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Executive Summary: This report outlines a conceptual framework for integrating Artificial Intelligence (AI) and multi-sensor 
fusion to enable real-time surface roughness prediction and anomaly detection in Computer Numerical Control (CNC) 
machining. The proposed framework overcomes the critical limitations of traditional, post-process quality control methods by 
leveraging continuous data streams from multiple sensors. By fusing data on cutting forces, vibrations, temperatures, and other 
parameters, the system employs advanced AI models—such as hybrid Convolutional Neural Network-Gated Recurrent Unit 
(CNN-GRU) networks for prediction and autoencoders for anomaly detection—to provide immediate, actionable insights. This 
paradigm shift from reactive to proactive quality management promises to enhance product quality, reduce waste, increase 
operational efficiency, and pave the way for fully autonomous and adaptive manufacturing processes. 

I. INTRODUCTION 
A. The Evolution of CNC Machining in the Industry 4.0 Era 
The manufacturing landscape is undergoing a fundamental transformation, driven by the principles of Industry 4.0. This new era is 
defined by the integration of data-driven architectures, which allow manufacturers to manage vast volumes of data from machines, 
sensors, and other sources.1 Computer Numerical Control (CNC) machining, which is the automated control of machining tools 
through a computer program, is at the heart of this evolution.2 While traditionally a cornerstone of precision manufacturing, CNC is 
now being enhanced by AI to go beyond simple, pre-programmed actions to intelligent decision-making based on real-time data.3 

This integration represents a fundamental shift towards smarter, more sustainable, and globally competitive operations.4 It is 
enabling the development of intelligent systems that can not only monitor and adjust machining parameters autonomously but also 
predict potential failures before they occur, optimize processes on the fly, and ensure better overall efficiency.3 This AI-driven 
approach is unlocking unprecedented benefits, including enhanced quality control, predictive maintenance, and real-time process 
optimization, all leading to measurable gains in efficiency and product quality.1 

 

B. The Critical Role of Surface Quality and Process Health 
In the production of mechanical components, surface roughness is a paramount quality indicator. It is a defining characteristic that 
directly influences a product’s functional properties, such as its fatigue strength, wear resistance, and surface hardness.6 Ensuring 
optimal surface quality is therefore not just a matter of aesthetics but a critical requirement for product reliability and performance.8 
The appearance of a surface is also of importance in many applications, for instance, sheet steel for motor car bodies must have a 
finish that allows paint to bond without an "orange peel" effect.9 

Concurrently, maintaining process health is crucial. Anomaly detection—the process of identifying unusual patterns or deviations in 
data—is an essential tool for identifying potential issues, such as equipment malfunction or defects, before they escalate.10 
Deviations from expected production rates, product quality issues, or machine irregularities are classic examples of manufacturing 
anomalies.10 The goal is to identify problems before they become major issues, allowing for corrective action to improve the 
efficiency and quality of operations.11 The ability to predict surface quality and detect anomalies in real time offers significant 
advantages, including reduced waste and streamlined manufacturing processes.8 

 

C. A New Paradigm: The AI-Driven, Real-Time Framework 
This report proposes a framework that synthesizes the principles of AI, multi-sensor fusion, and real-time data processing to address 
the dual challenges of surface roughness prediction and anomaly detection. This approach represents a new paradigm that moves 
beyond the limitations of traditional, post-process quality control methods by enabling proactive, in-process adjustments. It lays the 
groundwork for a more efficient, precise, and resilient manufacturing operation. 
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II. FOUNDATIONAL CONCEPTS: A PRIMER ON MACHINING AND QUALITY 
A. Fundamentals of Computer Numerical Control (CNC) Machining 
CNC machining is a subtractive manufacturing process that removes layers from a solid block, bar, or part to achieve a desired 
shape.13 Its power lies in the precision of Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM), which 
enable the execution of intricate, repeatable instructions with minimal human error and fatigue.13 The benefits of this automation are 
numerous, including unparalleled precision and accuracy, increased productivity and efficiency, and the ability to produce complex 
and intricate designs that would be labor-intensive and error-prone when handled manually.13 Common techniques under the CNC 
machining umbrella are varied and versatile, each suited to different types of products and materials. These include milling (using 
rotary cutters to remove material), turning (creating cylindrical shapes with lathes), and drilling (creating precise holes).13 CNC 
machining is not restricted to a single material type; it spans the spectrum to handle metals like aluminum, titanium, and steel, as 
well as plastics and composites.13 

 
B. Understanding and Quantifying Surface Roughness 
Surface roughness, or roughness, is defined as the inherent irregularities produced during the manufacturing process, such as those 
left by a cutting tool or abrasive grit.6 It is quantified by the deviations in the direction of the normal vector of a real surface from its 
ideal form.6 If these deviations are large, the surface is rough; if they are small, the surface is smooth.9 Surface roughness is 
produced only by the method of manufacture and results from the process rather than the machine itself.9 The widely adopted 
Ra (arithmetic mean roughness) parameter is the most common international standard and is defined as the arithmetic mean of the 
absolute departures of the roughness profile from the mean line.9 However, other parameters, such as 
Rv (maximum depth of the profile below the mean line) and Rt (maximum peak to valley height), provide additional insights into 
the surface texture and can be used to predict the behavior of a component during use or to control the manufacturing process.9 

 

C. The Imperative of Anomaly Detection in Production 
Anomaly detection identifies "unusual patterns or deviations" that may signal a malfunction or defect in the manufacturing 
process.11 This can be done using various techniques, such as statistical analysis, machine learning, and artificial intelligence.11 The 
goal is to identify problems before they become major issues, allowing manufacturers to take corrective action and improve the 
efficiency and quality of their operations.11 Examples of anomalies include sudden temperature fluctuations, product quality issues, 
or machine irregularities.10 

Deep learning models are particularly suited for anomaly detection. Autoencoders, for instance, are neural networks trained to 
reconstruct their input. The network learns to compress normal data into a latent space and then reconstruct it. Anomaly detection 
using autoencoders is based on the idea that anomalies will result in poor reconstructions, as they do not conform to the patterns 
learned by the network. By setting a threshold for the reconstruction error, any data exceeding this threshold can be classified as an 
anomaly.11 Generative models, such as Generative Adversarial Networks (GANs), and one-class classification methods are also 
used to identify anomalies by learning the characteristics of normal data.11 This is directly relevant to anticipating issues like tool 
wear, which can be predicted using AI and sensor signals like cutting forces and vibrations.16 

 

III. LIMITATIONS OF TRADITIONAL METHODS 
A. Inherent Drawbacks of Contact-Based Roughness Measurement 
Traditionally, surface roughness is measured using contact stylus profilometers, which typically use a conical stylus with a spherical 
tip made from diamond.9 

While this is the most common method and is effective for detailed analysis, it has significant limitations that hinder its application 
in a modern, real-time manufacturing environment. 
These methods are time-consuming and labor-intensive, often requiring a complex setup.18 The physical act of measurement is a key 
bottleneck. The stylus's sharp tip is prone to wear, and its movement across the surface can scratch the sample, making this method 
unsuitable for soft materials.19  
The measurement is also limited to the radius of the stylus tip.19 Most critically, these methods are performed post-process, meaning 
the workpiece must be removed from the machine after it is made. This prevents real-time, in-process adjustments, which is a major 
bottleneck in modern manufacturing.18 The dependence on correct settings for stylus speed and wavelength limits can also lead to 
"diametrically different results" and devalue the entire assessment process.19 
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B. The Oversimplification of Single-Parameter Metrics 
Beyond the physical limitations, a key conceptual drawback of traditional methods is the overreliance on single-number metrics like 
Ra. While Ra is the universally recognized and most-used international parameter of roughness, this is often for historical reasons 
rather than its specific merit.9 The use of a single amplitude parameter oversimplifies complex surface topography and can fail to 
distinguish between two surfaces that are visually and functionally different, such as one with peaks and another with troughs of the 
same amplitude.14 This oversimplification, combined with the fact that contact measurement is a post-process activity, creates a 
fundamental disconnect. A manufacturer cannot use a post-process, oversimplified measurement to make real-time, in-process 
adjustments. The information is not granular enough, nor is it available in time to prevent defects. Therefore, the problem is not 
merely that traditional methods are slow; it is that they are fundamentally misaligned with the requirements of adaptive process 
control in an Industry 4.0 setting. The limitations of traditional methods are not just inconveniences but a catalyst for a new, data-
driven approach. 
 
C. The Need for an In-Process, Data-Driven Approach 
To achieve the goals of adaptive process control and predictive quality, a paradigm shift is required. The solution lies in indirect, 
data-driven modeling that can provide a "digital twin" of the process, allowing for predictions and anomaly detection without 
physical contact or process interruption.20 The advantages of this approach are manifold, including improved product quality, 
minimized waste, and the ability to make data-driven decisions on the factory floor.8 

 

Comparison Criteria Traditional Method AI-Driven Framework 

Measurement Time Post-process & Slow 18 Real-time & Instant 1 

Feedback Loop Reactive (after part is made) 3 Proactive (during machining) 3 

Data Type Single-parameter (e.g., Ra) 9 Multi-dimensional (Sensor 
Fusion) 21 

Process Interruption Yes (requires stopping the 
machine) 18 

No (in-process monitoring) 18 

Scope Part-by-part inspection 19 Continuous process monitoring 8 

Table 3: Advantages of an AI-
Driven Framework vs. 
Traditional Methods 

  

 
IV. THE TECHNOLOGICAL PILLARS OF THE FRAMEWORK 

A. Multi-Sensor Fusion: From Data Aggregation to Enhanced Perception 
Multi-sensor fusion is the process of combining data from multiple sensors to achieve a more accurate and reliable understanding of 
a system than what is possible with a single sensor.22 This is analogous to how the human brain integrates multiple senses to 
perform complex tasks like driving a car or playing sports.24 This technique is used to use the strengths of each sensor to 
compensate for the weaknesses of others, resulting in a more robust and reliable system.23 

The application of this concept in manufacturing moves beyond simple redundancy to achieve a more complete and accurate 
representation of the environment.23 For example, in a hostile machining environment where individual sensors may be prone to 
noise or errors, fusing data can compensate for the limitations or failures of individual sensors, thereby ensuring the system remains 
functional and reliable.22 This complementary approach is essential for a system that needs to operate reliably in a dynamic and 
complex environment.25 The collective intelligence of the fused sensor data is greater than the sum of its parts, which is a 
prerequisite for a reliable framework. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VIII Aug 2025- Available at www.ijraset.com 
     

 
1566 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Sensor Type Monitored Parameters Source ID(s) 

Force & Torque Sensors Cutting force between tool and 
workpiece, and torque 26 

21 

Vibration Sensors Spindle vibrations, tool wear, and 
mechanical failures 16 

16 

Temperature Sensors Temperature of spindle, motor, and 
cutting area 26 

26 

Acoustic Emission (AE) Sensors High-frequency acoustic signals 
related to tool wear 21 

21 

Visual Sensors Workpiece shape, size, and surface 
quality 26 

26 

Tool Length Sensors Tool length and variations for 
accurate machining 27 

27 

Position Sensors Position of machine tool 
components and motion trajectories 
26 

26 

Table 1: Key Sensors for CNC 
Machining and Their Monitored 
Parameters 

  

 
B. AI and Machine Learning Models for Prediction and Analysis 
The framework's intelligence relies on a dual-purpose AI engine. For surface roughness prediction, a variety of models have 
demonstrated high efficacy. Neural networks, for example, have shown an ability to capture complex, nonlinear patterns with high 
predictive accuracy.21 One study found that a neural network achieved an accuracy of 93.58% in predicting surface roughness, 
which was a higher predictive power than a multiple regression model.30 Other models, such as Elastic Net, have also been 
employed to handle multicollinearity and reduce data dimensionality.28 Hybrid models, such as the CNN-GRU, are also noted for 
their ability to extract features from spatial and temporal data with superior analytical efficiency.18 

For anomaly detection, unsupervised and semi-supervised models are particularly useful for identifying unforeseen types of defects 
without a large dataset of labeled anomalies.15 Autoencoders and generative models, for example, can be used to monitor production 
quality by flagging products or processes that deviate from the established norm, potentially identifying new or unforeseen types of 
defects.11 The proposed framework combines these two functions into a comprehensive system. An anomaly detection model serves 
as an early warning system, flagging unusual patterns in the sensor data that could indicate an impending problem. This alert could 
then automatically trigger a more detailed analysis by the roughness prediction model, which could then quantitatively forecast the 
degradation in surface quality. This creates a two-stage, proactive system: the first stage flags a potential problem, and the second 
stage quantifies the likely outcome, enabling a rapid, targeted response. 
 
C. Real-Time Data Pipelines and Edge Computing 
Real-time analytics and AI models demand low-latency processing to deliver timely insights that drive operational improvements.1 
The framework must employ a data pipeline that can collect, store, and analyze large-scale data streams from diverse sources such 
as IoT devices and production metrics.1  
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This necessitates advanced edge computing capabilities to process data as close to the source as possible, enabling immediate 
decision-making and operational improvements without the latency associated with cloud-based processing.1 The integration of 
these components allows for a fluid and flexible method of discovering inconsistencies and taking corrective action.31 

 

V. A CONCEPTUAL FRAMEWORK FOR REAL-TIME PREDICTION AND ANOMALY DETECTION 
A. Proposed System Architecture: An Integrated View 
The proposed framework is a closed-loop system comprising four main layers: a Data Acquisition Layer, a Data Fusion and Feature 
Engineering Layer, an AI Modeling Engine, and a final Adaptive Process Control Layer. This architecture is designed to 
continuously monitor and optimize the machining process, providing a seamless flow from data collection to actionable insights. 
 
B. Data Acquisition and Sensor Selection Strategy 
A crucial first step is to establish a multi-source data acquisition platform that combines sensor monitoring with machine tool 
communication.7 As detailed in Table 1, the platform must be able to collect high-frequency signals from various sensors (e.g., 
force, vibration, temperature) while a part is being machined.21 The successful integration of data from these diverse sources 
requires standardized communication protocols and data synchronization methods to ensure consistency and reliability.24 

 

C. The Fusion and Feature Engineering Pipeline 
Raw sensor data is often noisy and complex. The pipeline must first perform signal processing, such as filtering, to reduce noise and 
isolate relevant features.7 This is where multi-sensor data fusion occurs, either by combining raw data at the lowest level (data 
fusion) or by combining extracted features (feature fusion) to create a more comprehensive representation of the environment.23 The 
goal is to create a refined, multi-dimensional feature set that is highly correlated with the target outputs (surface roughness, process 
anomalies).7 For example, signal decomposition methods like Singular Spectrum Analysis (SSA) and Wavelet Packet Transform 
(WPT) can be used to extract signal features and detect frequency ranges correlated to surface finish.21 

 

D. The Predictive and Anomaly Detection Modeling Engine 
This is the core of the framework. It will host a portfolio of AI models tailored for specific tasks. For roughness prediction, a hybrid 
model, such as a CNN-GRU, is ideal, given its ability to extract features from spatial and temporal data with high accuracy.18 The 
model would take the fused sensor data as input and predict a quantitative surface roughness value ( 
Ra, Rz, etc.) as output. For anomaly detection, an autoencoder model would be used to learn the "normal" behavior of the machining 
process. Any significant deviation from this learned pattern would be flagged as an anomaly, serving as an early warning signal for 
potential defects or machine failure.11 

A critical advancement in this area is the move towards physics-guided models, which address the limitations of purely data-driven 
models, such as their convergence to local minima or their generation of results that "violate existing physical laws".18 The 
embedding of physical knowledge enhances the generalization ability and prediction accuracy, providing a new method for surface 
roughness prediction.18 This is achieved by introducing a physical model in two phases: before training, via data augmentation, and 
during training, via a physically guided loss function.18 This approach moves beyond simple correlation to a more robust, causal 
understanding of the machining process. By embedding physical knowledge, the framework addresses data scarcity and ensures that 
the model's decisions are both accurate and trustworthy, providing a path to overcome the "black-box" challenge of many AI 
models.18 

 

Model Type Methodology/Key 
Features 

Reported 
Performance/Accuracy 

Source ID(s) 

Artificial Neural 
Networks (ANN) 

Capture complex, 
nonlinear patterns using 
activation functions like 
ReLU. 3 

High predictive accuracy; 
one study showed a mean 
squared error of 1.86%.29 
Another reported 93.58% 
accuracy.30 

21 
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Elastic Net Effective handling of 
multicollinearity and 
data dimensionality 
reduction. 28 

A coefficient of 
determination (R2) of 
0.94.28 

28 

Hybrid CNN-GRU Uses a CNN to extract 
spatial features and a 
GRU to track temporal 
patterns. 18 

Reduced the mean 
absolute percentage error 
on the test set by 3.029% 
on average compared to 
the best comparison 
method.18 

18 

Deep Belief Network 
(DBN) 

Optimized with the 
Tent-SSA algorithm for 
improved prediction 
accuracy. 7 

Prediction accuracy 
improved by 5.77% after 
optimization.7 Regression 
model error reduced by 
over 40%.7 

7 

Autoencoders Reconstructs input data 
and flags anomalies 
based on poor 
reconstruction errors. 11 

Anomaly detection based 
on a reconstruction error 
threshold.11 

11 

Table 2: Comparison of 
AI Models for Surface 
Roughness Prediction 

   

 
E. Feedback Loops and Adaptive Process Control 
The final layer closes the loop. The model's output—a predicted roughness value or an anom aly alert—triggers a response. This 
could involve automatically adjusting machining parameters, sending a real-time notification to an operator via a touchscreen 
interface at the machine, or displaying a live simulation of the predicted finish to provide immediate visual feedback.3 This enables 
intelligent, adaptive process control, allowing for real-time adjustments to maintain optimal quality and efficiency and reduce errors, 
accelerating production cycles.26 

 

VI. REVIEW OF PRIOR RESEARCH AND EXPERIMENTAL RESULTS 
A. Predictive Modeling of Surface Roughness: A Survey of Foundational Studies 
A review of the literature reveals a rich history of AI-based surface roughness prediction. Studies have successfully used a variety of 
models, with ANNs consistently showing high predictive power.21 One study reported that an ANN trained with the Levenberg-
Marquardt algorithm was able to predict surface roughness with a mean squared error equal to 1.86%.29 Another study found that a 
neural network achieved an accuracy of 93.58% in predicting surface roughness, outperforming a multiple regression model with an 
accuracy of 86.7%.30 Other approaches, such as the hybrid CNN-GRU model, have shown a significant reduction in the mean 
absolute percentage error by an average of 3.029% compared to the best comparison method.18 This demonstrates that the 
combination of different AI models can lead to superior results. 
 
B. Sensor Fusion in Manufacturing: A Case Study Review 
The application of multi-sensor fusion for quality control and predictive maintenance is a growing trend. A multi-sensor data fusion 
system for real-time surface quality control, based on cutting force, vibration, and acoustic emission signals, was assessed and found 
to provide "excellent predictive power, reliability, and response times".21 Another study showed that a sensor fusion regression 
model could provide a "better prediction of cutting performance" by fusing machining and cutting temperature parameters.33  
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The system was tested on the machining of H13 steel and revealed a close match between experimental and predicted results.33 In 
the context of predictive maintenance, sensor fusion is used to constantly collect data on vibrations, sounds, and heat from 
equipment, allowing for the early detection of abnormalities that a single sensor might not be able to identify.34 This demonstrates 
the practical benefits of the fusion approach for both quality control and machine health. 
 

VII. CHALLENGES IN IMPLEMENTATION AND FUTURE DIRECTIONS 
A. Technical and Computational Challenges 
Implementing such a framework is not without its challenges. The initial cost of investment in advanced sensors, computing power, 
and AI platforms is significant, and machines must be equipped with these advanced components.3 Furthermore, the successful 
integration of different sensors with varying data formats and communication protocols remains a technical hurdle. Ensuring that 
data from multiple sensors is aligned in time is essential for accurate fusion.22 This can be difficult to manage, especially with 
heterogeneous sensors and systems.23 The complexity of the system is also a potential negative aspect.23 

 

B. Overcoming Data Scarcity and Ensuring Model Generalization 
Data scarcity is a persistent challenge in industrial applications, as collecting large, labeled datasets for all possible scenarios can be 
prohibitive.18 This often leads to poor model generalization, where a model performs well on its training data but fails to provide 
accurate predictions in new, unseen conditions. As previously discussed, the solution, as identified in the literature, is to move 
towards a physics-guided approach, which enhances a model's ability to interpret results and perform well even with limited data.18 
This approach uses data augmentation to expand the dataset and a physically guided loss function to embed physical constraints into 
the model, ensuring its predictions are both accurate and consistent with physical laws.18 

 

C. Towards the Autonomous Factory: The Future of AI in Intelligent Machining 
The proposed framework is a stepping stone to a future of truly autonomous manufacturing. AI-powered systems will enable mass 
customization at scale by analyzing customer data and automating key production steps, allowing for real-time adaptability to 
shifting customer demands, seasonal changes, or supply chain disruptions.4 This will also lead to enhanced supply chain efficiency, 
optimized resource allocation, and a new era of human-robot collaboration, where AI-equipped "cobots" can work safely alongside 
human employees.4 Ultimately, AI will not just be a tool for improvement but a strategic advantage for agile, competitive, and 
sustainable operations, allowing manufacturers to innovate and respond faster to market changes.4 

 

VIII. CONCLUSION 
The synthesis of multi-sensor fusion, AI-driven models, and real-time data processing offers a powerful solution to the long-
standing challenge of in-process quality control in CNC machining. The proposed framework moves beyond the limitations of 
traditional, manual methods by providing a comprehensive, reliable, and proactive approach to surface roughness prediction and 
anomaly detection. By leveraging the combined strengths of multiple sensor data and intelligent, physics-guided algorithms, this 
framework represents a pivotal step towards the realization of smart, adaptive, and fully autonomous manufacturing systems. The 
shift from reactive to proactive quality management will enhance product quality, reduce waste, increase operational efficiency, and 
drive a new era of manufacturing excellence. 
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