80:20 ratio, using stratified sampling for classification tasks to maintain class distribution.By following this systematic process, the 
data preprocessing and collection module guarantees the input to the TPOT model as clean, well-formatted, and uniform, thus laying 
the solid groundwork for reliable and precise model development.  

 
Fig. 2 Data preprocessing 

 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue X Oct 2025- Available at www.ijraset.com 
    

 
1466 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

IV. FEATURE ENGINEERING AND AUTOMATED MODEL DEVELOPMENT 
Feature engineering is responsible for enhancing the predictive power of the model by developing new informative features from 
available data. In AIMEX, TPOT's genetic programming approach automatically explores various feature engineering operators 
within its pipeline search space.TPOT's Built-in Capabilities include feature construction (polynomial features, interaction terms, 
mathematical transformations), feature selection methods (SelectKBest, SelectPercentile, Recursive Feature Elimination), 
dimensionality reduction techniques (PCA, feature agglomeration), and preprocessing transformations (scalers like StandardScaler, 
MinMaxScaler, RobustScaler).The automated model development process begins with data splitting into training (80%) and testing 
(20%) sets using train_test_split from Scikit-learn. The system automatically determines whether the problem is classification 
(categorical target with ≤10 unique values) or regression (continuous target with >10 unique values), instantiating either 
TPOTClassifier or TPOTRegressor accordingly.Users configure TPOT parameters through intuitive sliders in the Streamlit 
interface: 
1) Generations: Number of iterations for genetic algorithm evolution (1-50) 
2) Population Size: Number of pipeline candidates per generation (5-100) 
3) Parallel Jobs: Number of CPU cores for parallel processing (1-8) 
TPOT explores a vast space of potential pipelines through genetic programming, including preprocessing steps, feature selection 
methods, various classification/regression algorithms (Random Forest, Gradient Boosting, SVM, etc.), and hyperparameter 
combinations. Through genetic operations (crossover, mutation, selection), TPOT iteratively improves pipeline performance based 
on cross-validated scores, ultimately identifying the best-performing configuration. 
These designed features are merged with the base dataset to produce a more populated and informative input for the model. Data 
transformation methods like normalization and scaling are performed in order to make all features contribute equally while training 
the model. The resulting dataset is then organized into input features and target values, allowing effective learning and precise 
prediction. This phase makes the system more capable of grasping intricate relationships and gives a solid support for future 
predictions. 

 

 
Fig. 3 Feature engineering 

 
V. MODEL EVALUATION AND PERFORMANCE METRICS 

The model evaluation process ensures reliability by testing the trained TPOT model on unseen data using the 80:20 train-test split. 
The system computes comprehensive performance metrics based on the task type. 
For Classification Tasks, the system calculates Accuracy: Overall correctness of predictions using accuracy_score from Scikit-learn, 
Confusion Matrix: Visualization of true vs. predicted classes using Seaborn heatmap with annotated values, Precision, Recall, F1-
Score: Class-wise performance metrics for detailed evaluation. For Regression Tasks, the system computes R² Score: Coefficient of 
determination indicating variance explained by the model, Mean Squared Error (MSE): Average squared prediction error, Mean 
Absolute Error (MAE): Average absolute prediction error 
After training the model, it is then tested using these statistical measures to ensure that it is accurate and reliable before proceeding 
to the prediction and explainability stages. Performance visualizations are generated using Matplotlib and Seaborn, displayed 
directly in the Streamlit interface for immediate user feedback. 
Cross-validation is applied to verify consistency across different data subsets and ensure the model generalizes well to unseen data. 
The evaluation module integrates seamlessly with the visualization module to render graphical outputs, ensuring users can easily 
interpret results. 
Testing on benchmark datasets demonstrates AIMEX's effectiveness: 
1) Iris Dataset: Achieved 96.67% accuracy with clear feature importance identification 
2) Boston Housing Dataset: Attained R² score of 0.8523 with meaningful insights into price predictors 
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3) Wine Quality Dataset: Achieved R² of 0.678 with identification of key quality factors 
4) Titanic Dataset: Reached 82.3% accuracy with clear survival factor analysis 
These results confirm that AIMEX provides precise, stable, and explainable predictions suitable for real-world analysis and 
educational purposes. 

 
Fig. 4 iris dataset metrics 

 
VI. EXPLAINABILITY WITH SHAP 

Once the model is trained successfully, the explainability process is executed to provide transparent insights into how the model 
makes predictions. The system makes use of SHAP (SHapley Additive exPlanations), a state-of-the-art XAI technique based on 
game theory that quantifies the contribution of individual features to model predictions. 
The SHAP computation module, implemented in xai_utils.py, operates through the compute_shap_values function. For the fitted 
TPOT pipeline, the module attempts to use TreeExplainer for tree-based models (which is computationally efficient), falling back to 
KernelExplainer for other model types. A background sample of 50 training instances is used to reduce computational overhead 
while maintaining explanation quality.SHAP values are computed for the test set, with the system handling missing values by filling 
them with zeros to prevent errors during calculations. The module ensures compatibility with Pandas DataFrames and provides 
robust error handling for various model types.Visualization outputs include Summary Plots - Show the distribution of feature 
impacts across all predictions, with features ranked by importance and colored by feature value (red for high, blue for low). These 
global explanations help users understand which features are most important overall and Force Plots - Illustrate how individual 
features push predictions away from the base value for specific instances, enabling detailed understanding of single predictions 
through local explanations. 
All SHAP visualizations are rendered within the Streamlit interface using Matplotlib, providing interactive exploration capabilities. 
Users can zoom into plots, toggle data points, and export visuals as PNG files for reports and presentations. 
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Outputs are presented in graphical forms comparing feature contributions, making it easy for users to interpret the model's decision-
making process. This phase proves the system's capability to provide timely and transparent explanations, allowing learners, 
analysts, and researchers to make enhanced data-driven decisions with full understanding of model behavior.The integration of 
SHAP ensures that AIMEX addresses the "black-box" problem common in ML models, fostering trust and enabling users to identify 
potential biases, validate model logic, and gain actionable insights from predictions. 
 

 
Fig. 5 iris dataset shap 

 
VII. EDUCATIONAL MODE WITH LLaMA 

The Educational Mode is a key feature of AIMEX, designed to support learning by providing simplified explanations of ML 
concepts and model outputs. Powered by LLaMA (Large Language Model Meta AI) via the Ollama API, this mode generates 
natural-language responses to user queries about the dataset, target variable, AutoML processes, and SHAP feature importances.The 
system connects to a local or remote Ollama server through the call_llm function implemented in aimex_helpers.py. Users can 
configure the Ollama API URL (default: http://localhost:11434/api/generate) and model name (default: llama3.2:1b) through the 
Streamlit sidebar. A connection test ensures the API is accessible, with feedback displayed to users. 
Dynamic prompt generation creates context-aware explanations based on the current session's data: 
1) Dataset Understanding: "Dataset columns: [list]. Target: [name]. Explain what a target variable is in simple terms." 
2) Preprocessing Explanation: "Explain how missing values were handled and why categorical encoding is necessary." 
3) Model Output Interpretation: "The model achieved [accuracy/R²]. Explain what this means for prediction quality." 
4) SHAP Feature Importance: "Top features: [list with SHAP values]. Explain which features are most important and why." 
Users can also input custom questions through a text area, and the system maintains context to provide coherent, relevant answers 
throughout the session. Responses are displayed in expandable text areas within the Streamlit interface, with proper formatting and 
error handling. 
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Fig. 6 LLaMA 

 
VIII. CODE EXPORT AND REPRODUCIBILITY 

To ensure reproducibility and enable further customization, AIMEX exports the optimized TPOT pipeline as standalone Python code 
through the Code Export Module. The tpot.export method generates a Python script (tpot_pipeline_exported.py) containing the 
complete pipeline discovered by genetic programming. 
The patch_exported_pipeline function modifies this script to: 
1) Include preprocessing steps: Adds code for dropping high-cardinality columns and encoding categorical features to match the 

preprocessing applied during training 
2) Restore original names: Replaces the placeholder 'target' with the original target column name for clarity 
3) Add documentation: Includes comments explaining each step for educational purposes 
Users can download the script via a Streamlit download button, allowing them to: 
a) Run the pipeline in external Python environments (Jupyter Notebook, VS Code, PyCharm) 
b) Modify hyperparameters or preprocessing steps for experimentation 
c) Integrate the model into production systems or research workflows 
d) Share reproducible code with collaborators or for peer review 
The exported code is self-contained and includes all necessary imports, making it immediately executable with standard Python ML 
libraries (scikit-learn, pandas, numpy). This feature supports reproducible research by allowing users to document exact model 
configurations, share complete workflows, and enable others to replicate results. 
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Fig. 7 pipeline code  

 
IX. RESULTS AND DISCUSSION 

The outcomes of the AIMEX system demonstrate considerable enhancement in prediction accuracy, efficiency, interpretability, and 
educational value compared to traditional approaches. The system was rigorously evaluated across four dimensions: performance, 
visualization, usability, and educational impact. 
Performance Evaluation on benchmark datasets shows: 
1) Iris Dataset: TPOT optimized a Random Forest classifier achieving 96.67% accuracy, F1-score of 0.965, and precision-recall 

AUC of 0.97. SHAP analysis identified petal length (mean SHAP value 0.35) and petal width (0.25) as dominant features for 
classification. 

2) Boston Housing Dataset: Gradient Boosting Regressor achieved R² of 0.8523, MSE of 12.45, and MAE of 2.8. SHAP plots 
highlighted 'RM' (0.4) and 'LSTAT' (0.3) as key price predictors. 

3) Wine Quality Dataset: Support Vector Regressor yielded R² of 0.678, MSE of 0.52, demonstrating capability with larger 
datasets (4898 rows). 

4) Titanic Dataset: Decision Tree classifier achieved 82.3% accuracy, with SHAP revealing 'Fare' (0.28) and 'Pclass' (0.22) as 
critical survival predictors. 

 

 
Fig. 8 Titanic metrics 
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Fig. 9 Titanic shap 

The modular nature allows researchers to: 
1) Benchmark different models on the same preprocessed data 
2) Conduct systematic parameter studies 
3) Build upon the TPOT-optimized pipeline with custom modifications 
4) Archive complete experimental setups for future reference 
This capability positions AIMEX as not just an interactive platform but also as a tool for generating production-ready, shareable, and 
reproducible ML code suitable for academic publications, industry applications, and collaborative research projects. 
 

X. CONCLUSION 
AIMEX integrates automation, interpretability, and accessibility within a unified web-based framework. By combining TPOT for 
AutoML, SHAP for model explainability, Streamlit for an intuitive interface, and LLaMA for educational guidance, AIMEX 
bridges the gap between complex ML processes and user-friendly learning.Through its modular and low-code design, AIMEX 
simplifies model creation, interpretation, and export while maintaining transparency and reproducibility. The use of SHAP 
visualizations enhances understanding of feature importance, and the Streamlit interface ensures ease of use across academic and 
research settings. AIMEX’s architecture supports adaptability, enabling future integration of new algorithms and educational 
tools.In conclusion, AIMEX represents a step forward in democratizing machine learning by combining automation and 
explainability with an educational perspective. It promotes responsible, interpretable, and accessible AI, empowering students, 
educators, and researchers to explore and apply ML effectively in both academic and experimental environments. 
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