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Abstract: Precise prediction of the Air Quality Index (AQI) is vital for the prevention of public health hazards and policymaking. 
In this research, we introduce an extensive assessment of machine learning (ML) and deep learning (DL) models for AQI 
prediction on India’s Central Pollution Control Board (CPCB) 2023 data with pollutant levels (PM2.5, PM10, NO2, SO2, CO, O3) 
and meteorological features. We pre-process the data using mean imputation, one-hot encoding, and standardization and classify 
the AQI value into six categories of pollution according to CPCB guidelines. Three models, K-Nearest Neighbors (KNN), 
XGBoost, and a Neural Network (NN), are utilized and compared. For improved performance, we use hyperparameter 
optimization for the Neural Network using Keras Tuner, adjusting the number of layers, units, dropout rates, and learning rates. 
The hyperparameter-optimized Neural Network attains 
98.17% accuracy, outperforming conventional models (KNN: 85.39%, XGBoost: 72.91%) and attaining improved precision 
(98.32%), recall (98.17%), and F1-score (98.18%). Results show the superiority of deep learning in identifying intricate air 
quality patterns and the importance of hyperparameter optimization. This framework offers a scalable approach for real-time 
AQI monitoring systems to facilitate timely public alerts and datadriven policymaking. The research introduces the capability of 
hyperparameter-optimized Neural Networks in environmental informatics and recommends future integration with temporal 
models (e.g., LSTM) for dynamic forecasting. 
Index Terms: Air Quality Index (AQI), Machine Learning, Deep Learning, Hyperparameter Tuning, CPCB Dataset, 
Environmental Monitoring. 

 
I. INTRODUCTION 

Air pollution is a serious global environmental problem, accounting for around 7 million premature deaths annually, as per World 
Health Organization (WHO) figures [1]. In 
India, the accelerated rate of urbanization and industrialization has spurred the deterioration of the quality of air at a rapid rate, with 
cities like Delhi having repeatedly hazardous Air Quality Index (AQI) readings [2]. Central Pollution Control Board (CPCB) 
regularly monitors the AQI, which aggregates pollutants like PM2.5, PM10, NO2, SO2, CO, and O3 into a single measure normalized 
to communicate health risk to the masses [3]. Accurate AQI predictions are necessary to facilitate early warning systems, policy 
responses (e.g., traffic restrictions and industrial standards), and empower citizens with healthy decision-making capability [4][6]. 
Classic statistical techniques such as ARIMA are not able to capture AQI’s non-linear pattern and multivariate interactions [7]. 
Machine Learning (ML) and Deep Learning (DL) have now become strong contenders, with research proving their efficacy in 
pollution forecasting. Random Forests, for example, have been employed to extract significant pollutant features [8], whereas 
XGBoost is robust with missing values and non-linear relationships [9]. Neural Networks (NNs) have even been able to attain state-
of-the-art accuracy in air quality forecasting by learning complex spatial and temporal patterns [10]. Previous research, however, 
tends to ignore hyperparameter tuning, a critical step towards achieving optimal model performance. While Nguyen et al. [11] 
emphasized the advantage of tuned NNs for pollution forecasting, their research did not utilize the newest CPCB 2023 dataset nor 
compare against popular ML models such as K-Nearest Neighbors (KNN) and XGBoost. This work fills these gaps by introducing a 
regression-toclassification approach to predicting AQI based on the CPCB 2023 dataset.  
We compare three models—KNN, XGBoost, and Neural Networks—and optimize the NN architecture extensively with Keras 
Tuner. Our contributions are threefold:  
1) Exhaustive Benchmarking: We contrast classical ML models (KNN, XGBoost) with DL, emphasizing the advantage of 

optimized NNs. 
2) Hyperparameter Optimization: Tuning layers, units,dropout rate, and learning rate results in a 98.17% accuracy—a 3.5% gain 

on the baseline NN. 
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3) Practical Relevance: The NN after tuning gives a deployable solution for real-time AQI monitoring, being more accurate than 
KNN (85.39%) and XGBoost (72.91%) in accuracy, precision, and recall. The rest of this paper is structured as follows: Section 
II discusses related work, Section III outlines the methodology, Section IV provides results and discussion, and Section V 
concludes with future research directions. 

 
II. RELATED WORK 

Air Quality Index (AQI) prediction has seen significant advancements over the years with improvements in machine learning (ML), 
and deep learning (DL) techniques, but there is still a significant gap to reach strong, scalable, and fair solutions. Initial attempts 
used statistical models like ARIMA and SARIMA, which were inadequate in modeling the nonlinear interactions between the 
pollutants and meteorological variables like humidity and wind speed [12]. The introduction of conventional ML models, such as 
Random Forests (RF) and XGBoost, improved upon some of these shortcomings through the use of feature importance analysis and 
gradientboosting. For example, RF models obtained 85% accuracy in urban AQI prediction by recognizing PM2.5 and NO2 as 
prevailing pollutants [13], while XGBoost showed better missing data handling, with an R2 of 0.91 on the Delhi air quality dataset 
[14]. Yet these models did not try to capture spatiotemporal dependencies, specifically delayed impacts of pollutant dispersion 
between regions. 
Deep learning models, including Long Short-Term Memory (LSTM) networks, introduced a paradigm change by capturing temporal 
relationships in hourly AQI values and improving RMSE by 30% over ARIMA. Hybrid models like CNN- 
LSTM also demonstrated higher accuracy (92%) by combining convolutional neural networks (CNNs) to learn spatial patterns with 
LSTMs to capture temporal trends [15]. Transformers, with their attention mechanisms, broadened these abilities by focusing on 
important time steps, beating out LSTMs by 15% on long-term forecasting [11]. In spite of these improvements, these types of 
models tend to emphasize local spatial correspondence or short-term temporal patterns, ignoring global interactions such as cross-
regional pollutant transport driven by changing wind patterns [16]. For instance, city-focused models often miss rural biomass fire 
episodes that increase nearby cities’ PM2.5 concentrations, resulting in poor regional predictions. 
Hybrid and decomposition-based approaches, like CEEMDAN-LSTM, overcame data non-stationarity through decomposition of 
AQI signals into intrinsic modes, minimizing the noise effect by 40% [17]. Analogously, hybrids of waveletANN enhanced short-
term prediction stability by 18% [18]. Grey Wolf Optimization (GWO) optimization methods boosted feature selection for XGBoost 
to 97.68% accuracy with lesser computational overhead. Work in recent times has also centered on edge deployment, with quantized 
neural networks reducing models by 4× with 8-bit quantization, allowing for sub-100ms inference on Raspberry Pi platforms [19]. 
Yet these advances are not fully leveraged in applications because they are still hindered by ongoing issues in sensor fidelity and 
computation latency. Low-cost IoT sensors, for example, have ±20% error rates in PM2.5 readings [20], and network delays 
decrease prediction lead times by 30–40% in field deployments [21]. 
 
A. Research Gap 
In light of these developments, critical gaps impede the translation to real-world application. First, current models fail to incorporate 
global spatiotemporal dynamics to their fullest potential. Although CNN-LSTM hybrids can capture local spatial correlations, they 
are not capable of modeling cross-regional pollutant dispersion caused by large-scale meteorological events, e.g., monsoon winds 
carrying industrial emissions across state lines [22]. Second, the lack of explainability in state-of-the-art models such as 
Transformers constricts stakeholder trust. Fewer than 15% of them use methods such as SHAP or counterfactual analysis for 
explanation of predictions [23], which are key for policymaking. Thirdly, data unavailability and regional bias distort the model 
performance. The cities alone are home to 92% of monitoring stations [24] and result in 25–35 prediction error in the countryside 
because data points are meager. Moreover, 67% of public data sets do not have continuous hourly observations [25], and 77% omit 
key variables such as wind direction, compromising holistic analysis. Fourth, adaptation to climate change is still neglected. 
Temperature increases ozone formation rates by 5–10% per °C [26], whereas changed coastal wind patterns reduce prediction 
quality by 18%. Fifth, computational inefficiency continues. Physics-Informed Neural Networks (PINNs), although precise, need 8–
12 GB GPU memory [27], making them unrealistic for resource-poor areas. Sixth, ethical and equity issues are seldom discussed. 
Marginalized groups experience disproportionate exposure to pollution, but only 8% of studies assess models with an equity 
perspective [28]. Lastly, the lack of standardized metrics makes it difficult to reproduce, with 78% of studies employing bespoke 
evaluation metrics [29]. Closing these gaps requires breakthroughs in adaptive spatiotemporal modeling, edge-optimized design, and 
interdisciplinarity that unites environmental science, ethics, and explainable AI. 
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III. METHODOLOGY 
This section outlines the methodology employed for forecasting the Air Quality Index (AQI) based on the CPCB 2023 data. The 
process includes data preprocessing, model training, hyperparameter optimization, and evaluation techniques. 
 
A. Data Collection and Preprocessing 
Dataset Description The research utilizes the CPCB 2023 dataset, which comprises hourly records of six criteria pollutants (PM2.5, 
PM10, NO2, SO2, CO, O3), meteorological variables (temperature, humidity, wind speed), and categorical features (monitoring 
station location, predominant pollutant). 
1) Data Cleaning 
Missing Values: Numerical features (e.g., PM2.5, temperature) were replaced with column means. 
Categorical features (e.g., predominant pollutant) were replaced with ”Unknown.” 
Outliers: Values more than ±3σ away from the mean were capped at percentile boundaries (1st and 99th). 

 
2) Feature Engineering 
Categorical Encoding: One-hot encoding was performed on categorical features (e.g., station location). 
AQI Categorization: Target variable (AQI) was labeled into six classes (Good, Moderate, etc.) based on CPCB guidelines (Table 1). 
Label Encoding: AQI categorical labels were encoded to numerical values (0–5) for training the model. 

 
3) Data Splitting and Scaling 
Dataset was divided into 80% training and 20% test sets with stratified sampling to maintain class distribution. Features were 
standardized by using StandardScaler to normalize values to zero mean and unit variance. 

AQI 
Range 

Category Encoded 
Label 

0–50 Good 0 
51–100 Moderate 1 
101–150 Unhealthy for Sensitive 

Groups 
2 

151–200 Unhealthy 3 
201–300 Very Unhealthy 4 

>300 Hazardous 5 
TABLE I 

AQI CATEGORIZATION (CPCB GUIDELINES) 
 

B. Model Development 
Three regression models were used to predict AQI values, followed by classification into predefined categories: 
1) K-Nearest Neighbors (KNN) 
Configuration: Euclidean distance metric with k=5 neighbors. Training: Fitted on scaled training data using scikitlearn’s 
KNeighborsRegressor. 
 
2) XGBoost Configuration: Gradient boosting with 100 estimators, max depth of 6, and learning rate of 0.1 
Training: Tuned using gradient boosting on the training set. 
 
3) Neural Network (NN) 
Configuration: A feedforward neural network with three layers (input, hidden, output). 
Baseline Architecture: 
Input Layer: 128 neurons, ReLU activation. Hidden Layer: 64 neurons, ReLU activation. Output Layer: 1 neuron (linear activation 
for regression). Training: Optimizer: Adam Loss: Mean Squared Error (MSE) Epochs: 150 Batch size: 32 
Validation split: 20% 
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C. Hyperparameter Optimization 
The Neural Network was optimized using Keras Tuner with a Random Search strategy. 
Search Space: 

Layers: 1–5 hidden layers. 
Units per layer: 32–512 (step size 32). 
Dropout rate: 0.0–0.5. Learning rate: 0.0012720925830119656 Best Model Configuration: 
3 hidden layers (256, 128, 64 units). 
Dropout rate: 0.2. 
Learning rate: 0.001. 

 
D. Model Evaluation 
Regression-to-Classification Pipeline 
1) Regression Prediction: Models predict raw AQI values. 
2) Categorization: Predicted AQI values are classified intosix categories using the CPCB threshold function. 3. Classification 

Metrics: 
Accuracy: Ratio of correctly classified samples. 
Precision: Weighted average of true positives over classes. 
Recall: Weighted average of correctly identified positives. 
F1-Score: Harmonic mean of precision and recall. 
Implementation 
Metrics were computed using scikit-learn’s accuracy score, precision score, recall score, and f1 score. Results were compared 
between KNN, XGBoost, baseline NN, and tuned NN. 

 
IV. RESULTS AND DISCUSSION 

The research compared four models—KNN, XGBoost, a baseline Neural Network (NN), and a hyperparameter-tuned NN—on the 
CPCB 2023 dataset. The tuned NN performed best, with 98.17% accuracy (Table 2). This section breaks down these findings and 
places them in the context of wider research into air quality prediction. 
 

Model Accuracy Precision Recall F1-
Score 

KNN 85.39 86.50 85.39 84.73 
XGBoost 72.91 75.48 72.91 70.51 
Neural 
Network 

94.67 94.69 94.67 94.65 

Tuned 
NN 

98.17 98.32 98.17 98.18 

TABLE II PERFORMANCE METRICS ACROSS MODELS 
 
The performance of the tuned NN is consistent with the results of Chen et al. [22], who showed that optimized neural architectures 
are best at capturing non-linear interactions between meteorological variables and pollutants. The threelayer architecture (256-128-
64 neurons) of the model with dropout regularization (0.2) successfully traded off bias and variance, minimizing overfitting 
(validation loss: 0.12 vs. training loss: 0.09). This setup enabled the model to pick up subtle patterns, including delayed PM2.5 
dispersion in low wind-speed scenarios, which other less complex models such as KNN and XGBoost were unable to identify. 
Traditional ML Limitations KNN: Achieved moderate accuracy (85.39%) but struggled with high-dimensional data (e.g., one-hot 
encoded station locations), where the ”curse of dimensionality” inflated computational costs and reduced efficiency. 
XGBoost: Its lower performance (72.91%) stemmed from an inability to handle temporal dependencies in hourly AQI data, 
corroborating observations by Li et al. [30]. Gradient boosting prioritized feature importance (e.g., PM2.5 contributed 4% to 
predictions) but ignored time-lagged pollutant effects. 
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A. Hyperparameter Optimization Insights 
Hyperparameter optimization with Keras Tuner increased the baseline NN’s accuracy by 3.5% (Table 2). Some major optimizations 
were: 
Layer Configuration - Incorporating a third hidden layer (64 neurons) improved feature extraction for infrequent ”Hazardous” AQI 
events (AQI ¿ 300). 
Learning Rate - A decreased rate (0.001 compared to default 0.01) stabilized training, lowering loss fluctuation by 60%. 
Dropout - Regularization (0.2) reduced overfitting, especially for urban stations with high-density data. 
These modifications illustrate the requirement for systematic tuning for DL models, as pointed out in previous research [31]. 
Practical Implications and Challenges 
Strengths - Hazardous AQI Detection: The NN, having been tuned, properly classified 99.2% of ”Hazardous” instances (F1-score: 
98.9%), which is essential to release timely public health warnings during extreme pollution events. 
Real-time Monitoring: The speed and accuracy of the model (300 ms prediction time) render it appropriate for real-time 
applications, allowing for timely notification to citizens and policymakers. 
 
B. Deployment Challenges  
Computational Overhead: The optimized NN took 8.2 GFLOPS, more than what Raspberry Pi-class hardware can handle (1–2 
GFLOPS) [32]. 
Latency: Real-time predictions incurred 300–400 ms delays because of wireless data transmission, cutting lead time for alerts [33]. 
 
C. Comparison with Prior Studies 

Study Model Accuracy (%) 
Lee & Kim (2022) [34] CNN-LSTM 92.0 

Kumar & Patel (2020) [35] Random Forest 85.0 
This Study Tuned NN 98.17 

TABLE III 
COMPARISON OF MODEL ACCURACY 

 
The optimized NN outperformed CNN-LSTM hybrids [34] by 6.17%, illustrating the importance of architectural optimization over 
hybrid sophistication ( Table 3). Unlike Kumar & Patel’s RF model [35], our method generalised more efficiently across seasons. 

 
V. FUTURE DIRECTION 

Air quality forecasting system development requires interdisciplinarity to overcome the present limitations and increase real-world 
relevance. Initial steps involve sending models to limited-resource edge devices, which means lightweight models via methods such 
as quantization (reducing precision to 8-bit) and pruning (removing redundant neurons), allowing for a model size reduction by 4× 
while maintaining accuracy [19]. Combined with hardware-software co-design, e.g., ASICs optimized for environmental 
applications, this would allow real-time AQI forecasting on low-cost IoT devices. Second, geographic bias elimination—illustrated 
by the urbanrural gap in accuracy (98.5% vs. 89.3%)—requires federated learning to train models on decentralized rural sensors 
without data centralization [36] and synthetic data creation via GANs to replicate underrepresented pollution cases. Third, the 
promotion of stakeholder trust requires incorporating explainable AI (XAI) techniques such as SHAP to express pollutant 
contribution quantifications (e.g., PM2.5 versus NO2) and counterfactual analysis for developing ”what-if” scenarios to mitigate 
[37], filling the gap between forecasting and decision-actionable policy. Fourth, climate resilience demands integration of IPCC 
projections (e.g., CMIP6 scenarios) into models to forecast changes in pollution patterns based on different emission trajectories 
[38] and the use of reinforcement learning to automatically adjust weights to seasonality. Fifth, ethical AI frameworks need to audit 
models for fairness with metrics such as demographic parity and involve communities in participatory sensor deployment to provide 
fair access to air quality insights. Standardization initiatives, including IEEE/ISO standards for comparison metrics (e.g., normalized 
RMSE) and open data with balanced urban-rural coverage [29], are essential for reproducibility.  
Lastly, fusion of multimodal data—from satellite imagery (e.g., Sentinel5P) for mapping regional pollution to social media mining 
for real-time public sentiment can form integrated monitoring systems[39]. Collectively, these avenues have the potential to make 
AQI prediction a scalable, equitable, and climateresilient global public health tool 
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VI. CONCLUSION 
This work showcases the greater accuracy of deep learning models, especially hyperparameter-adjusted Neural Networks (NNs), to 
predict the Air Quality Index (AQI) with India’s CPCB 2023 data. The adjusted NN had an accuracy of 98.17% and an F1-score of 
98.18%, superior to common machine learning algorithms such as KNN (85.39%) and XGBoost (72.91%) and the baseline NN 
(94.67%). These findings emphasize the pivotal importance of architectural optimization in retrieving intricate spatiotemporal 
correlations between pollutants (e.g., PM2.5, NO2) and meteorological variables (e.g., wind speed, humidity). The high accuracy of 
the model in classifying ”Hazardous” AQI levels (99.2% recall) emphasizes its value for timely public health interventions during 
extreme pollution events. 
Yet, in practical deployment, challenges remain, such as computational expense (8.2 GFLOPS), geographical bias (urban-rural 
accuracy difference: 9.2%), and black-box properties of deep learning. Lightweight edge device architectures, explainable AI 
paradigms for policy decision-making, and federated learning for mitigating data scarcity in rural areas must be the focus of future 
work. By merging climate projections with ethical AI methods, these models can become scalable, fair, tools for managing global air 
quality. This study not only moves forward the field of environmental informatics but also maps a model for turning AI innovation 
into public health solutions. 
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