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Abstract: In representation learning on graphs, graph neural networks (GNNs) have been widely employed and have attained
cutting-edge performance in tasks like node categorization and link prediction. However, the majority of GNNs now in use are
made to learn node representations on homogenous and fixed graphs. The limits are particularly significant when learning
representations on a network that has been incorrectly described or one that is heterogeneous, or made up of different kinds of
nodes and edges. This study proposes Graph Transformer Networks (GTNs), which may generate new network structures by
finding valuable connections between disconnected nodes in the original graph and learning efficient node representation on the
new graphs end-to-end. A basic layer of GTNs called the Graph Transformer layer learns a soft selection of edge types and
composite relations to produce meaningful multi-hop connections known as meta-paths. This research demonstrates that GTNs
can learn new graph structures from data and tasks without any prior domain expertise and that they can then use convolution
on the new graphs to provide effective node representation. GTNs outperformed state-of-the-art approaches that need pre-
defined meta-paths from domain knowledge in all three benchmark node classification tasks without the use of domain-specific
graph pre-processing.

L. INTRODUCTION
Deep networks can analyze structured inputs like molecules or social networks thanks to graph neural networks (GNNs). GNNs
learn mappings from the structure and characteristics in their surroundings to calculate representations at graph nodes and/or edges.
This local-neighborhood aggregation makes use of the relational inductive bias represented by the connectedness of the network [1].
By stacking layers, GNNs may gather data from outside of local neighborhoods similarly to convolutional neural networks (CNNSs),
hence expanding the GNN receptive field.
Since the creation of Transformers [2], which are now the top-performing neural network designs for handling long-term sequential
datasets like sentences in NLP, there has been a huge amount of progress made in the field of natural language processing (NLP).
This is accomplished through the employment of the attention mechanism [3], in which each word in a phrase pays attention to the
words around it and integrates the information it receives to produce abstract feature representations. This technique of learning
word feature representations by merging feature information from other words in a sentence may instead be considered as an
instance of a GNN applied on a fully connected graph of words [5] from a message-passing paradigm [4] in graph neural networks
(GNNs) viewpoint.
Graph Neural Networks (GNNSs) have gained significant traction in recent years for a variety of graph-related tasks, including graph
classification [22, 23, 24], link prediction [25, 26, 27], and node classification [28, 29, 30]. State-of-the-art performance in a range
of graph datasets, including social networks [31,29,32], citation networks [33,30], the functional structure of brains [34], and
recommender systems [35,36,37], has been demonstrated to be possible using the representation learned by GNNs. GNNs make use
of the underlying graph structure to either execute convolution in the spectrum domain using the Fourier basis of a particular graph,
i.e., the eigenfunctions of the Laplacian operator [38,3], or to operate convolution directly on graphs by passing node information
[4,29] to neighbors.
However, a drawback of the majority of GNNs is that they presumptively function on fixed, homogenous graph structures. Since the
fixed graph structure determines the previously stated graph convolutions, a noisy graph with missing or false connections yields an
inefficient convolution with incorrect neighbors on the graph. Additionally, creating a graph to run GNNs is not always simple in
some applications. For instance, a citation network is referred to as a heterogeneous graph because it has several node types (such as
authors, papers, and conferences) and edges that are determined by the relationships between them (such as author-paper, and paper-
conference). Neglecting the node/edge types and treating them as they are in a homogenous network is a naive approach (a standard
graph with one type of node and edges).
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This is not ideal because models cannot make use of the type of information. A more recent solution is to manually create meta-
pathways, or paths joined by heterogeneous edges, and convert a heterogeneous network into a homogeneous graph that is defined
by the meta-paths. The altered homogeneous graphs can then be used as input for standard GNNs [40, 41]. This strategy involves
two stages and calls for individually created meta-paths for every issue. The selection of these meta-paths can have a big impact on
how accurate downstream analysis is.

Modern performance on numerous NLP applications has been achieved using models based on transformers [6,7,8]. However,
graph neural networks (GNNSs) have shown to be the most successful neural network designs on graph datasets and have made
substantial progress in a variety of fields, including physics [12,13], social sciences [11], and knowledge graphs [9,10]. In particular,
GNNs take advantage of the flexible graph structure that is provided to learn the feature representations for the nodes and edges, and
then they apply the learned representations to subsequent tasks.

For many computer vision tasks, such as object identification [14], picture classification [15], segmentation [16], facial recognition
[17], and captioning [18], convolutional neural networks (CNNs) have become the de facto standard. The monkey visual system
served as the inspiration for the inductive bias in CNNSs, and the layer activations of these networks have been utilized to explain
neural activations inside them [19]. Understanding the representations and techniques picked up by CNNs trained on well-known
datasets like ImageNet has received a lot of attention recently [20,21]. Behavioral analysis analyzing model categories to learn more
about the underlying representations—takes the form of much of this.

1. LITERATURE REVIEW
For a variety of purposes, several classes of GNNs have been created recently. They are divided into spectral [42] and non-spectral
techniques [31] approaches. [42] suggested a method for performing spectral convolution in the spectrum domain by exploiting the
Fourier basis of a certain graph, which is based on spectral graph theory. [33] convolution of the spectral graph with simplified
GNNs of the first order. The definition of convolution operations, on the other hand, is done directly on the graph using spatially
close neighbors in non-spectral techniques. Examples include [30]'s use of various weight matrices for nodes with various degrees
and [29]'s learnable aggregator functions, which condense neighboring nodes' information for graph representation learning.
For many years, node categorization has been investigated. Traditionally, hand-crafted features like graph kernels, basic graph
statistics, and engineering characteristics from a local neighbor structure have been utilized. These features lack flexibility and have
subpar performance. Recently, node representation learning approaches using random walks on graphs have been suggested in Deep
Walk [44], LINE [47], and node2vec [48], and have improved performance in part because of deep learning model tricks (such as
skip-gram). All of these techniques, however, exclusively use the graph structure to learn node representation. The representations
are not task-specifically optimized. GNNs learn a potent representation for the tasks and data they are given since CNNs have been
so successful in representation learning. Generalized convolution based on spectral convolution [49, 50], attention mechanism on
neighbors [51, 30], subsampling [43, 31], and inductive representation for a big network [29] have all been researched to enhance
performance or scalability. Although these techniques produce excellent results, they are all constrained to work with homogeneous
graphs.
But a lot of real-world issues frequently can't be modeled by a single homogenous graph. The graphs are delivered as heterogeneous
graphs with a range of node and edge types. A two-stage method is one straightforward answer because most GNNs are made to
work with a single homogenous graph. It pre-processes the heterogeneous graph into a homogeneous graph using meta-paths, which
are the composite relations of various edge types and then learns representation. While HAN [40] learns graph representation
learning by converting a heterogeneous graph into a homogeneous graph formed by meta-paths, the metapath2vec [51] learns graph
representations by employing meta-path-based random walks. These methods, however, rely on manually chosen meta-paths made
by subject matter experts, which means they might not be able to capture all significant linkages for each issue. Furthermore, the
choice of meta-paths can have a big impact on performance. This Network Transformer network, in contrast to previous methods,
can operate on a heterogeneous graph and transform it for tasks while learning end-to-end node representation on the altered graphs.
The over-smoothing issue is addressed by many suggested solutions using intermediate pooling processes resembling those in
current CNNs. By typically condensing neighborhoods into a single node, graph pooling procedures continuously coarsen the graph
in consecutive GNN layers [52, 53]. By removing unnecessary nodes and shortening the distance information must travel,
hierarchical coarsening should, in principle, improve long-range learning. No graph pooling method, however, has been discovered
to be as broadly applicable as CNN pooling. Modern results are frequently achieved using models that do not coarsen the
intermediate graph [54], and some findings imply that neighborhood-local coarsening may be unnecessary or harmful [55]. This
study mentions an alternative method for learning long-range dependencies in GNNs and pooling graphs.
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This approach is similar to hierarchical pooling in that it substitutes purely learned operations like attention for some of the atomic
operations that directly incorporate significant relational inductive biases (e.g., convolutions or spatial pooling in CNNs or
neighborhood coarsening in GNNs) [56, 57].

1. METHODOLOGY
Our system, Graph Transformer Networks, is designed to concurrently create new graph structures and learn node representations
on the learned graphs. Using several candidate adjacency matrices, GTNs search for novel graph topologies to execute more
efficient graph convolutions and learn more potent node representations, in contrast to conventional CNNs on graphs that assume
the graph is supplied. Finding meaningful multi-hop connections and meta-paths connected with different types of edges is a
necessary step in learning new graph architectures. A brief review of the fundamental ideas of meta-paths and graph convolution in
GCNs before proposing this methodology.

A. Preliminaries

Multiple graph architectures with various sorts of nodes and edges are one input to this system. Let T' and T° represent the
corresponding sets of node types and edge types. It is possible to think of the input graphs as heterogeneous graphs [59]. G = (V, E),
where V is a set of observed nodes and E is a set of edges, with a node type mapping function of f,; V — T" and an edge type
mapping function of f.: E — T°. Each node v; € V only has one type of node, which is f,(vi) € T". Similarly, f.(e;) € T° for e;; € E. It
becomes a standard graph when |T¢| = 1 and |T"| = 1. This essay examines the scenario where |T® | > 1. Let N represent the total
number of nodes, or |V|. The set of adjacency matrices {4, }_, where K = |T°| may be used to depict the heterogeneous graph. A €
R™™ js an adjacency matrix where A[i, j] is non-zero when there is a k-th type edge connecting j to i. It may be expressed more
succinctly as a tensor, A € RV Additionally, a feature matrix, X € R™®, denotes that each node has a D-dimensional input

feature.
t t t
A route on the heterogeneous graph G, denoted by the symbol p, is connected with heterogeneous edges, such as Vio Vo > ... 5 Vi,

where t; € T°® designates a I-th edge type of meta-path. Between nodes v; and v, it defines a composite relation R =t; o t,...o t;,
where Rjo R, signifies the composition of relation R; and R,. The adjacency matrix Ap of the meta-path P is obtained by
multiplying adjacency matrices given the composite relation R or the sequence of edge types (ty, t,..., ).

Ap = Ay ApAy

Multi-hop connections are included in the concept of meta-path, and in this approach, novel graph topologies are represented by
adjacency matrices. For instance, by multiplying Asp and Apc, the meta-path Author-Paper-Conference (APC), which may be

i AP _ PC i i
written as A — P — C creates an adjacency matrix Aapc

1) Graph Convolutional Network (GCN)
In this study, end-to-end node classification representations are learned using a graph convolutional network (GCN) [33]. The
forward propagation becomes if H" is the feature representation of the Ith layer in GCNs

1
2

HYt = a(ﬁ‘%fiﬁ‘ lel),

where W € R*" is a trainable weight matrix, D;i = X; 4;; is the degree matrix of 4, and A = 4 + 1 € R"*" iis the adjacency matrix
A of graph G with additional self-connections. It is clear that the provided network topology determines the convolution operation
over the graph, and that the node-wise linear transform HOW® is the only method for learning it. This means that the convolution
layer, which appears on the graph following a node-wise linear transformation, is composed of a fixed convolution followed by an
activation function this methodology benefits from the various convolutions, specifically D™* D2, acquired from learned multiple
adjacency matrices as per graph topologies. It is possible to normalize Ain (2) for a directed graph (i.e., an asymmetric adjacency
matrix) by taking the inverse of the in-degree diagonal matrix D * as H*"Y = 5(D*AHOW®).
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Figure 1 A heterogeneous graph G's adjacency matrices set A is gently picked by the Graph Transformer Layer, which then learns a
new meta-path graph represented by A (1) by multiplying the two adjacency matrices it softly chooses, Q1 and Q2, respectively.
The selection of the soft adjacency matrix is a weighted sum of the candidate adjacency matrices formed by convolution of 1 x 1

with non-negative weights from softmax (W;).

B. Meta-Path Generation

The meta-path graphs in earlier works [40, 41] must be manually created to apply Graph Neural Networks to them. Instead, Graph
Transformer Networks (GTNSs) apply graph convolution on the acquired meta-path graphs after learning meta-paths for the provided
data and tasks. This provides an opportunity to discover additional practical meta-paths and can result in practically different graph
convolutions employing numerous meta-path graphs. There are two parts to the new meta-path graph creation in the Graph
Transformer (GT) Layer in Figure 1. The GT layer first softly chooses two candidate adjacency matrices A, and two graph
structures, Q; and Q.. Additionally, it picks up a new graph structure by composing two relations (i.e., matrix multiplication of two
adjacency matrices, Q1Q,).

With the weights from the softmax function, it computes the convex combination of adjacency matrices as Y., ¢ re ag) A, in (4) via
1x1 convolution as shown in Fig.

Q = F(A;W,) = Q)(A; softmax(W@)),

where Wy € R™ is the parameter of @ and is the convolution layer. Channel attention pooling for low-cost image/action
recognition in [60] is comparable to this method. The meta-path adjacency matrix is created by multiplying two adjacency matrices,
Q; and Q,, which are carefully selected. The matrix is normalized by its degree matrix as AD = D'lQng to maintain numerical
stability. The next step is to determine if GTN can learn a meta-path with any edge type and length. One may determine the
adjacency matrix of arbitrary length | meta-paths by

A, = Z aty Ap) Z at, Ap) |- Z at; Ay) |

t1€T® t,€TE t1€T®
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where a}, is the weight for edge type t; at the Ith GT layer, T° signifies a collection of edge types, and A, denotes the adjacency
matrix of meta-paths. Ap may be thought of as the weighted sum of all length-I meta-path adjacency matrices when is not a one-hot
vector. Thus, learning any length | meta-path graph topologies is possible using a stack of | GT layers, as demonstrated in the GTN
architecture in Fig. 2. This architecture has a problem in that adding GT layers always lengthens the meta-path, making it impossible
to use the original edges. Both lengthy and short meta-paths are significant in some applications. Identity matrix | was in cooperated
within A, i.e., Ag = |, to learn short and long meta-paths with original edges. When | GT layers are layered, this method enables
GTNs to learn any length of meta-paths up to I+1.
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Figure 2 A collection of new meta-path adjacency matrices A” are created using Graph Transformer Networks (GTNSs) utilizing GT
layers, and the new graph structures are then subjected to graph convolution as in GCNs. Concatenating numerous node
representations from the same GCNSs on various meta-path graphs enhances the performance of node categorization. The
intermediate adjacency tensors Q! and Q} € RV are used to construct meta-paths at the Ith layer.

C. Graph Transformer Networks
This section describes the Graph Transformer Networks' architecture. The output channels of the 1x1 convolution in Fig. 1 are set to
C to allow for the simultaneous consideration of different sorts of meta-paths. The intermediate adjacency matrices Q; and Q, then
become adjacency tensors Q; and Q, R™™* as seen in Fig. 2 after the GT layer produces a set of meta-paths. Learning various node
representations via various graph topologies is advantageous. Multiple node representations are concatenated as a result of applying
a GCN to each channel of the meta-path tensor A (1) R™™*C after the stack of | GT layers.
C
Z= || o(B7APxw)
i=1
where W € R™ s a trainable weight matrix shared across channels, X € RV is a feature matrix, C marks the number of channels,
At = AL + I is the adjacency matrix from the ith channel of A" D, is the degree matrix of At and || is the concatenation operator. Z
is made up of node representations from C distinct meta-path networks, each with various lengths (up to | + 1) Two dense layers,
then a softmax layer, are utilized for node classification on top of it. Standard cross-entropy is used as a loss function for the nodes
that contain ground truth labels. This architecture may be thought of as an ensemble of GCNs learned from various meta-path
graphs.
In this part, a comparison of the advantages of the current approach to several cutting-edge node categorization methods is shown
Table 1. Tests and investigations to address the following questions:
Q1. Are the new GTN-generated graph structures useful for teaching node representation?
Q2. Can GTN build meta-paths with varying lengths based on datasets?
Q3. How may the adjacency matrix produced by GTNs be used to understand the significance of each meta-path?
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Table 1 Node classification datasets for heterogeneous networks.

Dataset Edges Edge Type Nodes Training Test Features Validation
ACM 25922 4 8994 600 2125 1902 300
DBLP 67946 4 18405 800 2857 334 400
IMDB 37288 4 12772 300 2339 1256 300

1) Datasets

Heterogeneous graph datasets were used to formulate relations with a variety of node and edge types to assess the efficacy of meta-
paths produced by Graph Transformer Networks. The primary goal is classifying nodes. Use of the IMDB movie dataset was made
as well as the DBLP and ACM citation network databases. Table 1 displays the statistics of the heterogeneous graphs utilized in
investigations. The DBLP has four types of edges (PA, AP, PC, CP), three types of nodes (papers (P), authors (A), and conferences
(C), as well as labels for the authors' study fields. ACM has three different node types (papers (P), authors (A), and topic (S), four
different edge kinds (PA, AP, PS, and SP), and paper category labels. The two datasets' nodes are each represented by a bag of
words or keywords. On the other side, IMDB has three different node types that correspond to different movie genres: movies (M),
actors (A), and directors (D). Plot representations in the form of node characteristics are presented.

2) Implementation Details

For a fair comparison, the embedding dimension was kept fixed for each of the aforementioned approaches at 64. The Adam
optimizer was used, and each baseline's best performance was obtained by selecting the appropriate hyperparameters (e.g., learning
rate, weight decay, etc.). For models based on random walks, a walk length of 100 per node for 1000 iterations and a window size of
5 with 7 negative samples are used. The validation set is used to optimize the settings for GCN, GAT, and HAN, respectively. Two
GT layers were employed for the ACM dataset and three GT layers for the DBLP and IMDB datasets in model GTN. In the GT
layer, constant values were used to initialize the parameters for the 1+1 convolution layers.

D. Baselines

GTNs were compared with traditional random walk-based baselines as well as cutting-edge GNN-based approaches to assess the
efficacy of representations learned by the Graph Transformer Networks in node categorization.

DeepWalk [44] and metapath2vec [52] have recently demonstrated superior performance among random walk-based techniques
among the conventional Network Embedding methods that have been explored. D

eepWalk is a network embedding technique based on random walks that were initially developed for homogenous graphs. Here,
DeepWalk was executed on the whole heterogeneous graph while ignoring the node/edge heterogeneity. Metapath2vec, on the other
hand, is a heterogeneous graph embedding technique that generates embeddings by skip-gram with negative sampling and meta-
path-based random walk.

As GNN-based techniques, GCN [33], GAT [30], and HAN [24] were applied. It uses a localized first-order approximation of the
spectral graph convolution created for symmetric graphs. GCN is a graph convolutional network. Degree normalization for
asymmetric adjacency matrices was changed, i.e., D=4 rather than D~/2AD~'/2, because datasets are directed networks. The
graph neural network known as GAT employs homogeneous graphs to focus its attention mechanism. GCN and GAT were
conducted on the entire graph while ignoring the heterogeneity of the nodes and edges. A graph neural network called HAN utilizes
explicitly chosen meta-paths. With this method, the main network must be manually divided into smaller graphs by joining vertices
with pre-established meta-paths. Here, HAN was put to the test of the chosen sub-graphs whose nodes were connected by meta-
paths [24].

V. RESULT AND DISCUSSION
A representation's ability to be learned from fresh graph configurations. The results of GTN and other node categorization baselines
are displayed in Table 2. The response concerning the research questions (Q; and Q) would be given by analyzing the outcome of
the experiment. When compared to all network embedding methods and graph neural network approaches, the proposed GTN gets
the top performance on all datasets.
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Table 2 Evaluation results on the node classification task (F1 score).

Database Metapath2vec | GCN DeepWalk HAN GAT GTN. GTN
(proposed)
ACM 87.61 91.60 67.42 90.96 92.33 91.13 92.68
DBLP 85.53 87.30 63.18 92.83 93.71 93.91 94.18
IMBD 35.21 56.89 32.08 56.77 58.14 52.33 60.92

Network embedding techniques based on random walks don't perform as well as GNN-based techniques like GCN, GAT, HAN, and
GTN. Additionally, the GAT typically outperforms the GCN. This is so that, in contrast to the GCN, which only averages neighbor
nodes, the GAT may provide various weights to neighbor nodes. Though the HAN is a modified GAT for a heterogeneous graph,
it's interesting to note that the GAT typically outperforms the HAN. This outcome demonstrates that performance issues may arise
when utilizing pre-defined meta-paths as the HAN. Contrarily, even though the GTN model only utilizes one GCN layer whereas
GCN, GAT, and HAN all require at least two layers, it outperformed all other baselines on all datasets.

It shows that the GTN is capable of learning a new graph structure that has practical meta-paths for mastering more efficient node
representation. The GTN can provide edges with different weights as compared to a straightforward meta-path adjacency matrix
with constant baselines, such as HAN. To learn variable-length meta-paths, identify the matrix in A. The identity matrix is a part of
the candidate adjacency matrices A, as was described in Section 3.2. A different model called GTN.; s trained and assessed as an
ablation study to confirm the impact of the identity matrix. Although the GTN.; model structure is identical to that of the GTN, it
lacks an identity matrix in its candidate adjacency matrix A. The GTN_; routinely performs worse than the GTN in most situations.
It is important to notice that IMDB has a bigger difference than DBLP. The length of the meta-paths that GTN._; created may be one
reason why they are ineffective in IMDB. Three layers of GTL were layered, and GTN_; consistently produced 4-length meta-paths.
However, in IMDB, shorter meta-paths (like MDM) are preferred.

E. Interpretation of Graph Transformer Networks

To explain the interpretability of question Q3, a closer look at the transformation that GTNs is necessary. It is necessary to
determine each meta-relevance path using data from GT layers. Suppose there is just one output channel for the sake of simplicity.
For a convex combination of input adjacency matrices, create a shorthand notation a. 4 = XX a, A, to reduce notational clutter. The
output adjacency matrices A" and input adjacency matrices o of the preceding layer are used by the Ith GT layer in Fig. 2 to
create an adjacency matrix A" for a new meta-path graph.

K

Al — (Dl—l)—l Al—lz aiAi!

i

where A is the input adjacency matrix for an edge type i, D" is the degree matrix of A?, and «; is the weight of A;. Define o =
softmax(W(;), a® = softmax(Wdf) since there are two convex combinations at the first layer, as shown in Fig. 1. In GTN, QI 1 is

calculated using the meta-path tensor from the prior tensor, while Q3 is calculated using simply the formula o® = softmax(Wdf ) for
each layer. The new adjacency matrix from the Ith GT layer may then be expressed as follows.

At= (D)L (D) (@A) (et A)(a?.A) ... (a' A)),

Al= (D)1 (DY) Z a®a® . aPAwAy . Ay |,

toty..t]ET®

where a!, is an attention score for edge type t; at the Ith GT layer and T¢ signifies a collection of edge types? The weighted total of
all meta-paths, from 1-length (original edges) through I-length meta-paths, is thus A®. L, al; yields the contribution of a meta-
path 1, t1..., to.
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Table 3 Comparison of the top-ranked meta-paths by GTNs and preset meta-paths model discovered significant meta-paths between
target nodes that are compatible with pre-defined meta-paths (a type of nodes with labels for node classifications). Additionally,
GTNs find fresh relevant meta-paths among all kinds of nodes..

Dataset Predefined Meta-path Meta path learned by GTNs
Top 3 (between target nodes) Top 3 (all)
ACM PAP, PSP PAP, PSP APAP, APA, SPAP
DBLP APCPA, APA APCPA, APAPA, APA CPCPA, APCPA, CP
IMBD MAM, MDM MDM, MAM, MDMDM DM, AM, MDM
PA A 4 17 Ve "4 v

’ " " | :v. | a
- VA.
4 4 ’ | v‘. " ) w.
| ' | | | . .

)

(a) (b)

Figure 3 The attention score of the adjacency matrix (edge type) in the DBLP (left) and IMDB (right) datasets were displayed after
the softmax function was applied to the 1x1 conv filter Wi | index of the layer) in Figure 1. (A) Each edge in turn denotes the
identity matrix, (Paper-Author), (Author-Paper), (Paper-Conference), and (Paper-Conference). (b) The edges in the IMDB dataset
show the identification matrix, movie-director, actor-movie, actor-actor, and movie-actor relationships.

Now that GTNs have learned new graph topologies, they can be read. For a meta-path (to, t;... t;), the weight [T:_, a!; is an attention
score that indicates how significant the meta-path is to the prediction job. Table 3 lists the predetermined meta-paths that are often
used in literature as well as the meta-paths that GTNs learned that had high attention ratings. The prepared meta-paths by domain
knowledge are regularly rated first by GTNs between target nodes that contain class labels to forecast, as shown in Table 3. This
demonstrates that GTNs can pick up on the significance of meta-paths for jobs. What's more intriguing is that GTNs found
significant meta-paths that weren't already part of the established meta-path set.

For instance, CPCPA, which is not part of the present meta-path collection, is ranked as the most important meta-path in the DBLP
dataset by GTN. It makes it reasonable that the author's published works would be related to the author's study field (label to
forecast).

The interpretability of GTNs offers helpful information on the categorization of nodes based on attention ratings on meta-paths. The
attention ratings of the adjacency matrices (edge type) from each Graph Transformer Layer have displayed in Fig. 3. Identity
matrices had greater attention scores in IMDB as compared to the DBLP results. A GTN, which is more useful than IMDB, can
learn shorter meta-paths than the number of GT layers, as was stated in Section 3.3. The GTN tries to cling to the shorter meta-paths
even in the deeper layer by giving the identity matrix greater attention ratings. This finding shows that the GTN can learn the best
meta-path length based on the dataset in an adaptable manner.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 11 Issue | Jan 2023- Available at www.ijraset.com

V.  CONCLUSION

For learning node representation on a heterogeneous graph, this research introduced Graph Transformer Networks. This method
learns node representation by convolution on the learned meta-path graphs while transforming a heterogeneous network into
numerous new graphs defined by meta-paths with variable edge types and lengths up to one fewer than the number of Graph
Transformer layers. With no specified meta-paths from domain knowledge, the learned graph topologies produce a state-of-the-art
performance on all three benchmarks for node classification on heterogeneous networks. It’s observed that this framework creates
new opportunities for GNNs to optimize graph structures on their own to operate convolution based on data and jobs without any
human efforts since these Graph Transformer layers can be integrated with current GNNs. Future research should examine the
effectiveness of GT layers paired with various kinds of GNNs rather than GCNs. Applying GTNs to the other tasks might be
interesting future paths as well, since various heterogeneous graph datasets have recently been examined for other network research
tasks, such as link prediction [61,62] and graph categorization [63, 64].
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