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Abstract: Air quality monitoring and prediction are the most important part of sustainable urban living and public health
safeguarding. Quick industrialization, vehicle exhaust, fuel combustion and energy generation has instead, only managed to
intensify the atmospheric conditions, particularly amongst the heavily populated smart cities. Therefore, with these harmful
pollutants like COz NO:, SO:, and particulate matter (PM2.5 and PM10) in the air, a timely air quality assessment and
prediction has become an urgent demand. Recent developments in DL have made it possible to build intelligent, data-driven
models that are able to efficiently model highly nonlinear relationships between environmental parameters and pollutant levels.
Deep learning architectures such as CNNs, RNNs, particularly LSTM networks, have exhibited significant success in AQI
prediction through their ability to capture temporal and spatial dependencies in the environmental data. These models are more
accurate, flexible and robust than traditional statistics and shallow ML. In this paper we present the design, architecture and
implementation methodologies of a DL-based AQ D system. This is where the importance of deep neural models in deciphering
pollutant concentration trends, predicting AQI values and issuing advance warnings against pollution spikes come into play. It
also explores problems associated with data collection, sensor calibration, real-time processing, and model interpretability.
Important future research trends included hybrid deep learning architectures, edge-based deployment for loT-enabled air quality
sensors, and explainable Al approaches to enhance transparency of air pollution forecasting.

Index Terms: Air quality monitoring, deep learning, air pollution prediction, neural networks, environmental forecasting,
LSTM, CNN, AQI prediction.

L. INTRODUCTION
Air is among the most precious of natural resources—necessary for the continuation of all life. All living things, human, animal and
plant alike, breathe air to survive. But amidst the rapid urbanization, industrialization and vehicular emissions, air quality has been
critically compromised, endangering human health and the environment alike. Urban air quality and indoor air pollution rank as two
of the world’s worst pollution problems in the Blacksmith Institute Report (2008). The exponential increase in population, transit,
and industry continues to contaminate the air at an unprecedented pace. Air pollution creates a multitude of health hazards — both
in the short term and long term. Short-term exposure causes eye, nose and throat irritation, headaches, allergic reactions and
respiratory distress. Long-term exposure, conversely, can lead to chronic respiratory diseases, lung cancer, heart disease, and even
damage organs such as the liver, kidneys, and brain. Air pollutants cause these and other environmental problems-like ozone
depletion, acid rain, global warming, and ecosystem disruption—impacting agriculture, forests, and biodiversity. As a result, air
quality monitoring, modeling, and prediction has grown to become an international scientific imperative.
For decades, different air quality models have been constructed. Previous approaches were based on statistical, mathematical and
physical modeling), employing complicated equations to simulate atmospheric processes. While these models served as a basis for
understanding the behavior of pollutants, they were hindered by a number of drawbacks such as
1) Limited accuracy in predicting pollution extremes (maximum and minimum levels);
2) Inability to adapt dynamically to changing environmental conditions;
3) Equal weighting to old and new data without learning temporal dependencies;
4) Computational inefficiency due to complex mathematical formulations;
5) Poor generalization capability across different geographical regions.
With the advent of computational intelligence, researchers started relying on data-driven methods, in particular Deep Learning (DL),
to bypass the limitations of traditional models. Deep learning, in particular, shines when it comes to automatic feature extraction
from non-linear environmental data and air quality monitoring and forecasting. Techniques like CNNs, RNNs, and LSTMs have
been particularly effective at modeling spatial and temporal variations in air pollutant concentrations. For example, CNNs encode
spatial dependencies between monitoring stations, while LSTMs capture the sequential behavior of pollutants driven by weather
characteristics like temperature, humidity, wind speed and pressure.
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But far from these conventional approaches, deep learning-based air quality prediction methods can analyze large-scale sensor and
satellite data in real-time, adapt to evolving environmental patterns, and enhance prediction accuracy with ongoing model retraining.
These systems are not only able to provide AQI forecasts but are capable of providing early warnings of possible pollution spikes so
that policymakers can intervene. In this review paper, we present a comprehensive survey on Deep Learning-based Air Quality
Monitoring and Prediction4. It investigates applying deep neural architectures to analyze environmental data, detect pollutant
patterns, and predict AQI with enhanced precision. And in addition, it covers issues of data quality, model interpretability,
computational burden and deployment in 1oT-enabled smart city infrastructure.

1. AIR QUALITY EVALUTION

Air quality evaluation is an important aspect in the monitoring, analysis, and control of air pollution for a healthy and sustainable
environment. The quality of the air around us defines its value for human, industrial and ecological requirements. Declines in air
quality impact health, agriculture, and our general environment. Hence, methodical air quality consultation is imperative for fruitful
environmental governance and strategy planning.Across the world, air quality monitoring agencies — including the Environmental
Protection Agency (EPA) in the U.S. — maintain and regulate a list of common air pollutants, called criteria air pollutants, which
have serious health and ecological impacts. These are Carbon Monoxide, Lead, Nitrogen Dioxide, Ozone, Particulate Matter (PM
10 and PM 2.5) and Sulfur Dioxide These contaminants are chiefly emitted via car exhaust, factories and coal burning. High levels
of these can cause heart, lung and brain diseases, as well as environmental impacts like acid rain, smog and climate change.
The AQS, which is maintained by the EPA and state and local agencies, compiles real time air pollution and meteorological data
from thousands of monitoring stations. This data consists of pollutant concentrations, weather parameters, and metadata describing
each station’s geographical and operational characteristics. Among other things, the AQS database is used to evaluate air quality
levels and trends, support Attainment and Non-Attainment designations, assess SIPs, perform model based forecasting, and create
CAA reports. While these monitoring networks have improved data availability, they remain plagued by inhomogeneous sensors
distribution, gaps in data, and delays in real-time prediction. This underscores the increasing need for automated, intelligent models
that can learn intricate air quality dynamics — a domain in which DL has exhibited impressive potential.
The OAQPS is responsible for developing and enforcing the NAAQS for each of the criteria pollutants. These standards are the
basis for air quality management and are divided into primary standards, which protect human health (particularly vulnerable
populations such as children, elderly, and those with respiratory diseases), and secondary standards, which protect environmental
welfare, including crops, vegetation, wildlife, and property from damage. Various pollutants do various things — so they need their
own exposure limits. Some have both short-term and long-term standards — for instance, Os and PM..s have short-term (hour or
daily) limits to reduce acute health impacts, and long-term (annual) limits to avoid chronic exposure. These standards form the basis
for the Air Quality Index (AQI), a numerical indicator used to communicate pollution severity and health risk to the public. Deep
Learning, in particular, has become a boon for precise air quality measurement and forecasting over the past few years. In contrast
to traditional models, deep neural networks can directly learn useful spatial-temporal features from the raw environmental data,
without explicit feature engineering. Deep architectures like CNN, RNN, and LSTM have shown great ability in modeling the
pollutant concentration dynamics.

TABLE I: NAAQS Table LISTS ALL CRITERIA POLLUTANTS AND STANDARDS [3]

Pollutant Primary/ Secondary Averaging Level Form
Time
Carbon Primary 8 hours 9 ppm Not to be exceeded more
Monoxide 1 hour 35 ppm than once per year
(CO)

Lead (Pb) Primary and secondary Rolling 3 month average 0.15 Kg/m3 Not to be exceeded
Nitrogen Primary 1 hour 100ppb 98" percentile of
Dioxide 1-hour daily maximum

(NO2) concentrations,
averaged over 3 years
1 year 53 ppb Annual Mean
Ozone (03) Primary and secondary 8 hours 0.07 ppm Annual fourth-highest
daily maximum
8-hour concentration,
averaged over 3 years
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Table I1: AQI Classification [3]

AQI Air Pollution Level

0-50 Excellent
51-100 Good
101-150 Lightly Polluted
151-200 Moderately Polluted
201-300 Heavily Polluted

300+ Severely Polluted

We have one important parameter called air quality index (AQI) which quantifies air quality in a region as shown in Table 1. It is a
number used by government agencies to communicate to the public how polluted the air is currently or how polluted it is forecasted
to become. As the AQI increases, an increasingly large percentage of the population is likely to be exposed, and people might
experience increasingly severe health effects. Different countries have their own air quality indices, corresponding to different
national air quality standards.

1. AIR POLLUTION ANALYSIS AND MONITORING
Nowadays,solutions have become efficient and receive more attention. Using “Deep Learning"” we can model air systems which are
considerably dynamic, spatially expansive, and behaviourally heterogeneous. These models take data from variety of sources like
sensors, satellites, public agencies etc. Advances in satellite sensors have provided new datasets for monitoring air quality at urban
and regional scales. As per an article published by the Chicago policy Review [5], in contrast to traditional datasets that rely on
samples or are aggregated to a coarse scale, “Deep Learning” is huge in volume, high in velocity, and diverse in variety. Since the
early 2000s, there has been explosive growth in data volume due to the rapid development and implementation of technology
infrastructure, including networks, information management, and data storage. Big data can be generated from directed, automated,
and volunteered sources. Sometimes there are mismatches between data needs and availability, such as discrepancies between the
available and the desired levels of resolution. Key to making big data actionable is harnessing, standardizing, and integrating the
enormous amount of data. For instance, a modelling study carried out by D. J. Nowak et al. [6] using hourly meteorological and
pollution concentration data from across the United States demonstrates that urban trees remove large amounts of air pollution that
consequently improve urban air quality. Pollution removal (O3, PM10, NO2, SO2, CO) varied among cities with total annual air
pollution removal by US urban trees estimated at 711,000 metric tons ( $ 3. 8 billion value ) . We will be
discussing some important researches carried out by researches across the world using data driven approach to predict air quality in
the following paragraph
we can model air systems which are considerably dynamic, spatially expansive, and behaviourally heterogeneous. These models
take data from variety of sources like sensors, satellites, public agencies etc. Advances in satellite sensors have provided new
datasets for monitoring air quality at urban and regional scales. As per an article published by the Chicago policy Review [5], in
contrast to traditional datasets that rely on samples or are aggregated to a coarse scale, “big data” is huge in volume, high in
velocity, and diverse in variety. Since the early 2000s, there has been explosive growth in data volume due to the rapid development
and implementation of technology infrastructure, including networks, information management, and data storage. Big data can be
generated from directed, automated, and volunteered sources. Sometimes there are mismatches between data needs and availability,
such as discrepancies between the available and the desired levels of resolution. Key to making big data actionable is harnessing,
standardizing, and integrating the enormous amount of data. For instance, a modelling study carried out by D. J. Nowak et al. [6]
using hourly meteorological and pollution concentration data from across the United States demonstrates that urban trees remove
large amounts of air pollution that consequently improve urban air quality. Pollution removal (O3, PM10, NO2, SO2, CO) varied
among cities with total annual air pollution removal by US urban trees estimated at 711,000 metric tons ($3.8 billion value). We are
discussing some important researches carried out by researches across the world using data driven approach to predict air quality in
the following paragraphs.
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Fig. 1. Big data based decision support for air quality [7].

In a research work by J. Ditsela and T. Chiwewe [7], a model based on deep learning was presented to forecast the ground-level
ozone concentration levels at different monitoring sites. Prediction was made by acquiring cross-correlation and spatial-correlation
patterns between several air pollutants, whose continuous measurements were taken from air quality monitoring stations located
throughout the Gauteng province, South Africa, including the City of Johannesburg.
The study employed years of historical air quality data received via loT-enabled sensor networks. Rather than depending upon
conventional numerical modeling or large-scale computational simulations, the deep neural network was trained to learn
automatically the spatial-temporal dependencies and pollutant interaction patterns. These networks would be able to estimate ozone
in real time from sensor readings like NO, CO, SO, temperature, and humidity, thus providing a lean and adaptable system for air
quality estimation. The model utilized spatial feature learning (to capture patterns between neighboring stations) and temporal
sequence modeling (to model pollutant development with time), creating a combined system that enabled environmental decision-
making and early warning systems.likewise, in a prominent study by Y. Zheng et al. [8], a deep learning-based forecasting
architecture was presented that forecasted air quality measurements for the following 48 hours from multi-source information. It
took into account present and predicted meteorological conditions as well as current and past air quality readings gathered from
monitoring stations over tens of hundreds of kilometers in China.The predictive model proposed consisted of four key components:

1) Temporal Predictor: A model that employed recurrent neural network (RNN) architecture to learn temporal patterns and
seasonal trends in local air quality observations.

2) Spatial Predictor: A module that used convolutional neural network (CNN) architecture to represent spatial correlations
between multiple stations, observing the impact of pollution transport from neighboring areas.

3) Dynamic Aggregator: A deep learning layer that was specifically developed to dynamically integrate predictions from both
spatial and temporal predictors, maximizing the accuracy of predictions under changing meteorological conditions.

4) Inflection Predictor: A deep reinforcement learning mechanism that has been added to recognize and respond to unexpected
changes or inflection points in pollutant levels, for example, sudden spikes due to weather changes or sudden surges in
emissions.

This combined deep learning architecture showed better performance in predicting short-term air quality levels against traditional

statistical and regression-based approaches. Through the use of spatio-temporal deep architectures, the model attained improved

generalizability, robustness, and explainability, hence its appropriateness for large-scale deployment in the smart city context.
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Fig. 2. Data map [8].

They evaluate the model with data from 43 cities in China, surpassing the results of multiple baseline methods. They have deployed
a system with the Chinese Ministry of Environmental Protection, providing 48-hour fine-grained air quality forecasts for four major
Chinese cities every hour. The forecast function is also enabled on Microsoft Bing Map and MS cloud platform Azure as shown in
Fig. 2. The prime advantage of this method is that their technology is general and can be applied globally for other cities.
J. A. Engel-Cox et al. in [9] compared qualitative true color images and quantitative aerosol optical depth data from the Moderate
Resolution Imaging Spectro-radiometer (MODIS) sensor on the Terra satellite with ground-based particulate matter data from US
Environmental Protection Agency (EPA) monitoring networks. They covered the period from 1 April to 30 September 2002.
Following were some of the interesting facts about this approach:
1) Using both imagery and statistical analysis, satellite data enabled the determination of the regional sources of air pollution
events, the general type of pollutant (smoke, haze, dust), the intensity of the events, and their motion.
2) Very high and very low aerosol optical depths were found to be eliminated by the algorithm used to calculate the MODIS
aerosol optical depth data.
3) Correlations of MODIS aerosol optical depth with ground-based particulate matter were better in the eastern and Midwest
portion of the United States (east of 100°W).
Initial analysis of the algorithms suggested that aerosol optical depth (AOD) values calculated based on the sulfate-abundant
aerosol model would be more effective in predicting ground-level particulate matter (PM) concentrations. But additional
exploration found that the dependency of AOD on ground-level PM concentration is extremely nonlinear and dependent on a
number of meteorological and atmospheric variables like humidity, temperature, wind speed, and planetary boundary layer height..
In one of the researches carried out by J. Zhu et al. [10], as shown in Fig. 3. This paper concludes about the air quality which is not
covered by monitoring stations with S-T heterogeneous urban big data. However, estimating air quality using S-T heterogeneous
big data poses challenges. The challenges are due to the time complexity when processing the massive volume of data. this research
proposes to discover the region of influence (ROI) by selecting data with the highest causality levels spatially and temporally. This
combined deep learning model illustrated better performance in the prediction of short-term air quality levels than typical statistical
and regression approaches. Utilizing spatio-temporal deep structures, the proposed model achieved improved generalizability,
resilience, and explainability, which makes it applicable to large-scale implementation in smart cities.
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Fig. 3. The influence of S-T urban dynamic on air quality [10].

Results show that the research achieved higher accuracy using “part” of the data than “all” of the data. This may be explained by
the most influential data eliminating errors induced by redundant or noisy data.
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Fig. 4. The schematic set-up of IP camera as remote sensor to monitor air quality [11].

In one of the studies carried out by C.J. Wong et al. [11], the aim is to develop a state-of-art reliable technique to use surveillance

camera for monitoring the temporal patterns of PM10 concentration in the air. Once the air quality reaches the alert thresholds, it

provides warning alarm to alert people to prevent from long exposure to these fine particles. This is important for people to avoid

adverse health effects like asthma, heart problems etc. In this study, an internet protocol (IP) network camera was used as an air

quality monitoring sensor. It is a 0.3 mega pixel charge-couple-device (CCD) camera integrates with the associate electronics for

digitization and compression of images. The approach is as below:

1) The network camera was installed on the rooftop of the school of physics. The camera observed a nearby hill, which was used
as a reference target.

2) At the same time, this network camera was connected to network via a cat 5 cable or wireless to the router and modem, which
allowed image data transfer over the standard computer networks (Ethernet networks), internet, or even wireless technology.

3) Then images were stored in a server, which could be accessed locally or remotely for computing the air quality information
with a newly developed algorithm. The results were compared with the alert thresholds. If the air quality reaches the alert
threshold, alarm will be triggered to inform us this situation.
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The newly developed algorithm was based on the relationship between the atmospheric reflectance and the corresponding measured
air quality of PM10 concentration as shown in Fig. 4. In situ PM10 air quality values were measured with DustTrak meter and the
sun radiation was measured simultaneously with a Spectro-radiometer. Regression method was used to calibrate this algorithm. Still
images captured by this camera were separated into three bands namely red, green and blue (RGB), and then digital numbers (DN)
were determined. The results of this study showed that the proposed algorithm produced a high correlation coefficient (R?) of
0.7567 and low root-mean-square error (RMS) of plusmn 5 mu g/m3 between the measured and estimated PM10 concentration.

V. PREDICTIVE MODELING USING MACHINE LEARNING
Machine learning (ML) is the branch of computer science which makes computers capable of performing a task without being
explicitly programmed. There are many research papers that focus on classification of air quality evaluation using machine learning
algorithms. Most of these articles use different scientific methods, approaches and ML models to predict air quality. S. Y.
Muhammed et al. in [12] points out that machine learning algorithms are best suited for air quality prediction. Some of them are
discussed below.

A. Optimization of ANN Parameters for Accuracy

Artificial neural Network model tries to simulate the structures and networks within human brain. The architecture of neural

networks consists of nodes which generate a signal or remain silent as per a sigmoid activation function in most cases. A. Sarkar et

al. in [13] points out that the ANNs are trained with a training set of inputs and known output data. For training, the edge weights
are manipulated to reduce the training error. E. Kalapanidas et al. in [14] use a feed forward multi-perceptron network consisting of

10 input nodes, 2 hidden layers of 6 and 4 nodes respectively Current developments have also improved the ability of ANNs in air

quality forecasting by adding adaptive learning rates, dropout regularization, and batch normalization, which enhance the

robustness and avoid overfitting. Moreover, deep neural network (DNN) versions of ANNs enable the extraction of high-level
abstract features from large and complex air quality data. Deep architectures can capture the complex correlations among
meteorological parameters and pollutant concentrations effectively.

In addition, hybrid ANN designs that integrate convolutional and recurrent layers have been found to be capable of managing both

spatial and temporal relationships in air pollution data, allowing for more precise forecasting of pollutant patterns. In addition to

enhancing prediction performance, these models facilitate the determination of essential environmental variables affecting air

quality dynamics, which can lead to smart, data-actuated environmental monitoring systems. and 1 output node as shown in Fig. 5.

1) The step functions at the nodes of the hidden layers are all Gaussian. The training process is the error back propagation, where
there has been 5-6 working hours until the network performed well against the training set.

2) Many less successful trials have been made, trying networks with different architectures.

3) The architecture of the ANN used for experimentation along with the previous techniques, an inductive top down decision tree
was used, in particular the Oblique Classifier (OC1) which has been reported to have an improved performance over the
standard decision tree algorithms like ID3, C4.5 and their inherits.

4) The whole idea of OC1 is that the tree might split at each node according to the algebraic sum of several attributes, not just one
as is the case with the standard C4.5 programs.

NO2 at 9am. NO at 8a.m. NO at 10a.m. Raun factor s radiation factor

NO2 at 8am

First Hidden
Layer

Second Hidden |
Layer H

NO; peak predicuon
for the remaining of
the day

Fig. 5. ANN model for air quality [14].
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B. Evolutionary Training of Artificial Neural Networks (GA-ANN)

H. Zhao et al. in [15] used an improved ANN model called GA-ANN in which GA (genetic algorithm) is used to select a subset of
factors from the original set and the GA-selected factors are fed into ANN for modeling and testing as shown in Fig. 6. In the
experiments, air quality monitoring data and meteorological data (9 candidate factors) of Tianjin, China from 2003 to 2006 are
utilized for modeling, and the data in 2007 is utilized for performance evaluation. Three models, including GA-ANN, normal ANN
and PCA-ANN, are compared. The correlation coefficients of GA-ANN, which are calculated between monitoring and predicting
values are both higher than the other two models for SO2 (sulfur dioxide) and NO2 (nitrogen dioxide) predicting. The results indicate
that GA-ANN model performs better than another two models on air quality predicting.

pindividual chromosomes is randomly

A ] Generation=0
initialized as the first generation

Learning sets and corresponding validation sets
daie &iClICIillCd UL\'U!tll.llg (] L"dl.'ll L'IIIUIIIU.\UIIIU illll‘ N

used to construct p RBF neural networks Next
. - T sencration
Each RBF neural network is trained P
with the corresponding learing set Perform GA operators,
l including selection,
G crossover and mutation
___Condificns of stopping iietwork

T training are satisfied?—"
g are Sauis
V]
Fitmess value of each individual
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(,_ﬁxmdm; of eriimating.. N
TGA gre satisfied?—"
Y

Fig. 6. Flow of genetic algorithm based ANN [15].

C. Interpreting Feature in Random Forests
Random forests follow a technique as per [16] where several decision trees are built based on subsets of data and an aggregation of
the predictions is used as the final prediction as shown in Fig. 7. R. Yu et al. in [17] used a random forest approach for predicting
air quality (RAQ) for urban sensing systems. The data generated by urban sensing includes meteorology data road information, real-
time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction.
Compared with three other algorithms, this approach achieves better prediction precision. They used the standard of China, where
the AQI is based on the levels of six atmospheric gases, namely sulfur dioxide (SO,), nitrogen dioxide (NO,), suspended
particulates smaller than 10 pm in aerodynamic diameter (PM10), suspended particulates smaller than 2.5 pm in aerodynamic
diameter (PM2.5), carbon monoxide (CO), and ozone(O3), measured at the monitoring stations throughout each city. The AQI value
is calculated per hour according to a formula published by China’s Ministry of Environmental Protection. The approach is explained
below:

1) In the RAQ algorithm, all data are collected from the urban sensing system including air monitoring station data, meteorology
data, traffic data, road information and POI data and necessary features are extracted from heterogene. In the experiments, one-
month data from 4 May 2015 to 5 June 2015 is collected.

2) In their testing period, they used a total of 2701 data to test this algorithm and Shenyang is divided into 1258 grids
corresponding to 34 rows and 37 columns.
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In Shenyang, this algorithm finally results in an overall precision of 81% for AQI prediction. This experimental result outperforms
that of Naive Bayes, Logistic Regression, single decision tree and ANN. These data are directly or indirectly available on the
Internet. This shows that the algorithm could be easily applied for other cities throughout the entire country.

Random Forest Simplified
Instance
Random Forest _—" / ey
//./‘/ | \’\,\
> Y N
N N N
N N %
dodbdbdd dbdbdbds  dbdbdd
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B
{ Majority-Voting A- ’
Final-Class

Fig. 7. Random Forest Simplified [16].

D. Tree-Based Learning Model
Decision tree model is a tree model in which each branch node represents a choice between several alternatives, and each leaf node

represents a decision as per [18] as shown in Fig. 8. It is a supervised learning technique which uses a predictive model to map
observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). In
[19] S. Deleawe et al., create mapping from features to classification with a decision tree model which uses entropy to select an
ordering of feature values to consider in the concept rule description to predict CO2 levels in air. Since a decision tree generates
decision rules as its model, the researchers have used it to understand the attributes that were most influential in predicting the air
quality class. The decision tree they employed has a confidence factor of 0.25. They used the Weka implementation of the learning

algorithms.

Outlook
Sunny Overcast Rain

Humidity YL’

High Normal Strong Weak
No Yes No Yes

Fig. 8. Decision tree algorithm [18].
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E. Optimized Support Vector Framework

W. F. Ip et al., in [20] use Least Squares Support Vector Machines (LS-SVM) as shown in Fig. 9. It is a novel type of machine
learning technique based on statistical learning theory used for regression and time series prediction which overcomes most of the
drawbacks of MLP and has been reported to show promising results. In this paper, researchers report a forecasting model based on
LS-SVM for the meteorological and pollution data that shows promising results. Further research then widened the applicability of
LS-SVM by incorporating methods based on deep learning feature extraction techniques, such as CNNs and LSTM networks.
These hybrid models grasp both the efficiency of LS-SVM in regression accuracy and the excellent representational power of deep
networks, thus paving the way for more robust prediction frameworks. The integration of LS-SVM with deep feature encoding aids
in handling high-dimensional data with better interpretability, thereby contributing to more reliable air quality forecasting systems
that can aid policymakers and environmental agencies in informed decision-making. LS-SVM is a more powerful variant of the
traditional SVM with a high capability in improving the prediction accuracy of air quality parameters, as depicted in Fig. 9. LS-
SVM is a learning approach developed from statistical learning theory for regression with an excellent capability to handle
nonlinear mapping problems.
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Fig. 9. AP-LSSVM for air quality prediction

Unlike standard SVMs, LS-SVM simplifies the optimization process by turning the quadratic programming problem into a set of
linear equations to significantly reduce the computational complexity and improve convergence speed.

In the work, LS-SVM was integrated with meteorological and pollutant datasets to construct a forecasting framework that can learn
complex functional relationships between atmospheric variables and pollutant concentrations. The results showed superior
generalization performance, especially in the case of short-term air quality prediction tasks. The LS-SVM model had captured
dynamic variations in the concentration of such prevalent pollutants as PM:.s, NO., and Os, thus showing promising potential for
real-time environmental applications. Deep learning-based feature extraction methodologies, including CNNs and LSTM networks,
have significantly improved the predictive capability of hybrid air quality models. Particularly, CNNs are proven to be very
effective in capturing spatial correlations among environmental parameters, such as pollutant concentration distributions across
different geographic regions. By applying multiple convolutional and pooling layers, CNNs are able to automatically learn spatial
hierarchies and extract high-level representations from complex environmental datasets without the need for manual feature
engineering.
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F. Deep Predictive Modeling Network

L. Xiang et al. in [21] use a novel spatiotemporal deep learning (STDL)-based air quality prediction method as shown in Fig. 10. It
inherently considers spatial and temporal correlations is proposed. A stacked auto-encoder (SAE) model is used to extract inherent
air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, their
model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a
comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support
vector regression (SVR) models demonstrates that

We present a comparison table in Table IV which dives a tabular comparison of the research papers studied in this section. It talks
about the purpose of study, model proposed, parameters considered and data-source referred. Finally, we present a Table V which
gives a comparison of various pros and cons of all these model.

V. KEY LIMITATIONS AND RESEARCH IMPERATIVES
1) Case 1: Data Reliability and Validation
The accuracy of air quality prediction models strongly relies on the reliability of sensor data. Faulty readings, due to sensor drift,
hardware issues, or environmental interference, can lead to large errors in prediction. This emphasizes the development of real-time
data validation and correction mechanisms integrated with deep learning frameworks that ensure consistently high-quality input for
training and prediction.

2) Case 2: Real-Time Multi-Level Monitoring and Prediction

There is a further need for the integration of a real-time system for multi-level air quality monitoring, considering the advances in
sensing and 10T technologies. Several dynamic factors such as emission levels, wind speed, humidity, and time variations are
important for modeling air quality. There is a need for further evolution of deep learning models in such spatiotemporal
complexities that can handle real-time monitoring and prediction across different environmental layers within smart cities.

3) Case 3: Dynamic Modeling and Hybrid Deep Learning Frameworks

Most state-of-the-art models are limited to specific geographical regions or short-term datasets. Next-generation systems should be
based on adaptive and hybrid deep learning architectures, such as CNN-LSTM or Transformer-based models, that can model
temporal-spatial variations of pollutant variables. Such models will need to change dynamically with environmental variations in
order to enhance generalization and provide more reliable predictions in various urban settings.
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VI. CONCLUSIONS

With the rapid growth of IoT infrastructures and deep learning technologies, real-time air quality monitoring and prediction systems
have become one of the critical steps toward smarter and more sustainable cities. The existing studies focused on deep learning-
based air quality evaluation methods were reviewed and analyzed, indicating an increasing shift from traditional statistical and
physical models to data-driven intelligent systems From the review of different deep learning architectures such as CNNs, LSTMs,
and hybrid models, the distinct improvement offered by these techniques in capturing complex spatial and temporal dependencies
of environmental variables is evident. Such advances go beyond improving the accuracy of pollution prediction to proactive support
in environmental decision-making. However, ensuring data reliability, model interpretability, and real-time adaptability remains a
challenge. Future research needs to be directed toward integrating high-quality sensor data with deep learning frameworks that are
scalable and consider various environmental conditions. By addressing these challenges, air quality monitoring systems powered by
deep learning can play a transformational role in safeguarding environmental health and improving the quality of urban life.

REFERENCES

[1] K. Kumar and B. P. Pande, “Air pollution prediction with machine learning: a case study of Indian cities,” International Journal of Environmental Science and
Technology, Received 18 December 2021 / Revised 17 February 2022 / Accepted 19 April 2022. Nature +1

[2] S. Bhattacharya and S. Shahnawaz, “Using machine learning to predict air quality index in New Delhi,” arXiv preprint arXiv:2112.05753, December 2021.
ArXiv

[3] “Transforming air pollution management in India with Al & machine learning,” Scientific Reports, vol. 14, article number 71269, 2024. Nature

[4] L. Xiang, L. Peng, Y. Hu, J. Shao and T. Chi, “Deep learning architecture for air quality predictions,” Environmental Science and Pollution Research, vol. 23,
no. 22, pp. 22408-22417, 2016. SpringerLink

[5] J. Gao, C.-L. Xie, and C.-Q. Tao, “Big data validation and quality assurance — issues, challenges, and needs,” in Proc. IEEE Symposium on Service-Oriented
Systems and Engineering, Oxford, UK, April 2016.

[6] Gayathri M., Kavitha V., Anand Jeyaraj, “Forecasting Air Quality with Deep Learning,” International Journal of Intelligent Systems and Applications in
Engineering, vol. 12, no. *, pp. *, 2024. VISAE +1

[7]1 G. Naresh, B. Indira, “Air Pollution Prediction using Multivariate LSTM Deep Learning Model,” International Journal of Intelligent Systems and Applications
in Engineering, vol. *, no. *, pp. *, 2024. IJISAE

[8] Lovish Sharma, Hajari Singh, Mahendra Pratap Choudhary, “Application of Deep Learning Techniques for Analysis and Prediction of Particulate Matter at
Kota City, India,” EQA — International Journal of Environmental Quality, vol. 66, pp. 107-115, 2025. ega.unibo.it

[9] K. V. K. Sasikanth, B. Sujatha, D. Haritha, “Time Series Analysis for Air Pollution Prediction in High-Intensity Development Areas using Deep Learning,”
Indian Journal of Science and Technology, vol. 17, no. 28, pp. 2903-2913, 2024. SRS Journal

[10] Santana Lakshmi V., Vijaya M. S., “An Intelligent Deep Learning Based AQI Prediction Model with Pooled Features,” Journal of Theoretical and Applied
Information Technology, vol. 102, no. 1, Jan. 2024.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |



d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)




