

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74639

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

An Experimental and Numerical Investigation on Performance of Steel Beams with Square Web Openings

Puneeth N R¹, Chidananda G²

¹Student, M Tech. in Structural Engineering, Department of Civil Engineering, Bapuji Institute of Engineering and Technology, Davangere-577004, Karnataka

Abstract: In the present study, experimental and numerical investigation is carried out to study the effect of size of square openings on the performance of steel beams. Steel I section ISMB150 @ 14.9 kg/m, of 900 mm overall span and 800 mm effective span is chosen for the experimental and numerical investigation with a simple support condition at both the ends. Performance of ISMB 150 section without and with square web openings of size 50 mm, 75 mm and 100 mm is studied in the present investigation. Experimental analysis is performed by subjecting the steel sections to mid-point loading in Universal Testing Machine. Whereas numerical analysis is performed for the steel sections using ANSYS FEM software. ANSYS FEM software predicts the similar variation of load-deflection curves as that of experimental results for all the steel beams. From both experimental and numerical investigation, solid beam without web opening takes more load and deflects less as compared to steel beams with square web openings. Further, as size of square opening increases, load carrying capacity decreases and deflection at mid-span increases.

Keywords: Steel beam with web openings; Square openings; Experimental investigation; Numerical investigation; ANSYS.

I. INTRODUCTION

Steel structures are a popular choice in modern construction due to their strength, durability and adaptability. They support heavy loads and span wide areas efficiently. With a high strength-to-weight ratio, steel is ideal for high-rise buildings, bridges, industrial facilities and large-span roofs. These structures are often prefabricated allowing quicker on-site assembly and reduced construction time. Steel's ductility also enhances its performance under seismic and wind forces. Figure 1 shows a typical industrial steel structure. A structural engineer's responsibility goes beyond simply designing for safety and serviceability to accommodate the functional needs based on the structure's intended use. In facilities like power plants or multi-story buildings, traditional steel frames with solid-web beams and girders often create obstacles for installing necessary services such as pipelines and heating, ventilation and air conditioning (HVAC) ducts. Since service installations typically occur after the structural framework is completed, service engineers may struggle to fit ducts into the limited available space. This often results in costly solutions like rerouting services or increasing floor heights during the design phase which may not be practical. To address this, the steel beams with openings in the web (Fig. 2) has become an effective and accepted engineering practice. Design of steel beams with openings in the web is critical as stress distribution and failure mechanism changes with web openings.

Following are the conditions for web openings as per INSDAG (Institute for Steel Development and Growth) guidelines.

- 1) The opening should be at the center of the web and eccentric placement should be avoided.
- 2) Web openings should be positioned at a minimum distance of either twice the beam depth or 10% of the span length from the support.
- 3) The most suitable position for a web opening is within the middle one-third of the beam's span.
- 4) Minimum clear spacing between the openings should be equal to the beam's depth.
- 5) The point of lowest shear force is the ideal position for an opening.
- 6) Depth of square opening should not be more than 0.5 times the beam depth and length of opening should not be more than 1.5 times of beam's depth.

²Professor, Department of Civil Engineering, Bapuji Institute of Engineering and Technology, Davangere-577004, Karnataka

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Fig. 1: Industrial Steel Structure

Fig. 2: Typical Steel Beams with Openings in the Web

II. ANSYS

ANSYS software is a widely used FEA (Finite Element Analysis) package to evaluate the behaviour of structures and components under various loads and conditions. Engineers use ANSYS to analyze static and dynamic responses, thermal effects, fatigue life and failure modes in structures such as beams, frames, shells and complex assemblies. This reduces the necessity for physical testing and prototyping, thereby enhancing the performance and assuring safety by optimizing the designs.

III. EXPERIMENTAL INVESTIGATION

In the present study, steel I section ISMB150 @ 14.9 kg/m [as per SP6 (Part 1:1964)], of 900 mm overall span and 800 mm effective span is chosen for the experimental and numerical investigation. Salient features of solid steel beam and steel beams with square opening are listed in Table 1 and also in Figs. 3 to 6

Table 1: Geometric Properties of ISMB 150 Steel Beams

Beam Identity	Description
SB150	Solid steel beam (i.e. steel beam without web opening)
SB150S50-4H	Steel beam with 4 square holes of 50 mm length and 50 mm depth at 150 mm c/c and at a clear spacing of 100 mm
SB150S75-4H	Steel beam with 4 square holes of 75 mm length and 75 mm depth at 150 mm c/c and at a clear spacing of 75 mm
SB150S100-4H	Steel beam with 4 square holes of 100 mm length and 100 mm depth at 150 mm c/c and at a clear spacing of 50 mm

Fig. 3: Dimensions of SB150

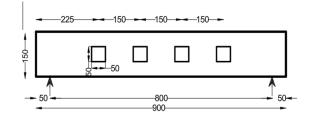


Fig. 4: Dimensions of SB150S50-4H

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

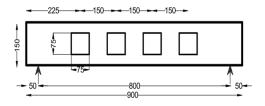


Fig. 5: Dimensions of SB150S75-4H

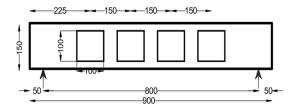


Fig. 6: Dimensions of SB150S100-4H

Steel beams are subjected to three-point loading in Universal Testing Machine (UTM) of 1,000 kN capacity. Deflection at the center of the beam is measured using Linear Variable Displacement Transducer (LVDT). Beams are simply supported over roller supports / roller bearings. Figures 7 to 10 respectively show the arrangements made in UTM for the experimental analysis.

Fig. 7: Experimental Setup of SB150

Fig. 8: Experimental Setup of SB150S50-4H

Fig. 9: Experimental Setup of SB150S75-4H

Fig. 10: Experimental Setup of SB150S100-4H

IV. NUMERICAL INVESTIGATION

3D models are developed using ANSYS FEM software to simulate the behaviour of steel beams. Table 2 shows the parameters considered in modelling and analysis of steel beams in ANSYS.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Table 2: Parameters Considered for FEM Analysis in ANSYS

CI N	Table 2: Parameters Considered for FEM Analysis in ANS 1S								
Sl. No. Parameter		Description							
1	Material	Steel							
2	Density	$7850~\mathrm{kg/m^3}$							
3	Yield strength (f _y)	250 MPa							
4	Ultimate strength (f _u)	410 MPa							
5	Modulus of elasticity (E _s)	210 GPa							
6	Poisons ratio (μ)	0.3							
7	Stress strain relationship	Bi-linear Chart of Properties Row: 135 Bilmear Isotropic Hardening							
8	Mesh element	Shell 181 element (8 Noded brick elements for solid steel beam) Value Val							
		square web openings)							
9	Boundary condition	Simple vertical support Left end, $U_x=U_y=U_z=0$, $\Theta_{y=}$ $\Theta_{z=0}$ Right end, $U_x=U_y=U_z=0$, $\Theta_{y=}$ $\Theta_{z=0}$							

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

	Sl. No.	Parameter	Description	
	10	Loading pattern	Mid-point loading and deflection measurement at the bottom of	
10	Loading pattern	mid-span	l	

Figures 11 to 17 shows the meshing, support conditions and mid-point loading of steel beams.

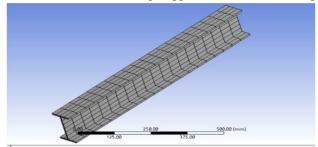


Fig. 11: FE Discretization of SB150

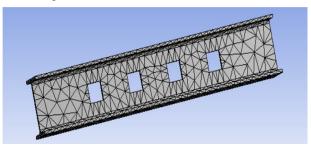


Fig. 12: FE Discretization of SB150S50-4H

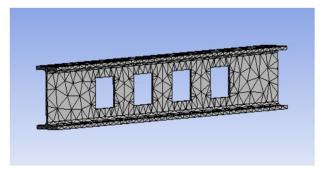


Fig. 13: FE Discretization of SB150S75-4H

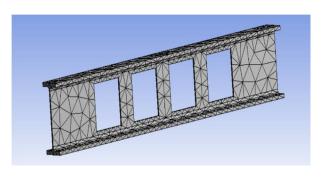


Fig. 14: FE Discretization of SB150S100-4H

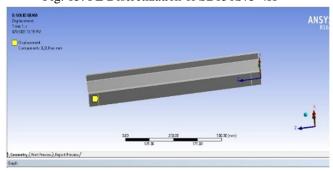


Fig. 15: Boundary Condition at Left Support

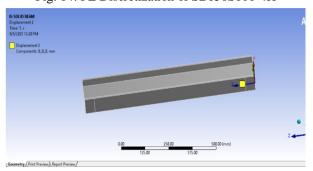


Fig. 16: Boundary Condition at Right Support

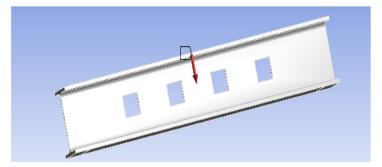


Fig. 17: Mid-point Loading on the Beam

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

V. RESULTS AND DISCUSSION

Figure 18 shows the combined experimental load-deflection (P- Δ) curve obtained for the steel beams without and with square openings tested in UTM.

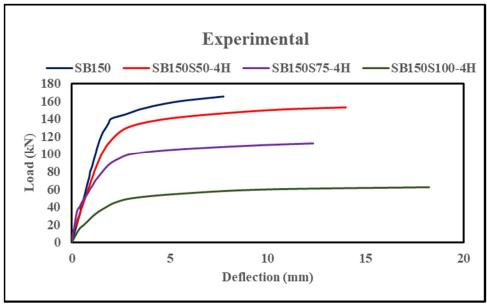


Fig. 18: Comparison of Experimental Load-Deflection Curves of Steel Beams

From Fig. 18, it is observed that, all the steel beams show similar variation in load-deflection curve when tested experimentally in UTM.

Figure 19 shows the combined numerical load-deflection curves obtained for the steel beams without and with square openings analyzed in ANSYS FEM software.

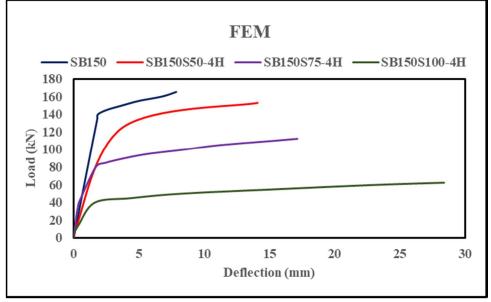


Fig. 19: Comparison of Numerical Load-Deflection Curves of Steel Beams

From Fig. 19, it is observed that, all the beams show similar variation in load-deflection curve when analyzed numerically in ANSYS FEM software.

Figures 20 to 23 show the comparison of experimental and numerical load-deflection curves obtained for steel beams considered in the present investigation.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

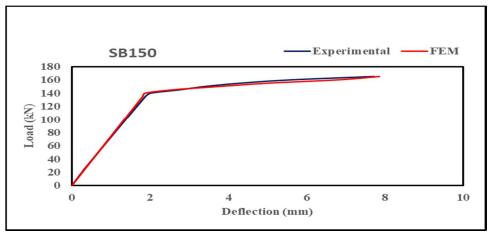


Fig. 20: Experimental and Numerical Load-Deflection Curves of SB150

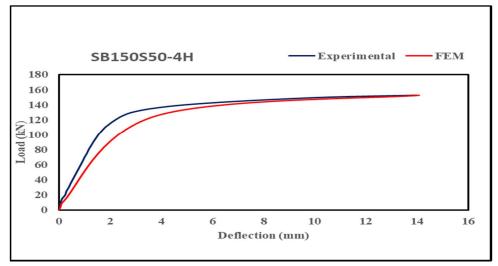


Fig. 21: Experimental and Numerical Load-Deflection Curves of SB150S50-4H

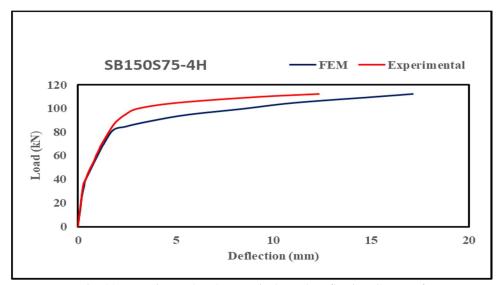
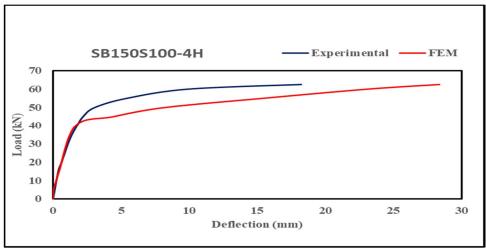
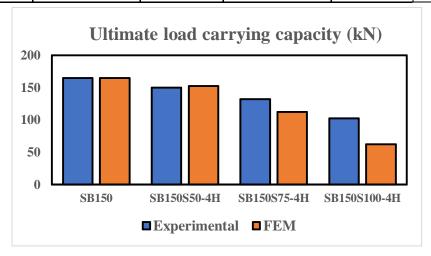


Fig. 22: Experimental and Numerical Load-Deflection Curves of SB150S75-4H

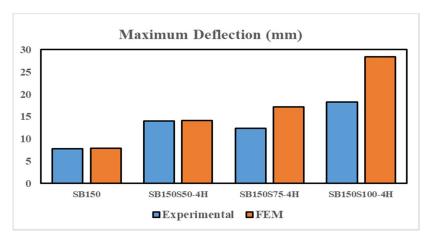
Volume 13 Issue X Oct 2025- Available at www.ijraset.com




Fig. 23: Experimental and Numerical Load-Deflection Curves of SB150S100-4H

From the Figs. 20 to 23, it is observed that ANSYS FEM software predicts the similar variation of load-deflection curve for all the considered steel beams as that of experimental results.

Table 3 shows the experimental and numerical ultimate load, maximum deflection values obtained for the steel beams. The same is graphically represented in Fig. 27.


Table 3: Comparison of Ultimate Load and Maximum Deflection Obtained from Experimental and Numerical Analyses

Steel Section	Ultimate Load (kN)		Maximum Deflection (mm)		Stress in steel at Failures (MPa)
	Experimental	FEM	Experimental	FEM	FEM
SB150	165.0	165.0	7.73	7.850	372.43
SB150S50-4H	152.5	152.5	13.99	14.090	381.20
SB150S75-4H	112.5	112.5	12.33	17.130	375.36
SB150S100-4H	62.5	62.5	18.23	28.380	379.88

(a): Ultimate Load Carrying Capacity

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

(b): Maximum Deflection

Fig. 27: Graphical Comparison of Ultimate Load and Maximum Deflection of Steel Beams Obtained from Experimental and Numerical Analyses

From Fig. 27, it is observed that, in both experimental and numerical investigation, solid beam without web opening takes more load and deflects less as compared to steel beams with square web openings. Further, as dimension of square opening increases, load carrying capacity decreases and deflection at mid-span increases in both experimental and numerical analyses.

VI. CONCLUSION

In the present study, experimental and numerical investigation is carried out to study the effect of size of square openings on the performance of steel beams. Steel I section ISMB150 @ 14.9 kg/m, of 900 mm overall span and 800 mm effective span is chosen for the experimental and numerical investigation with a simple support condition at both the ends. Performance of ISMB 150 section without and with square web openings of size 50 mm, 75 mm and 100 mm is studied in the present investigation. Experimental analysis is performed by subjecting the steel sections to mid-point loading in UTM and numerical analysis is performed for the steel sections using ANSYS FEM software.

The important conclusions drawn from the present study are as follows.

- 1) All the steel beams show similar variation in load-deflection curve when tested experimentally in UTM and when analyzed numerically in ANSYS FEM software.
- 2) ANSYS FEM software predicts the similar variation of load-deflection curves as that of experimental results for all the steel beams. Also, FEM results match fairly well with the experimental results.
- 3) From both experimental and numerical investigation, solid beam without web opening takes more load and deflects less as compared to steel beams with square web openings. Further, as size of square opening increases, load carrying capacity decreases and deflection at mid-span increases.

REFERENCES

- [1] Resmi M and Preetha P (2016), "Finite Element Analysis to Compare the Deflection of Steel Beam with and without Web Openings", International Organization of Scientific Research Journal of Civil Engineering.
- [2] Mork hade G and Gupta M (2015), "An Experimental and Parametric Study on Steel Beams with Web Openings", International Journal of Advanced Structural Engineering.
- [3] Morkhade G and Gupta M (2021), "Experimental and Analytical Investigation of Castellated Beams with Varying Openings Eccentricity", Journal of the institution of engineers, Vol. 102.
- [4] SP 6 (Part 1):1964, "Code of Practice for Structural Steel Sections", Bureau of Indian Standards, New Delhi, India.
- [5] IS 800:2007, "General Construction in Steel Code of Practice", Bureau of Indian Standards, New Delhi, India.
- [6] Institute for Steel Development and Growth (INSDAG) Manual

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)