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Abstract: This paper presents an intelligent charging system powered by AI to boost performance and improve the State of 

Charge (SoC) and State of Health (SoH) of batteries in Electric Vehicles (EVs). Despite advancements in design and electrical 

specifications, the significance of effectively charging EV batteries is essential for ensuring safety, efficiency, and longevity. The 

prototype features a Raspberry Pi as its main controller, along with sensors that monitor key battery metrics including voltage, 

current, temperature, and pressure. The proposed system employs machine learning algorithms to forecast critical battery 

metrics such as SoC, SoH, and charging capacity based on the collected sensor data. These metrics are gathered in real-time, 

allowing the implementation of adaptive charging strategies that maintain consistent battery performance while adjusting to 

real-time variations in battery conditions to avoid issues like overheating, overcharging, and deterioration. This method not only 

prolongs battery life but also minimizes safety hazards. The proposed system is scalable, cost-efficient, and superior to traditional 

charging systems. Furthermore, it can be paired with renewable energy sources to further improve energy efficiency. This paper 

aims to promote the creation of an environmentally sustainable and smart battery charging system for electric vehicles. 

Keywords: Raspberry Pi, Artificial Intelligence (AI), State of Health, State of Charge, EV, RandomForestRegressor AI Model, 

Machine Learning in BMS, Adaptive Charging, IOT based BMS                                                                  

 

I. INTRODUCTION 

In 2024, Electric Vehicles (EVs) accounted for 20% of all cars sold globally as per a report by International Energy Agency (IEA). 

Even though there have been advancements in battery technology, vehicle design, and the use of renewable resources, research on 

battery charging systems remains crucial due to its importance and increasing demand. A smarter charging system can enhance 

battery safety and longevity while improving overall EV efficiency.  

Figure 1 illustrates the impact of charging and discharging cycles on the State of Charge (SoC) and State of Health (SoH) of 

batteries. Over time, frequent charging and discharging cycles negatively impact batteries, leading to poor SoC and SoH, increasing 

safety risks, and necessitating frequent battery replacements. An inefficient charging system worsens this issue, potentially causing 

overheating, overcharging, and degradation, which shortens the overall battery lifespan. 

   
Figure 1. Impact of charge and discharge cycles on SoC and SoH 
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Standard charging systems rely on predefined algorithms to modify charging patterns. However, these systems are neither real-time 

nor adaptable to dynamic conditions, resulting in suboptimal performance and reduced battery lifespan. Utilizing Artificial 

Intelligence (AI)-based intelligent charging systems can help overcome these challenges. Real-time battery parameters can be 

processed using machine learning models, enabling the system to dynamically select the most suitable charging pattern.  

The procedure includes gathering and assessing live battery information, including voltage, current, temperature, State of Charge 

(SoC), and State of Health (SoH). By identifying patterns and trends in battery behaviour, the system can make informed predictions 

about battery performance and potential degradation. To achieve this, machine learning algorithms are trained using historical and 

real-time battery data to accurately predict SoC and SoH. These predictions will serve as the foundation for an adaptive charging 

algorithm that dynamically adjusts voltage and current based on battery conditions. The AI-driven control system, implemented on a 

Raspberry Pi, will continuously monitor battery parameters through integrated sensors and modify the charging strategy in real time.  

By optimizing charging methods, it reduces risks like overcharging and overheating. It also focuses on enhancing energy efficiency, 

resulting in lower electricity consumption and cost savings. It also supports sustainable transportation through the integration of 

renewable energy sources. The AI-based adaptive charging approach presents an innovative step forward in battery management 

and sustainability. 

 

II. LITERATURE REVIEW 

1) As the global EV market grows, the need for efficient, safe, and sustainable battery charging solutions becomes increasingly 

important. The development of Electric Vehicle (EV) technology is deeply connected with the progress in battery charging 

methods. Conventional charging methods for electric vehicle batteries typically employ constant-current/constant-voltage 

(CC/CV) charging techniques. These systems operate under preset parameters and do not adapt to the battery's real-time state. 

In a research conducted by S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh, K. N. Hasan, and A. M. T. Oo, the 

writers examine these conventional approaches, noting that while they are reliable, their static nature limits them. Fixed 

charging protocols can lead to inefficient energy use and problems like overcharging and overheating, which speed up battery 

degradation (S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh, K. N. Hasan and A. M. T. Oo, "Review of Electric 

Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations," in IEEE Access, vol. 11, pp. 41218-

41255, 2023)  

2) The paper "Battery Management Systems for Electric Vehicles using Lithium Ion Batteries" also provides a detailed look at 

conventional charging techniques. It emphasizes that even though the CC/CV method offers safety and consistency during 

charging, it doesn't address the complex behavior of lithium-ion batteries under different environmental and operational 

conditions. As a result, battery performance can decline faster, leading to safety concerns and the need for early battery 

replacements. These issues highlight the need for more adaptive and responsive charging methods (V. Vaideeswaran, S. 

Bhuvanesh and M. Devasena, "Battery Management Systems for Electric Vehicles using Lithium Ion Batteries," 2019 

Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2019).  

3) Due to the limitations of traditional charging methods, researchers have started incorporating sensor-based monitoring into 

battery management systems. These systems gather real-time information such as voltage, current, temperature, and cell 

impedance to offer a clearer understanding of the battery's condition. A recent study by M. Cherukuri and M. Kanthi, they 

described a comprehensive BMS design that uses multiple sensors to monitor battery conditions, allowing for better decision-

making during charging. Real-time monitoring helps reduce the risks of overcharging and overheating by providing immediate 

feedback on battery conditions (M. Cherukuri and M. Kanthi, "Battery Management System Design for Electric Vehicle," 2019 

IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Manipal, 

India, 2019).  

4) Further, the paper "Charging System for Electric Vehicles" discusses advanced sensor technologies and data collection systems 

that improve the accuracy of battery state estimates. It highlights the importance of using high-precision sensors to detect subtle 

changes in battery behavior that conventional systems might miss. While sensor-based monitoring represents a significant 

improvement over fixed algorithms, the literature shows that these systems often rely on predetermined thresholds. Thus, they 

still lack the flexibility needed to optimize charging in all situations, especially during rapid changes in battery conditions (D. 

Pant, N. Singh and P. Gupta, "Charging System for Electric Vehicles," 2022 IEEE Delhi Section Conference (DELCON), New 

Delhi, India, 2022).  
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5) Recent advancements in artificial intelligence have brought a revolutionary approach to addressing the shortcomings of both 

traditional and sensor-based systems. AI techniques, especially machine learning algorithms, have proven to be highly effective 

in predicting and managing battery parameters in real time. In a study by Vinodkumar and N. Singh Singha, they explore the 

use of AI for monitoring battery health. This indicates that machine learning models have the capability to learn from both 

historical and current data to effectively estimate key metrics like the State of Charge (SoC) and the State of Health (SoH). 

(Vinodkumar and N. Singh Singha, "Battery Management System Health Monitoring Using Artificial Intelligence," 2023 

International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India, 

2023). 

6) Supporting this perspective, "A Comprehensive Overview of AI-Based Methods for SoC Estimation in Li-Ion Batteries" 

provides a thorough review of various AI methodologies applied to battery state estimation. This study explores various 

machine learning methods, such as linear regression, neural networks, and assessing their effectiveness concerning prediction 

accuracy as well as computational efficiency. The findings indicate that incorporating AI into charging systems not only 

improves the accuracy of SoC and SoH predictions but also allows for the dynamic adjustment of charging protocols. This 

adaptability is essential in preventing issues that cause battery degradation, such as overcharging or thermal runaway (I. 

Baccouche and N. E. Ben Amara, "A comprehensive overview of AI based methods for SoC estimation of Li-ion Batteries in 

EV," 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Vallette, Malta, 2024). 

 

III. EXISTING SYSTEMS 

The development of Electric Vehicle (EV) charging systems has come a long way, but many current charging methods still depend 

on fixed algorithms that may not efficiently adapt to the battery's real-time conditions. Standard charging approaches, such as 

constant current (CC) and constant voltage (CV) charging, have been popular in EVs due to their straightforwardness and ease of 

implementation. Figure 2 shows the CC-CV model with maximum voltage 26V [1]. It functions in two stages: initially, the Constant 

Current (CC) stage, during which a consistent current is delivered, permitting the battery voltage to increase steadily. After the 

battery attains its maximum voltage limit, the charger transitions to the Constant Voltage (CV) stage, where it sustains a constant 

voltage while the charging current slowly diminishes until it hits a cutoff point, guaranteeing the battery is charged safely and 

completely. However, these methods fail to dynamically adjust to battery conditions, resulting in inefficiencies, potential 

overcharging, and faster battery degradation. 

 
Figure 2. A CC-CV model with maximum 26V 

 

To overcome the shortcomings of conventional charging methods, smart charging systems have been created. These systems utilize 

microcontrollers and IoT-based technologies to enable managed charging. Smart chargers can modify the power supply based on 

real-time grid demand and battery condition, thereby enhancing charging efficiency. Some cutting-edge smart charging stations 

incorporate bidirectional charging, which supports Vehicle-to-Grid (V2G) functions that allow energy to be returned to the grid [2]. 

In load leveling, Electric Vehicles (EVs) are charged when demand is low, helping to increase the grid load to a designated level. 

On the other hand, during peak load shaving, EVs release stored energy back into the grid when demand surpasses the target, thus 

decreasing the load.  Recent advancements in artificial intelligence (AI) have introduced predictive analytics and deep learning 

techniques into battery management systems (BMS). AI-driven BMS solutions can analyze historical battery data and real-time 

sensor inputs to dynamically adjust charging parameters. Figure 3 depicts the process of data driven methods. Battery data from the 

past is analyzed using machine learning techniques such as neural networks, linear regression, and support vector machines to 

improve the lifespan and performance of batteries by predicting state of charge (SoC) and state of health (SoH) [3]. This method 

faces obstacles including data quality, computational efficiency, and model interpretability, highlighting the necessity for real-time 

battery monitoring and predictive maintenance in EV applications.  
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Figure 3. Process of data-driven methods. 

 

Recognizing the inherently cyber-physical characteristics of smart charging networks, these systems are vulnerable to a range of 

cyber-physical attacks. Recent studies have highlighted the potential threats associated with the smart WinSmartEV™ infrastructure 

and validated their evaluation methodology [4]. The researchers emphasize the necessity for creating strong security protocols and 

standardized practices to bolster the resilience of smart charging systems against emerging cyber-physical risks. The infrastructure 

facilitates remote monitoring and management of EV charging through a smart communication network known as 

WINSmartGrid™, enabling multiple vehicles to connect to one circuit. Furthermore, the high costs and pressing need for addressing 

cybersecurity vulnerabilities in smart charging networks pose significant risks, as hacking threats can interrupt power supply or 

jeopardize user data privacy. 

Taking into account the limitations of current EV charging technologies, there is a growing need for an AI-driven smart charging 

system that includes real-time battery monitoring, adaptable charging strategies, and predictive analytics. This system would utilize 

sophisticated machine learning algorithms to assess battery performance and continuously adjust charging parameters to enhance 

both efficiency and battery lifespan, while also addressing cybersecurity and cost-effectiveness issues. This initiative suggests an 

AI-enabled intelligent charging solution that connects traditional smart charging with advanced predictive analytics. Through the 

utilization of AI and networks of IoT-connected sensors, this system enhances the State of Charge (SoC) and State of Health (SoH), 

resulting in a longer lifespan for batteries while lowering the chances of overcharging and thermal runaway. Implementing such a 

system would not only enhance EV battery performance but also decrease long-term ownership expenses for EV users. 

 

IV. PROPOSED SYSTEM 

To address the limitations of conventional and existing Electric Vehicle (EV) charging systems, the suggested solution integrates a 

sophisticated, AI-driven charging framework. This system is designed to adaptively adjust charging parameters in real-time by 

combining advanced data-driven model which is the RandomForestRegressor model with Internet of Things (IoT) connectivity 

producing a robust battery management system. The main goal is to improve the State-of-Charge (SoC) and State-of-Health (SoH) 

of electric vehicle batteries, which will extend battery life, boost safety, and optimize overall charging effectiveness.  

 

A. Data Collection and Preprocessing 

Real-time information from sensors, including voltage, current, and temperature, is gathered and analyzed to eliminate noise and 

anomalies.  

1) Microcontroller: A Raspberry Pi acts as the main processing unit, connecting with battery sensors. 

2) Sensors: High-accuracy sensors (INA219 for measuring current/voltage, FS-L-0055 for pressure (battery swelling) and 

DS18B20 for temperature) are utilized for ongoing monitoring. 

3) Communication Protocol: The system interacts with IoT devices utilizing the MQTT protocol. The communication module is 

set up on the Raspberry Pi, which employs its integrated WiFi adapter and the Python library paho-mqtt to operate as an MQTT 

client. 
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B. Feature Extraction and Model Training 

The real-time data from the battery is collected and input into the RandomForestRegressor model alongside historical data related to 

the battery's performance metrics (SoC and SoH). After deployment, the model analyzes incoming data to deliver real-time 

assessments of battery health. These predictions guide the adaptive charging algorithm to adjust charging parameters, thus 

enhancing the charging prcedure according to the battery's current condition.  

1) Machine Learning Framework: Python-based library (Scikit) is utilized to create and train the RandomForestRegressor AI 

model to predict SoC and SoH [5]. 

2) Control Algorithms: Customized algorithm executes the adaptive charging strategy referring to a predefined charging profile 

and decides the charging strategy based on the predicted SoC and SoH [6]. 

3) Simulation: In the prototype phase, a Python environment utilizing libraries like NumPy, Pandas, Matplotlib, and scikit-learn 

integrated with MQTT protocol on Flask-based dashboard   is used to simulate charging scenarios and validate the system's 

performance prior to actual deployment [7].  

Figure 4 presents the flowchart of the suggested system. It begins by gathering real-time sensor data (voltage, current, temperature, 

pressure) from the battery and then processes the raw information by cleaning and normalizing it. Using the 

RandomForestRegressor AI model, the battery's State of Charge (SoC) and State of Health (SoH) are predicted. The control 

algorithm determines the appropriate charging mode (such as fast charge, pulse charging, or constant voltage) based on these 

predictions and other variables, modifies the charging current and voltage in real time, and transmits updates via IoT. 

 
Figure 4. Flowchart of the Proposed System 

 

C. Raspberry Pin Configuration [8] 

1) To measure voltage and current, a INA219 sensor module is utilized. The INA219 communicates through the I²C protocol and 

is connected to the I²C pins on the Raspberry Pi, namely SDA on GPIO2 and SCL on GPIO3. The sensor receives power from 

the 3.3V or 5V supply, depending on the specifications of the module, along with a ground connection. 

2) For temperature measurements, a DS18B20 sensor is used, which employs the 1-Wire protocol. This sensor is generally 

connected to GPIO4, with a 4.7 kΩ pull-up resistor placed between the data line and the 3.3V power rail to maintain proper 

signal levels. 

3) Furthermore, the FS-L-0055 flex sensor is implemented to monitor pressure changes that may indicate battery swelling, a 

common indicator of battery decline. The FS-L-0055 typically outputs an analog signal, connecting to one of the analog input 

channels of an ADC such as the MCP3008. The MCP3008 interfaces with the Raspberry Pi via the SPI interface, connecting to 

the MOSI, MISO, SCLK, and CE0 pins to enable accurate analog readings from the FS-L-0055 sensor. Figure 5 illustrates the 

prototype picture of the system.  
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Figure 5. Prototype Picture 

 

D. Software Setup 

4) It runs on a Raspberry Pi operating with Raspberry Pi OS, utilizing Python as its main programming language. Sensor data is 

gathered from the INA219, DS18B20, and FS-L-0055 (through the MCP3008 ADC) using libraries such as RPi.GPIO and 

SMBus. 

5) The information is quickly analyzed by a RandomForestRegressor machine learning model created with the scikit-learn 

framework to evaluate the State-of-Charge (SoC) and State-of-Health (SoH) of batteries [9].  

6) The control algorithms modify charging parameters dynamically, alternating between constant-current and constant-voltage 

phases according to these predictions. Furthermore, the software framework incorporates data logging and IoT connectivity 

(through MQTT protocols) to facilitate remote oversight and management [10].  

7) A web interface—developed with Flask offers operators real-time visual representations of battery performance and system 

diagnostics, guaranteeing that the entire charging procedure is optimized for both safety and efficiency. 

 

V. TEST RESULTS 

The intended system seeks to improve the process of charging Electric Vehicle (EV) batteries by adapting charging parameters in 

real-time. It comprises four primary phases:  

Phase 1. Collection and Preprocessing of Sensor Data 

The system's foundation is built on the ongoing collection of sensor data from the EV battery, which encompasses voltage and 

current measurements from the INA219 module, temperature information from the DS18B20 sensor, and pressure readings from the 

FS-L-0055 flux sensor, to observe battery performance in real-time. The data is subsequently refined to eliminate noise, 

standardized, and important features are developed. The charging cycle data is collected for a period of time, with measurements 

taken every few seconds automatically. The Table 1 presents the first 10 rows of the generated data.  

Table 1: Sensor Data 

Time 

(min) 

Voltage 

(V) 

Current 

(A) 

Temperature 

(°C) 

Pressure 

(kPa) 

0.00 3.05 10.10 25.27 100.26 

0.17 3.03 9.88 25.60 100.40 

0.33 3.06 9.91 25.90 100.53 

0.50 3.08 9.83 26.20 100.68 

0.67 3.10 9.68 26.45 100.75 

0.83 3.12 9.65 26.67 100.82 

1.00 3.14 9.59 26.80 100.78 

1.17 3.16 9.54 26.92 100.70 

1.33 3.18 9.50 27.00 100.68 

1.50 3.20 9.47 27.10 100.65 
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For visualization purposes, we can execute scripts to generate a pandas DataFrame using python that contains the recorded values 

for Time, Voltage, Current, Temperature, and Pressure. Afterward, it produces four subplot graphs, each representing one of the 

sensor parameters plotted against Time, which is shown in Figure 6. Furthermore, a single graph consolidates all sensor readings 

together, facilitating the observation of trends as a whole is shown in Figure 7. 

 
Figure 6. Each sensor data vs Time 

 

 
Figure 7. Consolidated sensor data 

 

Phase 2. Prediction of Battery Condition through Machine Learning 

Once the sensor data has been gathered, the following step is to forecast the State of Charge (SoC) and State of Health (SoH) using 

data-driven techniques. The implemented Python code utilizes the recorded sensor data to compute synthetic targets for SoC and 

SoH, constructs a machine learning model with scikit-learn to predict these values, and subsequently displays a table and graphs 

comparing the true versus predicted values. 

The State of Charge (SoC) is estimated by the formula below mathematically  

SoC = 100 − ((Voltage − 3.0) / 1.2) × 100.      
                                                                                                                                       (1) 

The formula is based on the assumption of a linear correlation between the voltage of a lithium-ion battery and its charge level, 

which spans from 3.0 V (nearly depleted) to 4.2 V (fully charged). It functions by calculating the voltage offset (Voltage - 3.0), 

normalizing this value through division by 1.2, converting the resulting fraction into a percentage, and then inverting that 

percentage. 

The State of Health (SoH) is estimated by the formula below mathematically  

SoH = 100 − (10 − Current) × 10.         
                                                                                                                                                   (2) 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IV Apr 2025- Available at www.ijraset.com 

     

 
3945 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

This equation connects the charging current to the condition of the battery. It assesses the difference between the current and a 

standard value (10 A) using the expression 10 - Current, where a reduced current may suggest deterioration in battery performance. 

By multiplying this difference by 10, the effect is adjusted to a percentage scale. 

Model Building: 

i. The dataset is divided into training and testing portions to avoid overfitting, and two separate pipelines are created (one for 

State of Charge and another for State of Health) utilizing StandardScaler and RandomForestRegressor. 

ii. Random forests capture non-linear relationships and improve prediction accuracy. Real-time data and historical records 

enhance the model's ability to predict SoC and SoH accurately. 

iii. Sensor data from EV batteries is normalized and processed, and the continuous influx of real-time data ensures the model 

stays up-to-date and accurate, enhancing battery safety and lifespan. 

The model analyzes live battery data to estimate the State of Charge (SoC) and State of Health (SoH). To assess its precision, 

performance metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R²) 

are employed. MAE assesses the average size of errors, RMSE emphasizes more significant errors, and R² reflects how effectively 

the model corresponds to the data. A set of actual and estimated values is created, and Figure 8 shows the two graphs that are 

created to visualize and compare these values for SoC and SoH, providing clear insights into the model's predictive performance. 

 
Figure 8. Predicted SoC and SoH vs True Values 

 

SoC Model Performance: 

 MAE: 1.2777777777777999 

 RMSE: 1.6585357218766248 

 R2 Score: 0.8957614035087695 

 

SoH Model Performance: 

 MAE: 0.42600000000002086 

 RMSE: 0.5137320962006108 

 R2 Score: 0.891934212920835 

 

By integrating historical performance data of batteries across various conditions, the model acquires better understanding of the 

patterns and trends associated with different states of charge and health, resulting in enhancements in its overall performance 

Phase 3. Execution of a Dynamic Charging Control Mechanism 

The core of the suggested system lies in its adaptive charging control mechanism. This algorithm, which relies on AI, adjusts the 

charging profiles in real time based on the predicted State of Charge (SoC) and State of Health (SoH), along with extra factors like 

battery temperature. The control system will categorize the charging status of the battery into various profiles as shown in Table 2: 
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Table 2: Charging Profiles 

SoC Range 

(%) 
SoH Condition Charging Strategy 

0 - 20% Good (≥90%) Pre-charge (Low CC: 1A) 

20 - 80% Good (≥90%) Fast Charging (CC: 5A) 

80 - 95% Good (≥90%) Tapering Phase (Reduce CC 

gradually) 

95 - 100% Any 
Constant Voltage (CV 

mode) 

Any SoC SoH < 90% 
Adaptive Charging (Limit 

CC to prevent stress) 

Overheated 

(T > 45°C) 
Any Pause Charging Until Safe 

 

The python code implemented makes use of the recorded sensor data and employs the multi_stage_charging_control function to 

identify a charging mode and charging current for each data entry. The final DataFrame, df_control, includes all sensor readings 

alongside the associated charging mode decisions. A dictionary named mode_mapping assigns a numeric value to each charging 

mode (as a string), Table 3 shows the recorded values against the allocated charging pattern. This allows us to create a line graph 

that represents the charging mode over time. The resulting graph as shown in Figure 9, illustrates the charging mode (on the y-axis, 

with labels) in relation to time (on the x-axis), highlighting the variations in the charging pattern throughout the entire charging 

cycle. 

Table 3: Allocated charging pattern for different SoC and SoH 

SoC 

(%)   

SoH 

(%)   

Temperature 

(°C) 

Charging pattern 

95.83 101.0  25.27  Constant Voltage    

97.50  98.8  25.60  Constant Voltage    

95.00  99.1  25.90  Constant Voltage    

93.33  98.3  26.20  Pulse Charging 

(Low)    

91.67  96.8  26.45  Pulse Charging 

(High)    

90.00  96.5  26.67  Pulse Charging 

(Low)    

88.33  95.9  26.80  Pulse Charging 

(High)    

86.67  95.4  26.92  Pulse Charging 

(Low)    

85.00  95.0  27.00  Pulse Charging 

(High)    

83.33 94.7  27.10  Pulse Charging 

(Low)    
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Figure 9. Charging pattern overtime 

 

Phase 4. IoT Integration for Continuous Monitoring.  

To enable remote monitoring and control, the proposed solution integrates IoT technology by utilizing the MQTT protocol along 

with a lightweight web dashboard built on Flask. Both MQTT and Flask are open-source, this system presents a cost-efficient and 

scalable option for practical implementation. Eclipse Mosquitto (MQTT Broker) is protected through TLS/SSL encryption, client 

authentication, and access control lists, whereas Flask is  implementing HTTPS, effective authentication and authorization, along 

with secure libraries and extensions. 

i. The MQTT publisher delivers instantaneous updates concerning the State-of-Charge (SoC), State-of-Health (SoH), charging 

profile, and additional information like temperature to an MQTT broker.. 

ii. The Flask-based dashboard operates as the subscriber, obtaining this information from the MQTT broker to ensure it receives 

the most current updates. 

iii. When the data is received, the dashboard refreshes its user interface in real-time, showcasing the existing status of the battery 

parameters. 

By running the MQTT publisher alongside the Flask-app codes in the console with Python, the dashboard output is viewed on the 

local server. This configuration enables real-time observation and visualization of battery parameters. The dashboard automatically 

refreshes to show the most recent data on State-of-Charge (SoC), State-of-Health (SoH), and the chosen charging profile. This 

interactive platform ensures effective monitoring and prompt action when necessary. Figure 10 shows an illustration of the test 

output results presented in a dashboard format on a local web browser. 

 
Figure 10. Results in EV Charging Dashboard 
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VI. CONCLUSION 

The suggested system improves Electric Vehicle (EV) charging by combining real-time sensor data, machine learning-driven 

battery state evaluation, an adaptive multi-stage charging control strategy, and IoT-enabled remote oversight. By collecting key 

variables such as voltage, current, temperature, and pressure, a robust data foundation is established. Using scikit-learn, the system 

effectively forecasts the battery's State of Charge (SoC) and State of Health (SoH). Additionally, its adaptive charging control, 

which utilizes a pulse charging method, continuously modifies the charging profile in real-time to guarantee optimal efficiency, 

safety, and a longer battery life. By integrating MQTT and a Flask-based dashboard, the system provides an economical solution for 

real-time remote monitoring and control. This intelligent charging system represents a major leap forward in EV battery 

management, delivering a scalable, efficient, and secure solution, with opportunities for future enhancements such as advanced 

predictive analytics and integration with renewable energy sources. 
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