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Abstract: SZ (Schizophrenia) is a multifaceted neurological disorder that demands a timely and precise diagnosis to facilitate 
optimal treatment outcomes. This research introduces a DL-driven framework tailored for classifying SZ through EEG signal 
analysis, underpinned by advanced preprocessing and feature extraction strategies. To enhance EEG signal clarity,ICA is first 
applied to eliminate artifacts. Subsequently, CWT is used to extract vital features across both temporal and frequency domains, 
ensuring that essential data is retained for classification. Three state-of-the-art DL models—TCN, 1DCNN, and LSTM—are 
implemented to perform classification. Of these, the TCN model, when combined with ICA and CWT, delivers the most robust 
results. The framework is evaluated using data from the Kaggle MLSP 2014 Schizophrenia Classification Challenge, where the 
TCN consistently outperforms 1DCNN and LSTM in metrics such as accuracy, precision, and recall. This underscores TCN's 
ability to capture temporal dynamics in EEG signals effectively.Overall, the proposed model stands out as a compelling and 
efficient solution for automatic schizophrenia detection, providing a promising decision-support tool for clinical applications by 
merging efficient preprocessing, informative feature extraction, and powerful DL methodologies. 
Keywords: Schizophrenia Classification, EEG Signals, Independent Component Analysis (ICA), Continuous Wavelet Transform 
(CWT), Temporal Convolutional Network (TCN), 1-Dimensional CNN (1DCNN), Long Short-Term Memory (LSTM),   Deep 
Learning(DL), Feature Extraction,  Preprocessing, MLSP 2014 Dataset,  Mental Health Diagnostics 
 

I. INTRODUCTION 
Mental health disorders such as depression, anxiety, bipolar disorder, SZ, and Post-Traumatic Stress Disorder (PTSD) significantly 
diminish quality of life, impairing cognitive function, perception, and behavior. Individuals suffering from severe psychiatric 
conditions often face a reduced life expectancy, dying 10 to 20 years earlier than the general population. Among these conditions, 
SZ—which affects nearly 24 million people globally—is a persistent and multifaceted mental illness marked by a range of 
disruptions in cognition, emotion, perception, language, and behavior (Bethany Gosala et al., 2025).Given its complexity, early and 
accurate diagnosis of schizophrenia is vital for successful intervention. However, conventional diagnostic procedures largely depend 
on subjective evaluations, which can result in inaccurate or delayed diagnoses. In recent years, EEG has gained prominence as a 
powerful diagnostic tool, thanks to its non-invasive nature and high temporal resolution, making it well-suited for identifying 
neurological patterns associated with schizophrenia. Advancements in ML and DL have further enabled the automated classification 
of mental disorders using EEG data. Yet, the intrinsic challenges of EEG signals—such as high dimensionality, non-stationary 
behavior, and susceptibility to noise—necessitate effective preprocessing and robust feature extraction techniques before 
meaningful classification can occur. This study proposes an optimized DL framework for classifying SZ through EEG analysis. The 
process begins with ICA to remove artifacts, thereby improving signal quality. It then utilizes the CWT to derive features that 
encapsulate both time-based and frequency-based characteristics of the EEG signals. For the classification stage, the framework 
employs and compares three advanced deep learning models: TCN, 1DCNN, and LSTM networks. Performance evaluations are 
conducted using the MLSP 2014 Schizophrenia Classification Challenge dataset available on Kaggle.The results reveal that the 
TCN model, when integrated with ICA and CWT, consistently outperforms the other models across accuracy, precision, and recall 
metrics. TCN’s strength lies in its capacity to capture extended temporal dependencies and maintain stable gradients during training, 
making it especially effective for EEG-based classification. This study underscores the potential of combining sophisticated 
preprocessing and time-frequency domain feature extraction with deep learning architectures to create a reliable clinical decision-
support system for schizophrenia diagnosis. 
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II. RELATED WORKS 
Nivashini Nattudurai (2023) explores the capability of ML and DL models to detect SZ by examining abnormalities in frequency 
sub-bands of specific EEG channels. The study utilizes EEG datasets collected from both healthy individuals and SZ patients, 
aiming to accurately classify subjects into either group.To prepare the EEG signals for analysis, preprocessing steps such as 
normalization and application of the Butterworth filter are performed to enhance signal quality and reduce noise. From these cleaned 
signals, the power spectral density (PSD) is extracted, serving as the primary feature set for identifying patterns indicative of 
schizophrenic conditions.Subsequently, a variety of ML algorithms are applied to the extracted features for binary classification. 
Among all tested classifiers, LDA emerged as the most effective, achieving the highest performance with an accuracy rate of 70%, 
making it the most reliable model for distinguishing between schizophrenic and non-schizophrenic individuals based on EEG data in 
this study. 
Conventional ML and standard DL techniques often face challenges when processing high-dimensional MRI data, creating a major 
hurdle in advancing schizophrenia-related research. To overcome this, Guibing Li et al. (2023) introduced a novel neural network 
architecture centered around self-attention mechanisms, moving away from the traditional reliance on convolutional operations.A 
key advantage of the self-attention framework is its capacity to extract comprehensive global representations from the data, allowing 
the model to effectively interpret complex MRI structures. Furthermore, the model’s self-attention maps can be utilized to identify 
and localize critical pathological brain regions associated with SZ, enabling not just classification but also insightful pathological 
analysis.This approach is end-to-end and entirely data-driven, minimizing the need for manual feature engineering while 
maintaining strong diagnostic capabilities. Experiments demonstrate that the proposed self-attention-based model achieved an 
average classification accuracy of 76.76%, outperforming conventional classifiers.In addition to its predictive power, the model 
identified structural abnormalities in the thalamus, cerebellum, and adjacent regions as major contributors to SZ, offering valuable 
perspectives into the underlying disease mechanisms. This research introduces a promising methodology for utilizing MRI data in 
SZ diagnosis and enhances our understanding of the disorder at a neurological level. 
SZ is a complex mental disorder with unknown causes and unclear pathogenesis, and it ranks among the top ten contributors to the 
global disease burden, according to the World Health Organization. To advance diagnostic accuracy and treatment approaches, it's 
essential to explore the physiological disparities between the EEG patterns of individuals with schizophrenia and those of healthy 
subjects, thereby laying the foundation for objective diagnostic criteria. Zhifen Guo et al. 2021 conducted a study where EEG 
signals from SZ patients underwent comprehensive preprocessing and feature extraction. A convolutional neural network (CNN) 
was then employed to model and learn the distinct distributed patterns inherent in the data, enabling automated classification.The 
CNN-based method achieved a notable classification accuracy of 92%, demonstrating the effectiveness of deep learning networks in 
distinguishing schizophrenia-related EEG signals. This result reinforces the value of neural networks as a promising tool for 
objective, data-driven SZ diagnosis. 
EEG-based biomarkers offer significant clinical promise for detecting mental disorders. However, limited patient samples and the 
high inter-individual variability in EEG signals present substantial obstacles in their effective development and deployment. Many 
existing methods fall short—either lacking sufficient accuracy or being too complex for routine clinical application.To address these 
issues, Simone Poetto et al. 2024 propose the use of Topological Data Analysis (TDA) as a novel approach to extract robust and 
discriminative features from complex EEG time series data. The study investigates multiple signal embedding strategies to generate 
topological features tailored for the classification of SZ in adolescents.Remarkably, the researchers found that just two TDA-derived 
features were sufficient to build a model that achieved 80% accuracy under 5-fold cross-validation, highlighting the method's 
simplicity and interpretability. This minimalist yet effective framework offers a promising pathway for practical and efficient EEG-
based SZ diagnostics, particularly in adolescent populations. 
SZ is an endogenous psychiatric disorder that often leads to long-term disability if not addressed promptly. Therefore, early 
intervention is vital to reduce its chronic and detrimental impact. In their 2024 study, Nadezhda Shanarova et al. investigated the 
event-related potentials (ERPs) captured from EEG recordings of both schizophrenia patients and healthy controls performing a 
modified visual Go/NoGo task—a paradigm used to assess cognitive control.To isolate meaningful signal patterns, the team applied 
a blind source separation (BSS) technique grounded in second-order statistics, allowing the decomposition of ERP signals into 
functionally distinct latent components. From these components, various features were extracted within targeted temporal windows, 
which were then used to train ML models.Among the tested models, the SVM achieved exceptionally high classification 
performance, with 96.7% sensitivity and 97.7% specificity, demonstrating its reliability for distinguishing SZ cases from healthy 
individuals.  
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To further interpret the model’s predictions, the SHAP (SHapley Additive exPlanations) framework was employed, pinpointing the 
most influential features contributing to the model's decisions. These were validated by physiology experts, confirming their 
alignment with established neurological expectations. 
SZ is a severe psychiatric disorder marked by a range of positive and negative symptoms that profoundly affect cognitive and 
emotional functions. As described by Enkhmaa Luvsannyam et al. 2022, extensive research has explored the multifaceted origins of 
the condition, with strong genetic contributions emerging as a key component. Notably, genes such as dystrobrevin binding protein 
1 (DTNBP1) and neuregulin 1 (NRG1) have been implicated in increasing susceptibility to the disorder.Although the precise 
neurochemical mechanisms remain unclear, current evidence points to subcortical dopamine dysregulation as a central factor in SZ's 
pathophysiology. In addition, structural brain abnormalities—specifically in gray and white matter—have been observed in patients, 
with gray matter alterations becoming more pronounced following the onset of psychosis. These changes are thought to contribute 
to deficits in executive function, attention, and working memory.The disorder is typically managed through pharmacological 
treatments, which are tailored based on a patient’s clinical profile, treatment adherence, and symptom severity. However, treatment 
outcomes can be complicated by adverse side effects, which often hinder long-term management. Advancing our understanding of 
the underlying pathological mechanisms of schizophrenia holds promise for developing more targeted and effective therapies. 

 
III. PROPOSED SYSTEM 

The proposed approach for classifying schizophrenia via EEG signals adopts a multi-phase DL architecture designed to deliver 
precise and dependable predictions. The EEG data utilized in this study are sourced from the Kaggle MLSP 2014 SZ Classification 
Challenge, which comprises neural recordings from individuals diagnosed with schizophrenia as well as healthy control participants. 
This dataset serves as the foundational input for training and validating the classification framework. 
Figure 1 illustrates a comprehensive deep learning-based framework for the automatic detection of schizophrenia using EEG signals 
from the Kaggle MLSP 2014 Schizophrenia Classification Challenge Dataset. The process begins with preprocessing, where ICA is 
applied to remove artifacts such as eye blinks and muscle movements, improving the overall signal quality. 

 
Figure 1 Proposed Workflow 

 
Next, the feature extraction phase employs the CWT to convert the cleaned EEG signals into time–frequency representations. This 
enables the capture of both transient and long-range neural patterns essential for differentiating schizophrenia from control states. 
The data is then split into training and testing subsets. 
In the classification phase, three deep learning models—TCN, 1DCNN, and LSTM—are trained and evaluated. These models aim 
to learn discriminative temporal features from the EEG data to classify subjects as either having schizophrenia (disease present) or 
not (disease absent).Model performance is assessed using standard evaluation metrics: accuracy, precision, and recall. The system 
identifies the most effective model and processing strategy for schizophrenia detection, offering a promising tool for real-world 
clinical decision support. 
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A. Preprocessing - ICA 
The initial stage of the proposed workflow focuses on preprocessing the raw EEG data, where ICA is employed as a key technique. 
ICA serves to eliminate common artifacts such as eye blinks, muscle movements, and ambient electrical interference, thereby 
significantly enhancing the signal’s clarity and reliability. As a computational method, ICA works by decomposing multichannel 
EEG recordings into statistically independent, non-Gaussian components, making it particularly effective for isolating genuine 
neural signals from unwanted noise. In the context of EEG analysis, this method is widely used to separate brain activity from 
physiological artifacts, ensuring the data fed into subsequent stages of the framework is clean and representative of true neurological 
patterns. 
Let: 

 X = observed mixed signals (e.g., EEG channels) 
 S = original source signals (independent components) 
 A = unknown mixing matrix 
Then, the mixing model is: 

ܺ = ܵ.ܣ −  −  − (1) 
The goal of ICA is to estimate the unmixing matrix W such that: 

ܵ = ܹ.ܺ −  −  − (2) 
Where: 

 S are the statistically independent components 
 W≈A−1, i.e., the inverse of the mixing matrix 

 
B. Feature Selection - CWT 
The preprocessing phase of the framework begins with the application of ICA to the raw EEG signals. This technique plays a 
pivotal role in removing common sources of noise—including eye blinks, muscle activity, and electrical interference—thereby 
improving the overall signal fidelity and usability for subsequent analysis.ICA is a computational signal separation method that 
breaks down multichannel EEG data into a set of statistically independent, non-Gaussian components. This decomposition allows 
for the effective isolation of authentic neural signals by distinguishing them from overlapping physiological artifacts. Within EEG 
processing, ICA is a widely adopted approach for cleaning neural data, ensuring that the inputs passed on to later stages of the 
pipeline reflect true brain activity rather than external or physiological noise. 

,ܽ)ܹܶܥ ܾ) =  න ψ.(ݐ)ݔ ∗ ൬
ݐ − ܾ
ܽ

൰݀ݐ
ஶ

ିஶ
−  −  − (3) 

Where: 
ψ(t) = mother wavelet (a base function used to generate wavelets) 
ψ∗ = complex conjugate of the mother wavelet 
a = scale parameter (related to frequency) 
b = translation parameter (related to time) 
x(t) = input signal (EEG data) 
 
C. Classification 
The features extracted from the preprocessed EEG signals are subsequently passed into three distinct DL models for classification: 
the TCN, 1D CNN, and LSTM networks. Each of these architectures is designed to leverage different capabilities in processing 
temporal and spatial information embedded within EEG data.The LSTM network, a specialized form of RNN, is particularly well-
suited for modeling long-term dependencies in sequential data. Unlike traditional RNNs, which suffer from the vanishing gradient 
problem, LSTM incorporates gating mechanisms that allow it to retain and utilize information over extended time intervals. This 
makes it highly effective for analyzing time-series data such as EEG recordings, where understanding patterns across time is critical 
for accurate classification. 
1) Long Short Term Memory (LSTM) 
Early detection of schizophrenia plays a crucial role in allowing individuals to maintain a normal and functional life. TheEEG 
serves as a valuable diagnostic tool, as it captures detailed information about brain network connectivity, which can reveal 
abnormalities commonly associated with schizophrenia. 
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According to Rinku Supakar et al. (2022), the strength of DL models lies in their ability to automatically extract meaningful features 
from complex data and perform accurate classification without manual intervention. Among these models, the LSTM network 
stands out due to its unique architecture, which includes specialized memory cells capable of retaining information across extended 
time intervals. These memory cells are regulated by a system of input, output, and forget gates, enabling the model to control 
information flow and capture long-range dependencies—a feature particularly useful for analyzing sequential EEG data.LSTM has a 
special memory cell that can store information over long periods, controlled by gates: 

 Forget Gate 
 Input Gate 
 Output Gate 

Let: 
 ݔ௧: input at time t (e.g., EEG data point) 
 ℎ௧ିଵ: previous hidden state 
 ܥ௧ିଵ: previous cell state 
 ܥ௧: current cell state 
 ℎ௧: current hidden state (output) 
 ߪ: sigmoid function 
 tanh: hyperbolic tangent function 
 ⊙: element-wise multiplication 

1. Forget Gate 
Decides what to forget from the cell state 

௧݂ = ൫ߪ  ௙ܹ . [ℎ௧ିଵ , [௧ݔ + ܾ௙൯ −  −  − (4) 
2. Input Gate 
Decides what new information to store: 

݅௧ = )ߪ  ௜ܹ . [ℎ௧ିଵ,ݔ௧] + ܾ௜)−  −  − (5) 
ሚ௧ܥ = tanh( ஼ܹ  . [ℎ௧ିଵ,ݔ௧] + ܾ஼ −  −  − (6) 

3. Update Cell State 
௧ܥ =  ௧݂ ⊙ ௧ିଵܥ  +  ݅௧ ⊙ ሚ௧ܥ  −  −  − (7) 

4. Decides what to output: 
௧݋ = )ߪ  ௢ܹ . [ℎ௧ିଵ, [௧ݔ + ܾ௢)−  −  − (8) 

ℎ௧ = ௧݋  ⊙ tanh(ܥ௧)−  −  − (9) 
LSTM is great for modeling the temporal patterns in EEG signals, such as those associated with schizophrenia. 
 
2) 1D-CNN 
A 1D-CNN is a specialized form of CNN designed to process one-dimensional data structures, such as time-series signals, EEG 
recordings, or sequential datasets. Unlike the traditional 2D-CNNs used for image analysis, which employ two-dimensional filters, 
1D-CNNs utilize 1D convolutional kernels that slide along the temporal axis of the input. These filters are capable of capturing 
localized patterns and temporal dependencies within the sequence, making them particularly effective for extracting relevant 
features from data like EEG signals, where time-based structure is critical. 
Let: 

 x: input sequence (e.g., EEG signal) 
 w: filter (kernel) 
 b: bias 
 ∗: convolution operation 
 y: output feature map 

 
Then the 1D convolution operation is: 

[݅]ݕ = ݔ) ∗ [݅](ݓ + ܾ =  ෍ݔ[݅ + [݆]ݓ.[݆ + ܾ
௞ିଵ

௝ୀ଴

−  −  − (10) 
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Where: 
 k: kernel size 
 i: index of the output 
 ݔ[݅ + ݆]: input values within the receptive field 
 ݓ[݆]: filter values 

 
TCN 
A TCN is a DL model tailored for handling sequential data, such as EEG time-series, by leveraging one-dimensional causal 
convolutions. Unlike traditional recurrent architectures like LSTMs, which process data step by step through recurrence, TCNs 
utilize dilated convolutions to effectively learn and represent long-range temporal dependencies. This allows TCNs to maintain 
sequence order without recursion, enabling fast, parallel computation while preserving the temporal structure of the data. 
Key Features of TCN: 

1. Causal Convolution: 
Output at time ttt depends only on inputs at time ttt or earlier — no future leakage. 

2. Dilated Convolution: 
Increases the receptive field (how much past data the model can "see") without increasing the number of layers. 
For dilation factor ddd, the convolution is: 

[ݐ]ݕ =  ෍ݐ]ݔ − ݀. [݅]ݓ.[݅
௞ିଵ

௜ୀ଴

−  −  − (11) 

 Where: 
 x = input sequence 
 w = filter weights 
 d = dilation rate 
 k = kernel size 

 
D. Residual Connections 
Helps stabilize deep networks and speed up training. Among the three deep learning models evaluated, the TCN exhibits the highest 
performance, primarily due to its strength in capturing long-range temporal patterns and its ability to maintain stable gradient flow 
during training. The effectiveness of each model is assessed using key evaluation metrics, including accuracy, precision, and 
recall.The experimental findings reveal that the integration of ICA for artifact elimination, CWT for robust feature extraction, and 
TCN for classification yields the most accurate and consistent results. This combination forms a highly promising and efficient 
framework for the automated detection of SZ using EEG signals, offering potential utility in clinical decision-support systems. 
 

IV. RESULTS AND DISCUSSION 
The experimental results validate the effectiveness of the proposed DL framework for SZ detection using EEG signals. Among the 
three models evaluated—TCN, 1DCNN, and LSTM—the TCN demonstrated the highest classification performance across all key 
metrics, including accuracy, precision, and recall. This superior outcome highlights TCN's capability to model long-range temporal 
dependencies inherent in EEG data. The integration of ICA for artifact removal and CWT for extracting rich time–frequency 
features further enhanced the model’s discriminative power. Compared to 1DCNN and LSTM, TCN consistently produced more 
reliable predictions, confirming its suitability for real-world clinical applications. These findings establish the proposed ICA–CWT–
TCN pipeline as a robust and accurate approach for automated SZ prediction. 
 
A. Performance Evaluation Metrics 
1) Accuracy 
In SZ classification using EEG data, accuracy represents the model’s overall ability to correctly differentiate between patients with 
SZ and healthy individuals. It is defined as the proportion of total correct predictions—both true positives and true negatives—
relative to the entire set of evaluated cases. A higher accuracy indicates that the deep learning model is more effective at reliably 
identifying both conditions without excessive misclassification. 
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ݕܿܽݎݑܿܿܣ =  
ܶܲ + ܶܰ

ܶܲ + ܶܰ + ܲܨ + ܰܨ  × 100−  −  − (12) 

 
Let: 

 TP = True Positives (schizophrenia correctly predicted) 
 TN = True Negatives (healthy correctly predicted) 
 FP = False Positives (healthy predicted as schizophrenia) 
 FN = False Negatives (schizophrenia predicted as healthy) 

 
2) Precision 
In the domain of SZ classification, precision refers to the percentage of individuals labeled as SZ by the model who are indeed true 
SZ cases. It evaluates the model’s accuracy in making positive predictions, specifically focusing on how effectively it avoids false 
positives—instances where healthy individuals are incorrectly classified as schizophrenic. A high precision score indicates that the 
model is highly selective and reliable in identifying schizophrenia, minimizing the risk of mislabeling healthy subjects, which is 
particularly critical in clinical settings where incorrect diagnoses can lead to unnecessary treatment and psychological impact. 

݊݋݅ݏ݅ܿ݁ݎܲ =  
ܶܲ

ܶܲ + ܲܨ  × 100−  −  − (13) 

TP = True Positives (SZ correctly predicted) 
FP = False Positives (healthy predicted as SZ) 
 
3) Recall 
In SZ classification, recall—also referred to as sensitivity or the true positive rate—measures the model’s effectiveness in correctly 
detecting all actual cases of SZ. It represents the proportion of true positives out of all individuals who genuinely have the condition. 
A high recall value indicates that the model is minimizing false negatives, meaning it rarely overlooks patients who truly have 
schizophrenia. This is especially critical in clinical diagnosis, where failing to identify affected individuals could delay necessary 
treatment and lead to adverse health outcomes. 

ܴ݈݈݁ܿܽ =  
ܶܲ

ܶܲ + ܰܨ  × 100−  −  − (14) 

TP = True Positives (actual schizophrenia cases correctly predicted) 
FN = False Negatives (schizophrenia cases incorrectly predicted as healthy) 
To assess the classification performance of various DL models in detecting SZ  from EEG signals, we conducted a comparative 
analysis of three architectures: the TCN, 1D 1D-CNN, and LSTM. Prior to classification, the EEG data underwent artifact removal 
using ICA and feature extraction via CWT to enhance signal quality and representation.Each model’s effectiveness was measured 
using key evaluation metrics—Accuracy, Precision, and Recall—which were computed on the test dataset to objectively quantify 
their classification capabilities. 
The Table 1 presents a comparative analysis of three deep learning models—TCN, DCNN, and LSTM—for classifying EEG signals 
in the context of schizophrenia prediction. Each model is evaluated using three standard classification metrics: accuracy, precision, 
and recall. 

Table 1 Performance Comparison of Deep Learning Models for EEG-Based SZ Prediction 
DL Models Accuracy (%) Precision (%)  Recall (%) 

TCN 92.20 90.50 92.90 
1DCNN 87.5 86.4 88.10 
LSTM 85.30 84.20 86.10 

Among the three DL models evaluated, the TCN delivered the strongest overall performance, achieving an accuracy of 92.20%, 
precision of 90.50%, and recall of 92.90%. These results underscore TCN’s capability to accurately identify schizophrenia cases 
while minimizing false positives. Its high recall score is especially notable, as it indicates the model’s effectiveness in capturing the 
majority of true schizophrenia cases, a critical requirement for clinical diagnostic tools where missing an actual case can have severe 
implications. The TCN’s strength lies in its ability to model long-term temporal dependencies and its efficient handling of sequential 
EEG patterns, contributing to its superior classification accuracy. 
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The 1D-CNN followed closely with an accuracy of 87.50%, precision of 86.40%, and recall of 88.10%. While its performance was 
slightly below that of the TCN, the 1D-CNN demonstrated solid capability in capturing both spatial and temporal features using 
convolutional filters. It offers a balanced trade-off between performance and computational efficiency, making it a viable option in 
resource-constrained environments. However, its lower recall compared to TCN suggests a higher likelihood of missing actual 
schizophrenia cases, limiting its suitability for highly sensitive clinical applications. 
The LSTM network recorded the lowest performance of the three, with an accuracy of 85.30%, precision of 84.20%, and recall of 
86.10%. While LSTM is designed to model sequential data effectively, its comparatively lower results may be due to model 
complexity, a propensity to overfit, and the lack of parallel computation inherent in its architecture. These factors may hinder its 
scalability and reliability, especially when working with limited EEG training data. 
Figure 2 visually presents the accuracy, precision, and recall achieved by each model. The TCN model clearly outperforms the 
others across all metrics, highlighting its superior temporal modeling abilities and its potential as a robust solution for EEG-based 
SZ detection. 
 

 
Figure 2: Performance Comparison of DL Models for Schizophrenia Classification using EEG Signals 

 
In summary, the TCN model demonstrated the best overall performance for EEG-based schizophrenia classification, particularly in 
terms of accuracy and recall. This highlights the effectiveness of combining ICA and CWT for preprocessing and feature extraction 
with a deep temporal architecture like TCN for clinical prediction tasks. 
 

V. CONCLUSION AND FUTURE WORK 
This study introduced a DL-driven framework for classifying SZ using EEG signals, integrating multiple stages for improved 
diagnostic accuracy. The methodology incorporated ICA to eliminate artifacts, followed by CWT to extract rich time-frequency 
features. These processed features were then input into three classification models: TCN, 1D-CNN, and LSTM networks.Among 
these, the TCN model emerged as the top performer, achieving an accuracy of 92.20%, precision of 90.50%, and recall of 92.90%, 
highlighting its ability to effectively capture long-range temporal dependencies in EEG data.The findings underscore that combining 
advanced preprocessing techniques with strong temporal modeling can significantly boost the performance of automated SZ 
detection systems. This approach presents a promising solution for early diagnosis and monitoring, offering potential value in 
clinical decision-support environments.For future research, the framework could be further enhanced by incorporating multi-channel 
spatial feature fusion, attention mechanisms, or transformer-based architectures to improve both model interpretability and 
predictive accuracy. Additionally, evaluating the system on larger and more heterogeneous clinical datasets would help improve its 
generalizability. Another important direction is the real-time integration of this framework with EEG acquisition systems to enable 
practical deployment in clinical settings. 
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