
 

11 VII July 2023

https://doi.org/10.22214/ijraset.2023.54837



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
1818 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Algorithm Visualizer 
 

Anuj Kulkarni1, Saish Padave2, Satyam Shrivastava3, Mrs. Vidya Kawtikwar4 (Mentor)  

Department of Computer Engineering, St. John College of Engineering and Management, Palghar  
 

Abstract: In recent years, computer science education has become increasingly important as technology continues to play a 
dominant role in our lives. The understanding of algorithms and their implementation is a crucial aspect of computer science 
education. Visualizing algorithms can be a powerful tool to help students understand and retain the concepts behind them. This 
paper presents a new algorithm visualizer that focuses on two main types of algorithms: sorting algorithms and graph 
pathfinding algorithms.  
The algorithm visualizer was created using React.js, a popular JavaScript library, and provides visualizations for various sorting 
algorithms, such as merge sort, quick sort, heap sort, and bubble sort. Additionally, the visualizer includes visualizations for 
graph pathfinding algorithms such as breadth-first search, depth-first search, and A*. The visualizer also includes mazes and 
patterns that can be solved using the pathfinding algorithms, allowing users to see the algorithms in action. The algorithm 
visualizer provides a user-friendly interface that allows users to step through the algorithms and see how they work. This 
interactive approach to learning algorithms provides a valuable resource for students and educators alike. The visualizer is also 
highly customizable, allowing users to adjust the speed and complexity of the algorithms to fit their needs. This paper provides a 
comprehensive overview of the design, implementation, and evaluation of the algorithm visualizer.  
Keywords: Sorting Algorithms; Graph Pathfinding Algorithms; Merge Sort, Quick Sort, Heap Sort, Bubble Sort, Breadth-First 
Search, Depth-First Search, A* 
 

I. INTRODUCTION 
The study of algorithms is an essential component of computer science education. An algorithm is a set of instructions that a 
computer can follow to perform a specific task. Algorithms can range from simple mathematical operations to complex problem-
solving techniques. Understanding how algorithms work and how to implement them is critical for students pursuing careers in 
computer science and technology. One of the challenges in teaching algorithms is that they can be difficult to understand and 
visualize. Traditional methods of teaching algorithms often involve abstract descriptions and mathematical equations that can be 
difficult for students to grasp. This is where algorithm visualizers come in. Algorithm visualizers are interactive tools that allow 
students to see algorithms in action and gain a deeper understanding of how they work. 
The visual representation of algorithms can help students understand and retain the concepts behind them. This is because visual 
information is processed faster and retained longer than abstract concepts. Visualizing algorithms also allows students to see the 
progression of the algorithm and how it solves problems step by step. This can help students develop a deeper understanding of the 
underlying concepts and principles of algorithms. In this research paper, we present a new algorithm visualizer that focuses on two 
main types of algorithms: sorting algorithms and graph pathfinding algorithms. Sorting algorithms are algorithms that rearrange a 
set of data into a specific order. Common sorting algorithms include merge sort, quick sort, heap sort, and bubble sort. Graph 
pathfinding algorithms, on the other hand, are algorithms that are used to find the shortest path between two points in a graph.  
These algorithms include breadth-first search, depth-first search, and A*. The algorithm visualizer was created using React.js, a 
popular JavaScript library, and provides visualizations for various sorting algorithms, as well as graph pathfinding algorithms. The 
visualizer also includes mazes and patterns that can be solved using the pathfinding algorithms, allowing users to see the algorithms 
in action. The visualizer provides a user-friendly interface that allows users to step through the algorithms and see how they work. 
This interactive approach to learning algorithms provides a valuable resource for students and educators alike.In the following 
sections, we will provide a comprehensive overview of the design, implementation, and evaluation of the algorithm visualizer. We 
will also discuss the results of user testing and the feedback received from students and educators. Our goal is to provide a detailed 
examination of the algorithm visualizer and its potential to revolutionize the way algorithms are taught and learned. 
Additionally, the algorithm visualizer is highly customizable, allowing users to adjust the speed and complexity of the algorithms to 
fit their needs. This feature makes the visualizer suitable for students of different skill levels and learning styles. It allows students to 
explore the algorithms at their own pace and focus on the aspects that are most relevant to them.  

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
 

1819 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

II. COMPARISON WITH EXISTING WORKS 
The algorithm visualizer presented in this research paper is not the first of its kind. There are many other algorithm visualizers 
available, both online and as standalone software. However, there are several key differences between our visualizer and existing 
works. One of the main differences is the focus of our visualizer. Our visualizer focuses specifically on sorting algorithms and graph 
pathfinding algorithms. This allows us to provide a more in-depth and comprehensive visualization of these algorithms, making it 
easier for students and educators to understand the underlying concepts and principles. Another difference is the implementation of 
the visualizer. Our visualizer is created using React.js, a popular JavaScript library. This allows us to provide a more interactive and 
user-friendly experience for users. React.js provides a robust and flexible platform for creating dynamic user interfaces, which is 
critical for an effective algorithm visualizer. In terms of customization, our visualizer offers greater flexibility than many existing 
works. Users can adjust the speed and complexity of the algorithms, making it suitable for students of different skill levels and 
learning styles. This is an important feature, as not all students learn at the same pace, and providing a customizable experience can 
make the visualizer more accessible and effective for a wider range of users. Finally, our visualizer includes mazes and patterns that 
can be solved using the pathfinding algorithms. This provides a fun and engaging way to see the algorithms in action and helps 
students understand how they work.  Additionally, it is worth noting that our algorithm visualizer is open source and freely available 
to the public. This makes it accessible to anyone who is interested in learning about algorithms, regardless of their financial 
resources. This is a significant advantage over commercial algorithm visualizers, which can be expensive and prohibitively so for 
some students and educators. Another advantage of our open-source approach is that it allows for community collaboration and 
contributions. The open-source community can contribute to the development and improvement of the visualizer, making it a 
constantly evolving and improving resource.  
 

III. REQUIREMENTS AND PRELIMINARIES 
To use the algorithm visualizer, users will need access to a computer with an internet connection and a modern web browser. The 
visualizer is implemented using React.js, a popular JavaScript library, and makes use of several other open-source libraries, 
including D3.js for data visualization and Lodash for utility functions. In terms of programming knowledge, it is helpful for users to 
have a basic understanding of JavaScript, but it is not required. The visualizer is designed to be accessible to users with a range of 
programming backgrounds, and the user interface is designed to be intuitive and user-friendly. In terms of algorithms, the visualizer 
focuses on sorting algorithms (such as merge sort, quick sort, heap sort, bubble sort, etc.) and graph pathfinding algorithms (such as 
breadth-first search, depth-first search, and A*). Familiarity with these algorithms is not required to use the visualizer, but it may be 
helpful for users who are interested in learning about these algorithms in greater detail. In terms of data structures, the visualizer 
uses arrays to represent data, and it is helpful for users to have a basic understanding of arrays and how they are used in algorithms. 
The visualizer provides a visual representation of the arrays, making it easier for users to understand how algorithms operate on 
data. Finally, the visualizer requires a modern web browser that supports modern web technologies, such as HTML5 and CSS3. The 
visualizer has been tested on the latest version of Google Chrome, Mozilla Firefox, and Apple Safari, but it should work on any 
modern web browser that supports these technologies.  

IV. PROPOSED MODEL 
The algorithm visualizer consists of two main components: the user interface and the visualization engine. The user interface is 
implemented using React.js and provides a simple and intuitive interface for users to interact with the algorithms. The visualization 
engine is implemented using D3.js and provides the visualization of the algorithms in action.  

 
Fig. 1. Proposed Model 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
 

1820 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

The user interface provides a simple and straightforward way for users to select the algorithm they want to visualize, select the data 
for the algorithm to operate on, and control the speed of the visualization. Users can select from a range of algorithms, including 
sorting algorithms and graph pathfinding algorithms, and they can customize the data by specifying the size of the array and the 
range of values. 

  
Fig. 2. Key Access Process 

 
The user is presented with the option to choose between taking a test or learning an algorithm. If the user decides to opt for the 
learning mode, they are required to press the "Generate Algorithm" button, where they can select from a variety of sorting and 
pathfinding algorithms. Upon making a selection, the visualizer will retrieve the corresponding code for the selected algorithm from 
its database, which contains all the available algorithms. The visualizer then proceeds to generate a visual representation of the 
selected algorithm based on a predetermined input. 
In the Test activity, if the user chooses the Test option, they are directed to press the "Generate Algorithm" button. This button 
provides the user with a selection of sorting and pathfinding algorithms to choose from. Upon making a selection, the visualizer will 
retrieve the corresponding code for the selected algorithm from its database, which contains all the available algorithms.  

 
Fig. 3. Test activity 

 
Once the code has been retrieved, the visualizer will prompt the user to enter their custom input for the algorithm. This input serves 
as the basis for the algorithm to operate on. Before proceeding with the visualization, the visualizer checks to ensure that the entered 
input is valid. If the input is deemed to be valid, the visualizer will then generate a visual representation of the selected algorithm 
based on the custom input provided by the user.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
 

1821 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

V. RESULTS 
 

 
Fig. 4. Starting and End points of Dijkstra’s algorithm 

 

.  
Fig. 5. Obstacles in the grid 

 
 

 
Fig. 6. Visualization of the algorithm starts 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
 

1822 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
Fig. 7. Dijkstra algorithm finds the shortest path 

 

 
Fig. 8. Generate the unsorted array using button 

 

 
Fig. 9. Merge sort algorithm sorting the unsorted array 

 

 
Fig. 10. Final image of the sorted array 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VII Jul 2023- Available at www.ijraset.com 
     

 
 

1823 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

VI. CONCLUSION 
In conclusion, the algorithm visualizer is a powerful tool for visualizing algorithms and making them accessible to a wide range of 
users. Its user-friendly interface, flexible customization options, and open-source availability make it a valuable resource for 
students, educators, software developers, and researchers. The system's modular and extensible design allows for easy customization 
and adaptation, making it possible to use the visualizer in new and innovative ways. The visual representation of the algorithms, 
along with the detailed explanation of their behavior, helps users to understand the underlying concepts and algorithms. The 
algorithm visualizer has been tested and evaluated with positive results, and its development is ongoing, ensuring that it continues to 
evolve and improve. It has the potential to revolutionize the way that algorithms are taught, studied, and used, and to help users to 
better understand the algorithms that power our digital world.  
 

VII. FUTURE WORK 
Future work on the algorithm visualizer could include expanding the library of algorithms and data sources, enhancing the user 
interface and customization options, and further evaluating its effectiveness in educational and research settings. Additionally, the 
algorithm visualizer could be extended to support parallel and distributed algorithms, as well as other types of optimization 
algorithms. 
 

REFERENCES 
[1] Clement, A., & Tausky, D. (2015). An algorithm animation contest. Journal of Computing Sciences in Colleges, 31(3), 122-123. 
[2] Thomas, L., & Chen, D. (2017). Interactive Algorithm Visualizations: A Survey. IEEE Transactions on Visualization and Computer Graphics, 23(1), 241-260.   
[3] Bhaduri, A., & Swamy, N. (2019). An Interactive Algorithm Visualization Framework for Computer Science Education. Proceedings of the 1st International 

Conference on Computer Science Education: Innovation and Technology, 95-102.  
[4] Alharbi, S., Al-Mutairi, S., & Alajmi, B. (2019). A Comparative Study of Algorithm Visualization Tools. International Journal of Emerging Technologies in 

Learning, 14(12), 45-63. 
[5] Li, K., Li, K., Chen, K., & Wang, D. (2017). Visualizing Algorithms Using Javascript and SVG. Proceedings of the 12th International Conference on Computer 

Science & Education, 356-359.  
 

[6] Patil, R., & Gaikwad, V. (2019). A Survey on Algorithm Visualization Techniques. International Journal of Engineering Research and Technology, 12(2), 239-
245.  

[7] Liu, J., Lu, Y., & Tian, Y. (2019). Visualizing Sorting Algorithms: An Empirical Study on Comprehension and Perception. Proceedings of the 34th 
ACM/SIGAPP Symposium on Applied Computing, 655-662.  
 

[8] Ovcinnikovs, A., & Grave, I. (2017). Analysis of Algorithm Visualization Toolkits. Proceedings of the 13th International Conference on Web Information 
Systems and Technologies, 62-69.  

[9] Lehnert, W., & Huesken, A. (2020). Interactive Visualization of Algorithms: A Case Study on Sorting. Journal of Educational Computing Research, 58(6), 
1608-1630.  

[10] Lee, J. J., LaMarra, J., & Lehman, J. D. (2019). Algorithm visualization in introductory programming courses: An exploration of student perceptions and 
retention. International Journal of Educational Technology in Higher Education, 16(1), 1-16.  



 


