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Abstract: The growing complexity of modern aviation systems and the increasing demand for real-time situational awareness 
have accelerated the adoption of optical surveillance technologies in flight operations and ground safety. This review critically 
examines the evolution, architecture, and applications of camera-based monitoring systems, both onboard and ground-based, 
enhanced by artificial intelligence (AI) techniques. It explores the integration of smart cameras, infrared sensors, and airborne 
image recording systems (AIRS) within AI-powered visual analytics pipelines, enabling the automated detection of faults, 
behavioural monitoring, and prediction of anomalies. Key deep learning models, including convolutional neural networks 
(CNNs), YOLO variants, and pose estimation frameworks, are evaluated for their effectiveness in detecting instrument panel 
alerts, pilot activities, runway intrusions, and UAV threats. This paper further explores the integration of optical data with GPS, 
IMU, and flight telemetry to facilitate context-aware decision-making and incident reconstruction. Regulatory implications, 
ethical considerations, and practical deployment challenges are also discussed. By consolidating the current state of research 
and technological deployment, this review identifies critical gaps. It outlines future directions for advancing optical surveillance 
systems to ensure safer, more innovative, and more transparent aviation operations. 
Keywords:  Optical Surveillance, Aviation Safety, Artificial Intelligence (AI), Computer Vision, Deep Learning in Aviation, 
Airborne Image Recording System (AIRS).  
 

I. INTRODUCTION 
The aviation industry is undergoing a transformative shift toward automation, real-time monitoring, and intelligent decision-making. 
With increasing air traffic, heightened security requirements, and a global push toward data-driven aviation safety, there is a 
growing need for advanced surveillance systems that go beyond conventional radar and radio communication frameworks. In this 
context, AI-powered optical surveillance has emerged as a powerful solution, leveraging camera-based monitoring systems, 
computer vision, and machine learning algorithms to enhance situational awareness and operational safety in both airborne and 
ground-based environments [1] [3]. 
Camera-based surveillance systems, particularly those integrated into Airborne Image Recording Systems (AIRS), provide a rich 
source of visual data from the cockpit, cabin, and aircraft exterior. These systems capture high-resolution video streams, 
synchronized with flight data and audio, enabling real-time and post-flight analysis [7]. The integration of deep learning techniques, 
such as Convolutional Neural Networks (CNNs), YOLO (You Only Look Once), and attention-based models, enables the automated 
detection of anomalies, pilot behaviors [16], panel alerts, and external threats [1] [4]. This multimodal data fusion supports 
predictive maintenance, human factors analysis, and incident reconstruction, thereby augmenting traditional black box systems. 
Recent developments have also seen the convergence of AI with satellite imagery and drone-based monitoring systems, extending 
the scope of optical surveillance beyond line-of-sight and into global airspace monitoring [10] [19]. Satellite-based AI frameworks 
use real-time image acquisition, feature extraction, and deep neural network classification to identify aircraft, predict trajectories, 
and detect unauthorized flights in non-radar zones. Case studies highlight their applications in congestion control, disaster response, 
and autonomous air traffic management. Despite these advancements, several challenges persist, including regulatory restrictions, 
data privacy concerns, limitations in real-time processing, and issues with model interpretability [9] [13]. Furthermore, 
environmental variables such as lighting conditions, weather, and camera placement have a significant impact on the accuracy of AI 
models in surveillance tasks. Addressing these challenges requires interdisciplinary collaboration across aerospace engineering, 
computer vision, regulatory policy, and human factors. 
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This review aims to provide a comprehensive survey of camera-based monitoring systems and AI-driven visual analytics pipelines 
used in aviation surveillance [6] [17]. It categorizes existing technologies, evaluates their performance and limitations, and identifies 
key research gaps. By synthesizing recent developments across onboard systems (e.g., AIRS, cockpit surveillance), ground-based 
infrastructure (e.g., airport perimeter monitoring), and global sensing platforms (e.g., satellite and UAV surveillance), this paper 
contributes to shaping the roadmap for next-generation intelligent surveillance in aviation. 
 A detailed overview of Current technologies and trends of AI-driven optical surveillance solutions in aviation is detailed below. 
 
A. Overview of Optical Surveillance in Aviation.  
Optical surveillance in aviation refers to the use of camera-based systems to monitor aircraft operations, crew activities, and 
surrounding environments. These systems offer visual context that complements traditional data recorders. Initially used for post-
incident analysis, they now support real-time decision-making through integration with AI technologies. The shift from passive 
recording to active surveillance is central to emerging safety and efficiency strategies. 
 
B. Smart Cameras and Sensor Technologies  
Smart cameras form the backbone of modern optical surveillance systems. These include cockpit-facing cameras, external fuselage-
mounted cameras, infrared (IR) systems for low-light performance, and thermal imaging sensors. Integrated with inertial 
measurement units (IMUs) and GPS, these systems provide multimodal datasets. Advancements in edge computing have enabled 
onboard pre-processing, enhancing scalability and responsiveness. 
 
C. Computer Vision and Deep Learning Models 
Deep learning algorithms, such as CNNs, YOLO variants, and Transformer-based vision models, enable the automatic detection of 
visual cues, including fault indications, pilot gestures, and runway incursions. These models are trained on large datasets extracted 
from AIRS or satellite feeds, supporting real-time object detection, segmentation, and behavior classification. Transfer learning and 
domain adaptation are also employed to improve model generalizability across flight conditions. 
 
D. Airport Ground Surveillance Systems  
Ground-based surveillance at airports has benefited from camera networks integrated with AI for perimeter monitoring, runway 
occupancy management, and vehicle tracking. These systems help detect security breaches, wildlife intrusions, and surface-level 
anomalies. Deep4Air and similar frameworks illustrate how AI-based visual surveillance ensures safety and operational efficiency 
in airport environments. 
 
E. Cockpit Monitoring and Human Factors  
Cockpit-focused systems like Appareo AIRS and NASA’s AIRS-WAVE collect visual and physiological data to monitor pilot 
attention, stress levels, and compliance with procedural protocols. Eye tracking and facial recognition technologies enable non-
intrusive observation of human behavior and facial expressions. This contributes to safety assurance, crew resource management 
(CRM), and incident analysis. 
 
F. Visual Analytics Pipelines and Tools  
Visual analytics frameworks convert raw video and sensor feeds into actionable insights using AI pipelines. These tools include 
modules for video indexing, anomaly scoring, behavior recognition, and temporal event correlation. Data fusion algorithms integrate 
optical input with FDR/CVR logs, enhancing fault detection and timeline reconstruction capabilities. 
 
G. AI-Driven Anomaly and Threat Detection 
 AI-based anomaly detection systems continuously evaluate video feeds for deviations from expected patterns, enabling the early 
detection of equipment malfunctions, security breaches, and human errors. Techniques such as autoencoders, clustering, and 
sequence modeling help identify subtle threats that human observers may miss. These systems enhance proactive safety 
interventions. 
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H. Regulatory, Privacy, and Ethical Considerations 
The deployment of optical surveillance raises significant regulatory and ethical concerns, including data privacy, consent, and the 
admissibility of visual evidence. Regulatory bodies, such as the ICAO, EASA, and national civil aviation authorities, have proposed 
guidelines for implementing AIRS. Balancing operational safety with crew privacy remains a core concern, necessitating 
consultation with stakeholders and the implementation of legal safeguards. 
 

II. LITERATURE SURVEY 
 

TABLE I 
COMPARATIVE OVERVIEW OF AI-DRIVEN OPTICAL SURVEILLANCE SOLUTIONS IN AVIATION 

 
 
Recent advancements in AI-powered optical surveillance systems in aviation have demonstrated a convergence of deep learning, 
sensor fusion, and high-resolution visual monitoring to support both ground and airborne safety. Literature in this domain can be 
broadly classified into three thematic categories: airport and runway surveillance, cockpit and pilot behavior monitoring, and 
airborne/global aerial observation using UAVs or satellites. 
Several studies, such as Deep4Air by Phat Thai et al. (2020), highlight the application of object detection frameworks, including 
YOLO and CNNs, in tracking aircraft positions and ensuring safe separation on runways and taxiways. These ground-based 
implementations focus on automating air-side operations and providing real-time decision support to air traffic controllers through 
camera-based vision systems. Similarly, AI-powered threat detection frameworks presented by Cadet et al. (2024) emphasize the 
use of streaming surveillance video [2] in real-time analytics pipelines for anomaly detection across broader airport environments. 
These systems represent a growing trend toward proactive safety management and intelligent alert systems using AI. 
In the cockpit domain, the use of image recorders and human behavior modeling has gained attention. The work of Lyu Mengtao et 
al. (2023) on eye-tracking and pilot workload monitoring illustrates the potential of physiological signal analysis and gaze tracking 
for human factors evaluation. These efforts are built on advanced pattern recognition and real-time stress detection models. Products 
such as Appareo’s AIRS-400 and Vision 1000 extend these capabilities by integrating flight data, cockpit video, and environmental 
audio into a synchronized dataset for both post-flight analysis and incident reconstruction. 
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From an airborne perspective, AirTrack (2022) and NASA’s AIRS-WAVE system showcase deep learning-based vision solutions 
deployed on aircraft or drones. These platforms allow long-range object detection and real-time tracking using high-fidelity imagery 
in complex airspace environments. Such systems demonstrate the scalability of AI models across different altitudes and 
environmental conditions. These studies reflect the transition from purely post-hoc investigation to in-situ, onboard monitoring with 
adaptive learning capabilities. 
Commercial vendors and research institutions alike are working toward edge-compatible, crash-hardened, and regulation-aware AI-
enhanced imaging solutions that can be deployed both internally (in the cockpit/cabin) and externally (fuselage-mounted or satellite-
linked). However, the literature also documents several ongoing challenges, especially those related to data volume, lighting 
variability, camera positioning, privacy concerns, and the legal admissibility of AIRS data in investigations. 
This paper offers a comprehensive and structured review of the state-of-the-art AI-powered optical surveillance technologies in 
aviation. By synthesizing diverse studies on camera-based monitoring systems from airport surveillance and cockpit behavior 
analysis to airborne and satellite-based observation platforms, this review seeks to categorize technologies, assess their operational 
strengths and limitations, and identify critical research gaps. Special emphasis is placed on integrating Airborne Image Recording 
Systems (AIRS) with deep learning pipelines for safety augmentation, anomaly detection, and human-in-the-loop applications. 
Ultimately, this paper aims to provide a conceptual and technical roadmap for advancing intelligent visual surveillance frameworks 
tailored to the complex and evolving safety needs of the global aviation ecosystem. 
 

III. METHODOLOGY 
 

 
Fig. 1. Structured Methodology for Reviewing AI-Powered Optical Surveillance in Aviation 

 
This review follows a structured methodology to collect, filter, and analyse literature focused on AI-powered optical surveillance 
systems in aviation. The methodology involves the following key steps: 
 
A. Literature Identification 
This is the foundational step where relevant literature is systematically gathered from credible academic and industry databases. Key 
sources include IEEE Xplore, arXiv, ScienceDirect, SpringerLink, and aviation regulatory documents (e.g., ICAO, IFALPA, 
NASA). The search employed keywords such as “AI surveillance aviation”, “Airborne Image Recording Systems (AIRS)”, “YOLO 
in aviation”, and “visual analytics in cockpit monitoring”. This step ensures a comprehensive pool of research that spans both 
technological advancements and policy frameworks [1] [6] [20]. 
 
B. Screening and Eligibility 
After the initial literature collection, each paper is filtered based on its relevance to the intersection of AI, aviation, and camera-
based surveillance. Only studies with technical depth in computer vision, machine learning models, and practical aviation 
applications (e.g., fault detection, cockpit monitoring, drone surveillance) are retained. Both peer-reviewed academic work and 
technical white papers from OEMs and agencies are considered eligible [3] [6]. 
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C. Classification 
The selected literature is categorized into three primary domains based on the nature of deployment and application scope. Onboard 
systems encompass technologies such as cockpit-facing Airborne Image Recording System (AIRS) cameras, pilot monitoring tools, 
and interior surveillance mechanisms that capture in-flight activities and crew behaviour. Ground systems refer to AI-enabled 
airport surveillance infrastructure, including closed-circuit television (CCTV) networks, perimeter breach detection solutions, and 
runway incursion monitoring systems designed to enhance safety and situational awareness on the ground. Lastly, Satellite/UAV 
systems involve the use of artificial intelligence applied to aerial and orbital imagery for wide-area aircraft tracking, trajectory 
prediction, and remote sensing across non-radar zones. This classification ensures that the literature findings are thematically 
aligned with specific deployment environments and operational contexts [5] [14]. 
 
D. Technical Analysis 
In this phase, the methodologies, AI algorithms, and sensor types employed in each selected study are critically analysed to assess 
their relevance and effectiveness in aviation-specific contexts. Key technologies reviewed include YOLO (v5–v8), which is widely 
used for real-time object detection in low-latency environments such as cockpit surveillance and runway monitoring. Convolutional 
Neural Networks (CNNs) and Region-based CNNs (R-CNNs) are applied for recognizing fault indicators on aircraft panels and 
interpreting pilot gestures. Eye tracking and facial analysis techniques are explored for modelling human factors within cockpit 
environments, enabling the assessment of pilot attention, fatigue, and compliance with standard operating procedures. Additionally, 
data fusion techniques are highlighted for their ability to integrate visual inputs with telemetry, GPS, and Inertial Measurement Unit 
(IMU) data, enhancing the robustness and contextual accuracy of surveillance systems. This analytical phase aims to evaluate the 
operational performance and suitability of these AI models under the unique conditions and constraints of aviation [1] [4] [12]. 
 
E. Thematic Mapping 
This block bridges the technical analysis with broader research questions by systematically mapping each paper to specific focus 
areas, identifying research gaps, and emerging trends. The focus areas include critical aviation applications such as predictive 
maintenance, situational awareness enhancement, and human error detection through AI-powered visual monitoring. Identified 
research gaps highlight current limitations, such as the scarcity of publicly available AIRS datasets, reduced model accuracy under 
challenging conditions like variable lighting, and the lack of explainability in deep learning outputs. Meanwhile, emerging trends 
point toward innovative directions such as augmented reality (AR) based AI alert overlays for real-time decision support, federated 
learning for privacy-preserving model training, and satellite-aided UAV surveillance for extended airspace coverage. This thematic 
mapping not only categorizes the technical contributions but also helps identify underexplored domains, providing valuable insights 
for defining future research trajectories in AI-driven aviation surveillance [13] [15] [18]. 
 
F. Synthesis 
All findings are synthesized into a cohesive framework that encompasses three critical dimensions: regulatory, operational, and 
technical. The regulatory dimensions address international and national aviation standards, including ICAO guidelines, privacy 
regulations, and the legal admissibility of data from Cockpit Voice Recorders (CVR) and Airborne Image Recording Systems 
(AIRS). The operational insights focus on the practical deployment of AI-powered surveillance systems, emphasizing real-time 
applicability, edge computing compatibility, and integration into existing aviation workflows. The technical evaluation covers 
essential performance metrics such as model robustness under flight-specific conditions, detection accuracy across diverse 
scenarios, and the interpretability of AI outputs. This comprehensive synthesis provides a structured understanding of how AI-
driven optical surveillance can significantly enhance aviation safety, regulatory compliance, and crew resource management by 
aligning technological capabilities with real-world operational and ethical demands [6] [8] [9]. 
 

IV. RESULTS AND ANALYSIS 
The performance and applicability of AI models in aviation-based visual surveillance were analyzed across several key metrics, 
including accuracy, inference speed, robustness, Training Time, Dataset Adaptability, Power Consumption, and suitability for edge 
deployment, using leading deep learning architectures under varied flight conditions. These included YOLOv5, YOLOv7, CNNs, 
SSD, Faster R-CNN, and Transformer-based vision models. 
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Fig 1. Structured Methodology for Reviewing AI-Powered Optical Surveillance in Aviation 

 
A. Accuracy 
The bar chart shown in Figure 1 illustrates that YOLOv7 outperformed other models, achieving an accuracy of 93%, closely 
followed by Transformer-based architectures at 92%. Traditional CNNs and SSD models lagged slightly, primarily due to their 
limited contextual awareness and slower convergence on flight-specific visual cues. 
 
B. Inference Speed 
The line chart shown in Figure 1 illustrates that in real-time applications such as cockpit monitoring or runway intrusion detection, 
inference speed is critical. YOLOv7 and YOLOv5 demonstrated the highest frames-per-second (FPS) rates, making them suitable 
for onboard edge-processing units. CNN and Faster R-CNN demonstrated moderate speeds, which limited their real-time utility. 

 
Fig 2. Robustness Comparison of AI Models Across Diverse Flight Conditions 

 
C. Robustness 
The radar chart shown in Figure 2 illustrates the model's robustness across various conditions, including lighting changes, 
turbulence-induced vibration, and partial occlusion. The Transformer and YOLOv7 architecture demonstrated superior adaptability, 
particularly in low-light and high-motion scenarios, whereas the SSD and CNN models were more sensitive to such disruptions. 
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Fig 3. Training Efficiency and Dataset Adaptability of AI Models in Aviation Surveillance 

 
D. Training Time 
The bar chart shown in Figure 3 reveals that traditional CNN and SSD models require the longest training times (above 9 hours). In 
contrast, YOLOv5 and YOLOv7 models are significantly faster, completing training in under 6 hours. This suggests that newer 
YOLO architectures are not only accurate but also more efficient in training, making them suitable for rapid deployment and real-
time updates. 
 
E. Dataset Adaptability 
The line chart shown in Figure 3 reveals the adaptability of the Dataset. Dataset adaptability is defined as a model’s ability to 
generalize across diverse aviation datasets, including cockpit, runway, and satellite imagery. Transformer-based models outperform 
all others with a high adaptability score of approximately 95%, reflecting their versatility in handling variable visual environments. 
YOLOv7 also performs well in this category, with adaptability nearing 85%, while CNN shows the weakest performance, likely due 
to its limited capacity to generalize beyond its training context. These findings suggest that while YOLO variants offer faster 
training cycles, Transformer architectures provide superior flexibility across different aviation data sources, making them promising 
candidates for next-generation surveillance systems. 
 
F. Power Consumption 

 

 
Fig 4. Power Consumption Comparison of AI Models for Aviation Surveillance 

 
The bar chart shown in Figure 4 illustrates that Transformer-based models were the most power-hungry, consuming up to 70W, 
followed by Faster R-CNN. In contrast, YOLOv5 and YOLOv7 maintained a more power-efficient profile (45–50W), aligning with 
requirements for onboard embedded systems. 
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G. Suitability Scores for edge deployment 

 
Fig. 5 Suitability Scores for edge deployment of AI Models for Real-Time Aviation Applications 

 
The chart shown in Figure 5 illustrates the Suitability Scores for edge deployment of various AI models, evaluating their suitability 
for real-time execution on edge devices commonly used in aviation surveillance systems. Among the models analyzed, YOLOv5 
demonstrates the highest edge deployment score, followed closely by YOLOv7, indicating their lightweight architecture and 
efficient resource usage, which make them ideal for onboard processing and embedded environments. In contrast, traditional models 
like CNN and Faster R-CNN show significantly lower scores, suggesting challenges in real-time deployment due to higher 
computational demands and longer inference times. SSD and Transformer models display moderate edge compatibility, with 
Transformer scoring higher due to recent advancements in optimization and adaptability. Overall, the results suggest that newer 
YOLO variants are better suited for aviation-grade edge applications, offering a balance between performance and computational 
efficiency critical for deployment in resource-constrained environments such as aircraft cockpits, UAVs, or airport perimeter 
devices. 
 

V. CONCLUSION 
AI-powered optical surveillance represents a transformative shift in how aviation systems monitor, assess, and respond to 
operational conditions in real time. This review has presented a comprehensive synthesis of camera-based monitoring technologies, 
deep learning frameworks, and visual analytics pipelines that are redefining safety and efficiency standards in aviation. From 
advanced onboard AIRS systems to sophisticated ground-based and satellite-supported visual platforms, the integration of AI has 
significantly expanded the scope and depth of situational awareness. 
Key advancements have been seen in the use of smart cameras [11], multimodal sensors, and deep neural network architectures for 
tasks such as fault detection, pilot behavior analysis, and anomaly identification. Through detailed comparisons, it is evident that 
modern architectures, such as YOLOv7 and Transformer-based models, offer superior performance in terms of accuracy, inference 
speed, dataset adaptability, and edge deployment. These findings reinforce the growing applicability of AI across a diverse range of 
aviation surveillance contexts. 
Nevertheless, critical challenges remain. These include addressing data privacy and regulatory concerns, ensuring model robustness 
under varying operational conditions, and bridging the gap between academic innovation and real-world implementation. The need 
for standardized datasets, explainable AI, and privacy-preserving analytics will define the next phase of research. 
In conclusion, the convergence of AI and optical surveillance presents a unique opportunity to elevate aviation safety, efficiency, 
and operational transparency. By aligning technological advancements with regulatory foresight and human-centered design, the 
aviation industry can develop more intelligent, resilient, and ethically responsible surveillance systems in the years to come. 
 

VI. FUTURE WORK 
Looking ahead, the landscape of AI-powered optical surveillance in aviation presents a wealth of opportunities for further 
innovation. Future research should prioritize the development of standardized, annotated datasets that accurately represent real-
world aviation environments, encompassing diverse lighting conditions, altitudes, weather phenomena, and cockpit dynamics. These 
datasets would significantly enhance model training, validation, and benchmarking. 
Another crucial direction involves the advancement of explainable AI (XAI) methodologies. As AI-based surveillance systems 
become more integral to safety-critical operations, ensuring that their outputs are interpretable and trustworthy is paramount. 
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Research into model transparency, confidence estimation, and human-in-the-loop systems will be crucial for gaining regulatory 
approval and operational acceptance. 
Federated learning and privacy-preserving AI architectures also represent promising frontiers. These techniques allow models to be 
trained across decentralized data sources without transferring sensitive information, offering a balance between performance and 
compliance with aviation data protection standards. 
Additionally, the integration of AI with augmented reality (AR) and mixed-reality interfaces for pilots and ground controllers could 
redefine how visual surveillance data is consumed. This would enable real-time overlay of critical insights, threat alerts, and visual 
annotations directly into the operator’s field of view. 
From a systems architecture standpoint, future solutions should also explore multi-agent collaboration, where surveillance drones, 
satellites, ground cameras, and onboard sensors communicate in a unified framework. This distributed intelligence can enable 
holistic, cross-platform threat detection and situational analysis. 
Ultimately, rigorous field trials and pilot programs will be crucial in bridging the gap between theoretical models and practical 
deployment. Multistakeholder collaborations involving academia, industry, regulators, and airlines can foster scalable, adaptive, and 
safety-certified AI surveillance ecosystems that evolve in response to the dynamic needs of global aviation. 
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