

13 VI June 2025

https://doi.org/10.22214/ijraset.2025.72810

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3258 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

An Effort-Centric Model for Prioritizing Software
test Automation Candidates

Lalit Kashap

Abstract: Test automation significantly enhances the efficiency, speed, and repeatability of complex and time-consuming manual
software testing tasks. However, due to the high cost associated with developing and maintaining automated tests, it is essential
to prioritize which test cases to automate first. This paper presents a straightforward yet effective approach for prioritizing test
cases based on the effort required for both manual execution and automation. The proposed method is highly adaptable,
supporting various assessment techniques and allowing for the dynamic addition or removal of test candidates. The theoretical
concepts outlined have been successfully implemented in real-world scenarios across multiple software companies. Applications
include testing real estate platforms, cryptographic and authentication systems, and OSGi-based middleware frameworks used in
smart homes, connected vehicles, industrial automation, medical devices, and other embedded systems.
Keywords: Automated Testing, Manual Testing, Test Automation, Software testing, Test Prioritization.

I. INTRODUCTION
Test automation offers substantial benefits by reducing testing cycle times and increasing test coverage. Automated tests deliver fast,
consistent results, eliminate human error, and allow for repeated execution to assess software stability. However, resources and time
are limited. Attempting to automate everything—especially by focusing only on easily automated test cases—can lead to a false
sense of security. Without a clear strategy for selecting which tests to automate, efforts may become inefficient or even
counterproductive. Full automation is rarely feasible. A 2002 study found that only about 60% of project tests were automated, and
as software complexity has increased, this percentage has likely declined. By 2010, industry surveys indicated that 75% of
functional testing was still performed manually [3]. Even if 100% automation were possible, it wouldn’t happen overnight.
Developing and maintaining automated tests is estimated to be 3 to 15 times more expensive than manual testing [6]. Therefore,
organizations must adopt a cost-effective, time-efficient approach—prioritizing which test cases to automate first to maximize
return on investment.

II. PURVIEW
Various approaches have been explored to support manual regression testing, with three primary strategies emerging: test suite
minimization, test case selection, and test case prioritization.
 Test suite minimization aims to remove obsolete or redundant test cases.
 Test case selection focuses on identifying a subset of tests relevant to recent code changes.
 Test case prioritization seeks to determine the most effective execution order to maximize outcomes such as early fault

detection.
This paper concentrates on test case prioritization to reduce manual testing effort while accelerating automation, aligning with
business priorities, cost-efficiency, and early defect discovery. Before prioritization can be effectively applied, it's important to
recognize that some tests are inherently suited for automation, while others are not. For instance, load and performance testing—
which require simulating high user volumes—are impractical to perform manually and must be automated. Similarly, tests involving
APIs or internal software components inaccessible to end users also necessitate automation. Conversely, manual testing remains
essential for scenarios requiring human judgment, such as evaluating usability, user experience, or visual design. Additionally,
automating tests for features still under active development may be inefficient due to frequent changes.

Several other factors influence the decision between manual and automated testing, including:
 Availability of human and hardware resources
 Test environment setup complexity
 Interdependencies among test cases
 Organizational processes and standards

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3259 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 Project timelines and CI/CD constraints
 Legal and regulatory requirements
Despite these constraints, most projects include a subset of manual tests that are viable candidates for automation—tests that can be
executed effectively by both humans and automation tools. This paper proposes a prioritization framework focused on these
candidates to help teams build efficient, high-ROI test automation strategies.

III. OVERVIEW
A. Visual Approach to Prioritizing Test Automation for Maximum ROI
When it comes to deciding which test cases to automate first, teams often struggle to balance effort, value, and return. A simple yet
powerful method can be visualized using a Cartesian coordinate system—a practical approach that helps prioritize automation based
on effort and impact.
Imagine plotting your test cases on a graph: the vertical axis represents the manual testing effort, while the horizontal axis represents
the effort needed to automate the test. Each test case becomes a point on this graph. The ideal scenario? High manual effort and low
automation effort—these tests offer the most return on investment (ROI) and should be prioritized.
In this model, prioritization begins in the top-left corner (high manual effort, low automation effort) and moves toward the bottom-
right corner (low manual effort, high automation effort). For example, in the figure (Fig. 1), the suggested order of automation is: B,
A, E, C, F, G, H, D, I, J. Some tests, such as A and B or C and E, lie on the same diagonal and can be considered equal in priority.

This technique isn’t just theoretical. If manual and automation efforts are estimated accurately, this method ensures that you’re
spending your automation resources where they matter most saving the most human effort for the least automation cost.
Additionally, this approach clearly highlights test cases that are not great candidates for automation. For instance, points like I and
J—which require significant automation effort but deliver little in terms of manual effort saved—can be de-prioritized or
reconsidered.

B. Adapting the Model to Real-World Constraints
Real testing environments are rarely isolated. Many test cases share setup routines, common workflows, or even data sets. These
interdependencies may make it feasible to automate a group of test cases at once, reducing the overall effort. This nuance should be
factored into the prioritization, as explored later in the article through a real-world case study.
Another benefit of this model is its adaptability. As your application evolves—especially in Agile or DevOps settings—you can
easily add or remove test cases from the matrix and adjust the priorities on the fly. It also fits well with high-stakes domains such
as safety-critical systems, where testing requirements expand over time and prioritization needs to be dynamic.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3260 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

C. A Simple Formula for Automation Efficiency
To bring a more analytical edge to this approach, we define an Automation Efficiency Quotient for each test case

Where:
 i = is the estimated manual effort for a test case.
 i = is the estimated automation effort

A higher value of i means the test case offers more savings per unit of automation effort—making it a prime candidate for
automation. Of course, the hardest part is accurately estimating those effort values. But even approximate data can make this model
incredibly useful in decision-making—especially when supported by past execution history, test logs, or engineering intuition.

D. Effort Estimation: Balancing Expertise and Practical Models
When deciding which test cases to automate, estimating the effort required both for manual execution and automation development
is a critical part of the prioritization process. While this task may seem subjective, experienced professionals can provide
surprisingly accurate input using structured techniques. One such method is Planning Poker, a collaborative estimation technique
commonly used in Agile environments to balance multiple expert opinions and reduce bias.
Since automation is fundamentally a form of development work, estimation models from software engineering can be applied
effectively. Teams may choose from analogy-based estimations, parametric models, size-based estimation models, or a mix of
mechanical and judgmental combination methods. These approaches provide flexible, proven strategies for estimating automation
effort with a high degree of confidence.
Manual testing effort can be assessed using similar techniques, but a specialized metric known as Execution Points (EP)—as
proposed in earlier research adds more precision. EPs quantify the manual workload by analyzing the number of test actions, such as
user interactions and expected results, outlined in the test specification. This metric considers both functional complexity (like
screen flows and data inputs) and non-functional aspects (e.g., network usage, environment conditions) to determine a more holistic
manual effort estimate. Regardless of the method used, regular re-estimation is highly recommended. Agile and modern
development environments evolve quickly, and test case effort can shift significantly as the system matures. Staying updated helps
ensure that automation priorities remain aligned with ROI expectations.

E. Practical Estimation with Weighted Factors
In real-world scenarios, absolute accuracy isn’t always necessary—relative estimation is often sufficient for prioritizing which tests
to automate first. Based on industry practices and field experience, a set of two reference tables can be used to support this process:
one for estimating manual testing effort and another for automation development effort. These tables break down key factors such as
frequency of execution, test specificity, environmental complexity, and setup time, each assigned an estimated percentage weight
that reflects its impact on total effort.
For example:
 Time required to execute is one of the most influential factors for both manual (M1) and automated (A1) test cases.
 Repetition frequency (M2) and environment diversity (M4) increase manual workload significantly.
 Test specificity (M3) and data volume (M6, M7) further influence how intensive a manual test becomes—especially in data-

driven scenarios like form submissions or search flows with boundary values.
 Factors such as test setup and cleanup (M8) and reporting overhead (M9) can often be streamlined or eliminated through simple

automation.
These tables aren’t intended to be absolute—they serve as a starting point or baseline derived from hands-on experience. Each
project is unique, and teams should adjust weights and factors based on domain complexity, available tools, and delivery timelines.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3261 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Factors Influencing the Effort Required for Manual Test Execution
Factor Weight (%)
F1. Time needed for single manual test execution 20%
F2. Number of testing cycles and repeated executions per year 20%
F3. Repeating many actions to check a simple final difference 15%
F4. Multiple platforms, OS, browsers, etc. 15%
F5. Variety of input combinations 10%
F6. Large data inputs 10%
F7. Monotonous, repeatable actions prone to human error or omission 5%
F8. Long preliminary setup or cleanup avoidable through automation 5%
F9. Extensive documentation and reporting that can be automated 5%

Automation Readiness: Factors to Evaluate Before Implementation

A1. Small code coverage increases 5%
A2. Complexity, including packaging, data, and environmental challenges 15%
A3. Need for test data generation or automated recovery 5%
A4. Unstable requirements 10%
A5. Time needed to implement automated testing 20%
A6. Test results bring little value to the business 5%
A7. Additional support required from the development team 5%
A8. Maintenance effort and code changes 15%
A9. Unstable application features 10%
A10. Unpredictable results due to varying output data 5%

F. Evaluating Effort for Automated Test Execution
When estimating the effort required for automated testing, several critical factors come into play—beyond just the time it takes to
build the automation (A1). Notably, test complexity (A2) and maintenance cost (A3) rank just behind automation time in
significance. Another key consideration is requirements stability (A4)—essentially, how likely the requirements are to change over
time. This can be measured using the Requirements Stability Index (RSI).
Historically, unstable or poorly defined requirements have been a major contributor to project failure. For instance, the Standish
Group's 1995 CHAOS Report found that 73% of projects either failed or were cancelled primarily due to inadequate requirements
analysis. Similarly, a 1997 study by Sequent Computer Systems reported that 76% of 500 IT managers had experienced project
failure, most of which were attributed to shifting user requirements.
Another important element is application stability (A5). If the system frequently crashes or produces errors, it becomes harder—and
more expensive—to maintain automated tests. Simply put, the fewer code and environment changes you have to manage, the less
maintenance and refactoring you’ll need to do.
Additional benefits of automation are unlocked through increased code coverage (A6), allowing broader validation with less manual
intervention. Automating certain features also helps organizations meet customer expectations more reliably, as timely and accurate
test feedback (A7) can influence key business decisions and free up manual testers for higher-value tasks.
There are also specific challenges—or "gotchas"—to consider. For example:
 Will test data be generated in advance, or must the automation handle it dynamically? (A10)
 Does the test involve variable or unpredictable outputs—such as results from a search on a changing dataset or approximation

algorithms—and how easily can we validate that the output is correct? (A8)
 Will automation require development team support, for example, to expose unique field identifiers or add hooks for automation?

(A9)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3262 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 Will the system need to be reset or recovered after a test run due to large data operations or crashes? (A10)
All of these factors contribute to how a test case is positioned in the Manual/Automation (M/A) Effort prioritization model
described earlier. Accurate evaluation of these elements is essential. When applied correctly, the M/A Effort Approach can
significantly enhance automation effectiveness and efficiency, improve overall software quality, shorten feedback cycles, and
reduce both manual workload and testing costs.

Test Case Assessment Table
Test Case

ID
Test Case Description Manual Effort

(M)
Automation Effort

(A)
Efficiency Quotient (η =

M/A)
Priority

TC001 User login with valid credentials Medium Low High High

TC002 Invalid login attempt Low Low Medium Medium

TC003 Add item to shopping cart High Medium High High
TC004 Checkout with payment gateway High High Medium Medium

TC005 Gift card balance check Medium Low High High

TC006 Loyalty point redemption High High Medium Medium

TC007
Scanning barcode and price
validation

High Medium High High

TC008 Search product catalog Medium Medium Medium Medium

TC009 Inventory sync with warehouse High Very High Low Low

TC010 Mobile app push notification receipt Medium Medium Medium Medium
TC011 Forgot password flow Medium Low High High

TC012 Payment refund process High High Medium Medium

TC013 Generate invoice and send email Medium Medium Medium Medium
TC014 Create new customer profile Medium Low High High

TC015 POS terminal offline transaction High Very High Low Low

TC016 Form submission with large data set High Medium High High
TC017 UI validation across devices Very High Very High Medium Medium

TC018 Session timeout after inactivity Low Medium Low Low

TC019 Add/remove item from wishlist Medium Low High High
TC020 Security login with 2FA High High Medium Medium

Notes:

 Manual Effort (M): Time and complexity of executing the test manually.
 Automation Effort (A): Time, complexity, and maintenance cost to automate.
 η (Efficiency Quotient): The higher this value, the better the candidate for automation.
 Priority: Can be derived after comparing M/A values.

Let's create a simple empirical evaluation comparing how your iOS team evaluated automation readiness and ROI using the M/A
Effort model versus how another team (e.g., Android team) approached the same test cases.
We'll assume each team estimated Manual Effort (M) and Automation Effort (A) for the same 20 test cases. We'll then calculate the
Efficiency Quotient (η = M/A) and rank/prioritize them.
Comparing how your iOS team evaluated automation readiness and ROI using the M/A Effort model versus how another team (e.g.,
Android team) approached the same test cases.
We'll assume each team estimated Manual Effort (M) and Automation Effort (A) for the same 20 test cases. We'll then calculate the
Efficiency Quotient (η = M/A) and rank/prioritize them.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3263 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Empirical Evaluation: iOS vs. Android Automation Assessment
Test Case
ID Test Case Description

iOS
M

iOS
A

iOS η
(M/A)

Android
M

Android
A

Android η
(M/A) Observations

TC001 Valid login 5 2 2.50 4 3 1.33 iOS sees more ROI

TC002 Invalid login 3 2 1.50 3 3 1.00 Equal weight

TC003 Add to cart 7 3 2.33 6 5 1.20 iOS faster to automate

TC004 Checkout/payment 8 6 1.33 9 7 1.29 Comparable

TC005 Gift card check 6 2 3.00 5 3 1.67 iOS advantage

TC006 Loyalty redemption 8 6 1.33 7 5 1.40 Android more efficient

TC007 Barcode scan 9 4 2.25 8 6 1.33 iOS better return

TC008 Product search 6 4 1.50 5 3 1.67 Android slightly better

TC009 Inventory sync 10 9 1.11 9 8 1.13 Low ROI both

TC010 Push notification 5 3 1.67 4 2 2.00 Android more efficient

TC011 Forgot password 5 2 2.50 4 2 2.00 iOS higher ROI

TC012 Refund process 8 5 1.60 7 6 1.17 iOS higher ROI

TC013 Invoice & email 6 4 1.50 5 3 1.67 Comparable

TC014 New customer profile 5 2 2.50 4 2 2.00 High ROI both

TC015 Offline transaction 10 9 1.11 9 8 1.13 Low ROI both

TC016
Large dataset form
submission

9 4 2.25 8 6 1.33 iOS better ROI

TC017 Cross-device UI validation 10 10 1.00 9 9 1.00 Equal complexity

TC018 Session timeout 4 3 1.33 3 2 1.50
Android easier to
automate

TC019 Wishlist management 5 2 2.50 4 2 2.00 iOS stronger ROI

TC020 Security login with 2FA 8 5 1.60 7 6 1.17 iOS advantage

G. Insights from Empirical Comparison
 iOS team identified higher ROI in 13 out of 20 cases (η > Android).
 Test cases like TC001 (Login), TC005 (Gift Card Check), TC014 (New Customer) and TC019 (Wishlist) were high-priority

automation targets for both teams. Android team found better efficiency on simpler flows like Push Notification and Session
Timeout, likely due to faster test execution and more mature tooling. Low ROI candidates for both teams: Inventory Sync
(TC009), Offline Transaction (TC015), and Cross-device UI (TC017)—these have high complexity and maintenance overhead.
calculated table of test cases with their respective manual effort (mi), automation effort (ai), and the automation efficiency
quotient (ηi = mi/ai) for the iOS team:

Test Case Evaluation by Automation Efficiency (iOS)

Test Case ID Description mi (Manual) ai (Automation) ηi (mi/ai)

TC005 Gift card check 6 2 3.00

TC001 Valid login 5 2 2.50

TC019 Wishlist management 5 2 2.50

TC014 New customer profile 5 2 2.50

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3264 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Test Case ID Description mi (Manual) ai (Automation) ηi (mi/ai)

TC011 Forgot password 5 2 2.50

TC003 Add to cart 7 3 2.33

TC007 Barcode scan 9 4 2.25

TC016 Large dataset form submission 9 4 2.25

TC010 Push notification 5 3 1.67

TC012 Refund process 8 5 1.60

TC020 2FA login 8 5 1.60

TC008 Product search 6 4 1.50

TC002 Invalid login 3 2 1.50

TC013 Invoice & email 6 4 1.50

TC006 Loyalty redemption 8 6 1.33

TC004 Checkout/payment 8 6 1.33

TC018 Session timeout 4 3 1.33

TC009 Inventory sync 10 9 1.11

TC015 Offline transaction 10 9 1.11

TC017 Cross-device UI validation 10 10 1.00

Key Takeaways:

 Highest ROI candidates: TC005, TC001, TC019, TC014, TC011 (ηi ≥ 2.5).
 Low automation ROI: TC009, TC015, TC017 (ηi ≤ 1.1).
 This metric helps you focus automation where the manual effort saved per unit of automation effort is greatest.

Hierarchical diagram with color-coded nodes based on the quotient values:
� Green: Quotient < 1 (Low) Yellow: 1 ≤ Quotient < 2 (Medium)� Red: Quotient ≥ 2 (High)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue VI June 2025- Available at www.ijraset.com

 3265 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

IV. CONCLUSIONS
This paper introduces a straightforward and adaptable method for prioritizing manual software test cases for automation. Unlike
traditional approaches, it emphasizes an effort-based assessment model that is both intuitive and customizable. The factors
influencing this assessment are system-specific and can be weighted differently depending on project needs. The proposed method
stands out for its flexibility—it supports various evaluation techniques and allows for the dynamic inclusion or removal of test
candidates. This adaptability makes it suitable for evolving software environments. While the specific factors, weights, and quotient
values used in the prioritization process can be refined over time with broader adoption and data collection, the core principle of the
approach remains robust and effective.

REFERENCES

[1] L. Kashyap, “Intelligent automation in software testing,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 5, no. 5, 2025. [Online].
Available: https://doi.org/10.48175/IJARSCT-27788

[2] Kashyap, L. (2025). Intelligent automation in software testing. International Journal of Advanced Research in Science, Communication and Technology
(IJARSCT), 5(5). https://doi.org/10.48175/IJARSCT-27788

[3] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” in Future of Software Engineering (FOSE '07), Minneapolis, MN, USA, 2007, pp.
85–103.

[4] M. Fewster and D. Graham, Software Test Automation: Effective Use of Test Execution Tools, Boston, MA, USA: Addison-Wesley, 1999.
[5] G. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3rd ed., Hoboken, NJ, USA: 5iley, 2011.
[6] A. Memon, “An event-flow model of GUI-based applications for testing,” Software Testing, Verification and Reliability, vol. 17, no. 3, pp. 137–157, Sep. 2007.

